• Объявления

    • admin

      Размещайте материалы своей компании БЕСПЛАТНО!   18.04.2018

      Редакционная политика портала позволяет размещать на бесплатной основе различные типы материалов: интересную информацию, наработки, технические решения, аналитические статьи и т.д. Пример такого блога. Взамен мы рекламируем ваш блог в наших группах в соц. сетях, ну и плюс естественная самореклама от пользователей форума и блогов, которые будут читать ваш блог. К примеру охват одного поста только в нашей группе VK составляет более 10 тыс. человек. Т.е. мы предлагаем бартер - вы ведете у нас блог и публикуете какую-то полезную и интересную информацию связанную с вашим производством, а мы рекламируем ваш блог в наших соц. сетях. Блоги можно полностью кастомизировать: поставить изображение шапки, сделать меню или оглавление, также в своем блоге вы будете модератором - сможете удалять комментарии и т.д. Ведение своего блога требует времени и навыков, но рекламный эффект колоссальный, т.к. это живое общение и отклик. Посты не должны быть рекламой, а также должны соответствовать правилам форума. Для тех компаний, которые будут публиковать интересный контент, права в дальнейшем будут расширяться - сможете публиковать больше ссылок, пресс-релизы, новости компании, анонсы и т.д. Ну а если вы хотите размещать платную рекламу: условия и прайс размещения на сайте и форуме, коммерческая тема на форуме, реклама в группе VK.

Falconist. Мемуары

  • записей
    35
  • комментария
    1 014
  • просмотра
    26 953

Об этом блоге

Поскольку жизнь помаленьку движется к своему логическому завершению (старческий маразм), а опыт за долгие годы поднакопился немалый, жалко его бездарно хоронить. Поэтому в данном блоге буду выкладывать как свои разработки, бессистемно рассыпанные по множеству тем разных форумов (поэтому возможны повторы), так и случаи из жизни, не нашедшие пока отражения. А также "размышлизмы" по вопросам, не связанным с электроникой, но IMHO достойные того, чтобы тоже не пропали втуне.


 

Записи в этом блоге

Falconist

Разбирая загашники, наткнулся на несколько старых проектов, о которых на форуме уже упоминал, но "вскользь". Поэтому большая просьба - ничего не советовать, ибо некропостничать как-то не комильфо.

Итак, цифровой "магнитофон". Предназначен для ансамбля "Украиночка", служит для циклического повторения аудиообъявлений.. Задача простая: приехал коллектив в село, разгрузились у клуба, девочки "марафетятся", а бусик колесит по селу и через "колокольчики" на крыше напоминает о предстоящем концерте. Для озвучивания был куплен (к сожалению, без меня) китайский аудиосилитель с обычным ручным микрофоном, т.е., нужно было надрывать горло "глашатаю". Он же ведущий. После 3-го концерта за день горло было уже "никаким".

Попробовали использовать компактный мини-диск "Sharp MD-M180W". Оказалось - неудобно. Надо было каждый раз жать на кнопку повтора. Пришлось ваять ему замену. Причем, данный "магнитофон" был повторен дважды. Каждый раз по несколько видоизмененной схеме. В аттаче - файл в SprintLayout с обоими вариантами.

За основу был взят одночиповый войскордер фирмы WinBond ISD2590 на 90 секунд записи, чего было "выше крыши". "Фишкой" данной разработки явилась функциональная эмуляция почти всех функций чипа за исключением произвольного выбора треков (что было не нужно для данной задачи), без применения микроконтроллера, только на дискретной логике. Этим разработкам уже 12-15 лет. МК я тогда не знал, как класса.

Схема: 

Megaphon-Final.thumb.GIF.c11f64838d5385113406737bf859f8ae.GIF

Печатная плата (и она же в аттаче):

5bebdd462a9db_Megaphon-FinalPCB.thumb.PNG.4872caeb95841e4b47e94d30eca0d941.PNG

разрабатывалась под установку в польский корпус (показан измеритель RCLF в таком же корпусе):

5bebdeb9a4ff2_.jpg.d00b9dd1aee09c7ceed9453c463f18db.jpg

Управление максимально упрощено. Три кнопки, имитирующие управление "обычным" магнитофоном: - "Стоп/Сброс (в начало трека), SA3 - "Старт/Пауза" и SA4 - "Запись". Выключатель питания (SA1) и переключатель SA5 выход сигнала на усилитель непосредственно с микрофона или же с выхода войскордера. Режимы работы индицируются светодиодами. 

В аналоговой части электретный микрофон подключен штатно, как балансный. Балансные выходы смешиваются в небалансный сигнал дифусилителем DA2.1. Применен LM358, хотя и гадостный по качеству, но на фоне супергадостного китайского УМ, да еще нагруженного на "колокольчик - не заметно. Полностью реализован принцип "необходимой достаточности". Выход дополнительного микрофонного усилителя на DA2.2 тоже штатно подан на вход "Внешний Aux" микросхемы.

Собственно, это и всё. Оба "магнитофона" эксплуатируются и по сей день. Понятно, что всё уже давно устарело, но отдельные схемотехнические решения кому-то могут и пригодиться.

Megaphon-Final.spl7

Megaphon-Final.lay6

Falconist

Данная запись ни в коей мере не является рекламой каких-либо препаратов, "систем оздоровления" либо прочих эзотерических глупостей. В ней описан мой личный опыт борьбы с этой пакостью, который чётко совпал с выводами из результатов проведенного более 30 лет назад исследования дыхательной недостаточности (ДН) у детей и подростков со сколиозом, результаты которого оформлены в виде диссертации на соискание ученой степени кандидата медицинских наук (приаттачена). Правда, прочитать все 210 страниц (и это пока без приложений, занимающих еще почти 120 страниц!) неподготовленному человеку сложновато, но хоть пролистать и убедиться, что всё изложенное - не плод авторской фантазии - вполне возможно.

Может возникнуть резонный вопрос: каким таким боком дыхательная недостаточность связана с гипертонической болезнью? Однако, оказывается, связь достаточно сильная, поскольку т.н. "гипертоническая болезнь" (по крайней мере, одна из ее форм, т.н. "эссенциальная ГБ") является не собственно болезнью, а компенсаторной реакцией организма на нарушение тканевого дыхания - последнего из этапов функции дыхания, которому предшествуют перенос газов кровью (кислотно-основное равновесие, КОР) и внешнее дыхание (газообмен в легких). Вот обоснованию высказанного парадоксального утверждения и посвящается данная запись. 

Начну с начала, а именно, "откуда ноги растут" у дыхательной недостаточности. Исторически, так сложилось, что проблема дыхательной недостаточности явилась чуть ли не монополией пульмонологов (специалистов по заболеваниям лёгких). Тем более, что методика исследования внешнего дыхания (спирография) несложна и вполне доступна в клинике. Однако, оценка получаемых данных столкнулась с "проклятым" вопросом: как соотнести их с тяжестью изменений в лёгких, если нет "реперной шкалы", т.е., относительно непрерывной последовательности этих изменений от нормы до крайне тяжелой патологии. В результате появилось множество классификаций как самой ДН, так и степеней её тяжести. Этот вопрос описан в приаттаченной статье (правда, на украинском и в публикацию она в своё время не пошла).

Мне же просто повезло с патологией. Были изучены показатели функции дыхания при сколиозе у 208 больных с углами деформации позвоночника от 1 до 149°. Т.е., с почти непрерывной "реперной шкалой". Статистическая обработка методом вариационной статистики при группировке по общепринятым степеням тяжести сколиоза оказалась не информативной. Поэтому был применен метод корреляционно-регрессионного анализа. Причем, аппроксимация всей совокупности данных по возрастным группам единственной прямой линии регрессии тоже была неинформативной (либо вообще недостоверной, либо слабо достоверной). В то же время на графиках отмечались вполне закономерно выраженные экстремумы преобладания значений в определенных диапазонах углов деформации позвоночника. Поэтому был применен метод кусочно-линейной аппроксимации. Пока добавление новых точек к аппроксимируемому участку значений повышало достоверность расчета - добавлялась следующая точка. Как только достоверность начинала снижаться - принималось решение о конце этого участка. Расчеты выполнялись на супер-ЭВМ для того времени (начало-середина 80-х) "Электроника Д3-28" с ОЗУ аж 16 кБайт :D. Но что было - то было. 

В результате такой обработки были получены парадоксальные на первый взгляд данные. Приведу пример нескольких графиков из диссертации. Пунктирные линии - единственная линия регрессии, сплошные - ломаная. Жизненная ёмкость лёгких (ЖЕЛ) для возрастных групп 13-14 ("В") и 15-17 лет ("Г"):

5bddf376bfc4d_.thumb.gif.4bbafe4c0ec21b1c2562844a6a92a7ad.gif

Вначале показатель закономерно снижается, но к 60-80° возрастает до практически нормы. Парадокс! Деформация увеличивается, а ёмкость лёгких восстанавливается!!! Аналогично ведет себя минутный объём дыхания в покое (МОДп):

5bddf377aaa33_.thumb.gif.0a02a137afb445432f92b10bb0b47e8b.gif

Не буду дальше углубляться в анализ - всё это подробно расписано в диссертации. Вывод из проведенного исследования был следующим: тяжесть ДН определяется не каким-либо из показателей внешнего дыхания (например, одышкой), зарегистрированная величина которого может относиться сразу к нескольким степеням деформации, а следовательно, тяжести заболевания, а степенью вовлечения в компенсацию патологических нарушений резервных возможностей как самого пораженного звена дыхательной цепи (I степень), так и соседних с ним (II степень) и ещё более отдалённых (III степень). В качестве примеров привожу полярограммы напряжения кислорода в мышечных тканях голени при функциональных пробах ишемизации (наложением жгута на бедро) - верхний трек и дыхании кислородом - нижний трек. Норма:

3-68.thumb.gif.e66d28680a7d6ef3cc5823320f979c2f.gif

III степень дыхательной недостаточности:

3-70.thumb.gif.2dee046b24ded0a0d4b35b17c2b3fdd1.gif

Чётко видна парадоксальная реакция (синдром "кражи") при дыхании кислородом - уровень кислорода в тканях снижается. Реакция на ишемизацию тоже кране "вялая" - клетки перешли на анаэробный цикл дыхания, наличествует тканевое депо кислорода в миоглобине.

Как результат - моя классификация ДН:

5-1.thumb.gif.8afdf16c91db7e76c0dfbf75726b889d.gif

Всё сказанное выше было только преамбулой, чтобы продемонстрировать обоснованность дальнейших выводов. Перейдем теперь к гипертонической болезни (ГБ).

Правильная теория должна не только объяснять всю накопленную совокупность фактов по проблеме, но и прогнозировать их развитие. Что и произошло примерно через год после защиты. Привёл ко мне коллега на обследование больного. Разговорились. Он сказал, что писал диссертацию по ГБ и бросил, т.к. никто не смог объяснить результаты исследований. А именно: при начальных степенях ГБ напряжение кислорода в крови достоверно повышается. Вот тут у меня в  мозгах и "щелкнул тумблер". Из институтского курса гистологии в памяти осталась фраза из учебника, что при ГБ в базальной мембране капилляров откладывается гиалиноид. Причем, трактовалось это явление, как вторичное, вследствие повышенного артериального давления (АД). А я подумал: А ЕСЛИ ЭТО - НЕ ВТОРИЧНЫЙ, А ПЕРВИЧНЫЙ ФАКТОР РАЗВИТИЯ ГБ? Тогда всё чётко укладывается в описанную выше теорию ДН. Поясняю рисунками.

5bdeb4cc67d19_.thumb.GIF.0ca5e0efedf930c74964eee2f1399fb4.GIF

Слева - нормальные капилляры. Кислород из крови диффундирует через нормальную стенку капилляров в ткани, где и потребляется клетками по экспоненциальной зависимости отдаленности от капилляра. По центру - капилляр, стенка которого уплотнена отложением гиалиноида в базальной мембране. Диффузия кислорода через уплотненную стенку затруднена (удлиненный красный отрезок парциального давления кислорода). В тканях напряжение кислорода снижено, они находятся в состоянии кислородной недостаточности. Организму это состояние нужно как-то компенсировать. Как? У него ведь не так уж и много вариантов реакций. А компенсация - элементарна и основана на чисто физической зависимости: при повышении давления газа над жидкостью растворимость данного газа в жидкости повышается. Возьмите бутылку с газировкой. Пока пробка не вскрыта - газа в ней как бы и нет. Стоит только открыть пробку - он "откуда-то вдруг" появляется. Вот и организм повышает давление крови, чтобы повысить в ней растворимость кислорода. Правый рисунок - компенсированное состояние. При том же градиенте напряжения кислорода через стенку капилляра (красный отрезок) напряжение кислорода в тканях возвращается к норме. 

Компенсация-то компенсация, да не абсолютная. Повышенное АД ведёт к другим неприятностям - головным болям, слабости, а в конечном итоге - к инсультам и инфарктам.

Что делает медицина? Сбивает это повышенное давление гипотензивными препаратами. Что делает организм? БОРЕТСЯ С ЛЕЧЕНИЕМ! Ему же дышать надо!!! А ему не дают... И возникают "качели": дали гипотензивное - давление сбили. Организм отреагировал кризом. Дали посильнее - еще раз отреагировал. Дали ещё более мощное - а организм сказал: "Пардон, больше бороться не могу, поднимаю лапки"...

Небольшой вбоквелл. В кардиологии существует такой препарат, как "курантил". Он ни в коем случае не обладает гипотензивными  свойствами. По механизму своего действия он реологик (снижает вязкость крови). Однако, в течение примерно 3-4 недель после начала его приема АД достоверно снижается. Очевидно, что через единицу объёма тела за то же время проходит больше менее вязкой крови, несущей дополнительное количество кислорода. Удерживать АД повышенным не требуется.

Второй пример: лечебное голодание. Через 3 недели (стандартный курс) АД тоже снижается на 20-40 мм рт.ст. Объяснение: голодающий организм "сжирает" всё, что ему не является крайне необходимым. однако, через 2...3 месяца вновь навёрстывает "сожранное".

Итак, какой же ввод из всего написанного? Гипертоническая "болезнь" ЯВЛЯЕТСЯ КОМПЕНСАТОРНОЙ РЕАКЦИЕЙ организма на уплотнение стенок капилляров, а не собственно болезнью, как таковой. Вообще-то, выделяется более двух десятков причин, ведущих к повышенному артериальному давлению. Это и почечная гипертония, и гормональная и застойная сердечно-сосудистая. Мы же рассматриваем т.н. "эссенциальную" гипертонию, когда очевидная причина так и не установлена. В том числе и атеросклеротического характера.

А теперь подходим, наконец, к главному. Как же её всё-таки лечить? За последнее время появились препараты, реально растворяющие эти отложения. К их числу относятся статины (Розувастин (Роксера),  и др. - производителей и, соответственно, названий множество). По крайней мере Роксеру по 15 мг назначила мне мой семейный врач. Принимать один раз в день вечером. 100 таблеток стОят всего $7,5. Правда, до сколь-нибудь заметного эффекта принимать надо долго - не менее 2...3 месяцев. А что вы хотели? Всякая гадость откладывалась в сосудах полжизни, а вывести хотите за неделю?

Результат: год назад были "свечки" АД до 180...210 мм рт.ст. Сейчас уже заканчивается второй месяц, как стабильно 130...135/70..80 мм рт.ст. Правда, в сочетании в "мягким" гипотензивным "Нормопресом". Почти как у космонавта :D.

Повторюсь: я ничего не рекламирую. Но попробовать никто не мешает. Проба будет стоит недорого. На форуме достаточно много пользователей старшего возраста. Если хоть у одного не случится инсульта - я буду полностью удовлетворен.

Доброго вам здоровья!

 

Дыхательная недостаточность при сколиозе.doc

Проблема визначення та класифікації ДН.DOC

Falconist

После того, как жена третий раз ночью ударила пальцы на ноге о край кровати, мне был выдвинут ультиматум: "Хочу ночник!"

А поскольку зеленое пупырчатое сдавило горло покупать эту фиговину за примерно $2, порылся по сусекам, откопал 6 светодиодов (по два RGB), не так чтобы сверъяркие, но достаточно яркие, основание от совейской круглой вилки, контактные штыри, конденсатор, пару резисторов, выпрямительный мостик, конденсатор фильтра. Жена презентовала крышку от духов в качестве рассеивателя. Для светодиодов просверлил отверстия в теле крышки, посадил их на циакриновй клей. Светодиоды соединены в цепочку из 6 штук. 

5bdde62c33f5d_.JPG.855439f7986dfe14b1c2e65b3c4b3d22.JPG

Схема наипримитивнейшая, поскольку в габариты основания ничего больше не влазило:

5bdde7c4043d7_.GIF.e7ad9d706bf80f4de497690637efd62b.GIF

Расчетный ток через светодиоды составил 16 мА. Резистор R1 распаян непосредственно на контактах конденсатора С1.

Вытравил платку и распаял её:

5bdde6d7e06c6_PCB.PNG.c605c0715107c4c90f66ac117469922c.PNG

При разводке промахнулся, на фото ниже нет резистора R3. Чертеж платы выше и в аттаче уже исправлен.

Доработал основание вилки (поубирал приливы), подпаял к платке рассеиватель со светодиодами.

5bdde62bb9a6f_.jpg.aa690ac8faf427ea114ffefd1aff9d59.jpg

Соединил всё это винтом. Результат со вспышкой:

5bdde62d1b7cd_.jpg.e74e50c4f6222320e1ff4831ad8daeb2.jpg

В темноте:

5bdde62b2e427_.jpg.0c2cee036896e68cbc9d3fbbb5068077.jpg

Цветопередача на фото, конечно, совершенно "левая". Зеленые светодиоды (те, что по горизонтали) всё-таки оказались слабоватыми. Пожлобился поставить сверхъяркие <_<. Mea culpa...

Немного бьет по глазам, наверное, надо будет пройтись наждачной шкуркой, чтобы заматировать рассеиватель. А может, и так сойдет.

Ночник.lay6

Falconist

Описываемое ниже техническое решение, в принципе, составляет предмет изобретения, т.к. его аналоги мне не встречались. Однако, по зрелому размышлению, поскольку оно не устраняет всех недостатков конденсаторных балластов для светодиодных ламп, то и не заслуживает оформления в виде отдельной статьи. В то же время, сам принцип представляется достаточно оригинальным и может быть основой для дальнейших разработок в этом направлении.

Балласты для светодиодных ламп на гасящем конденсаторе, имеют существенный недостаток, перечеркивающий их положительные качества (простота и дешевизна). Он заключается в протекании экстра-токов через нагрузку (светодиоды) при подаче питающего напряжения в произвольный момент сетевой синусоиды. Результатом этого является сгорание светодиодов и выход лампы из строя. Типичная схема такого балласта приведена ниже:

5ba0bef0d54bf_.GIF.dc63417029c7467a6cd626ba080a01b3.GIF

Известны способы коррекции этой проблемы путем встраивания стабилизатора тока между гасящим конденсатором и светодиодами ( http://forum.cxem.net/index.php?/topic/144027-модернизация-светодиодной-лампы/http://kazus.ru/forums/showthread.php?t=107959 ). Решение само по себе неплохое, поэтому по сути своей критике не подвергается, а вместо него предлагается альтернативный вариант, заключающийся в принципиальном устранении возможности подачи напряжения питания в любой другой момент сетевой синусоиды, кроме момента ее перехода через ноль. 

Обеспечивается это применением оптоизолятора серии MOC30xx со встроенным детектором нуля сетевого напряжения. Схема приведена ниже:

5ba0bef323955_LED-.GIF.5a8c7b7b686d118fd3ba668883d7d2b6.GIF

При сравнении ее с приведенной выше "типичной" схемой, видно, что добавлены три детали: оптоизолятор U1, резистор R4 и конденсатор C3.

Работает эта схема следующим образом. Сразу же после подачи напряжения питания оптосимистор оптрона (выводы 4-6) закрыт и конденсатор С2 начитает заряжаться через дополнительный конденсатор С3 относительно малой емкости. Когда напряжение на нем достигнет порога открывания светодиода оптрона (выводы 1-2), оптотиристор откроется в начале следующей полуволны сетевого напряжения и напряжение питания начнет поступать на нагрузку (светодиоды) через "основной" конденсатор С1.

Для данной схемы совершенно спокойно подходят также оптроны MOC3043 и MOC3083. Важно только, чтобы в конце маркировки стояла "тройка", означающая, что для полного открывания достаточно всего 5 мА тока через светодиод. Хотя в настоящее время оптроны MOC304х, позиционируются, как для применения при напряжении питания 120...127 В, но в начале 2000-х предназначались для сетей с напряжением 220...240 В. А оптроны MOC308х, очевидно, избыточны. Аналогично дело обстоит и с оптронами MOC302х В сценических осветителях для галогенных ламп 500 Вт моей разработки уже почти 15 лет успешно работают оптроны MOC3023 без единого "вылета".

Схема апробирована "в железе" на подопытной "кошке" - светодиодной лампе "кукуруза" с вышедшим из строя и перемкнутым одним светодиодом (фото выполнено в процессе переделки):

5ba0bef052bd7_-.JPG.986d7a8276f6992a5a1c8fcf70ad6224.JPG

Запитывалась она от сетевого напряжения через реле, управляемое импульсным коммутатором, работающим с частотой около 0,5 Гц, в течение всего воскресного дня (около 10 часов). По поводу мигания на балконе пришлось выдержать войнушку с женой :wub:, но консенсус (помещение в светонепроницаемую коробку) был достигнут и эксперимент завершился успешно, а именно, лампа выдержала более 15000 включений/выключений, не выйдя при этом из строя. Что и требовалось доказать.

Я прекрасно понимаю недостатки этой схемы, а именно, повышенный уровень пульсаций светового потока (с конденсатором С2 емкостью 10 мкф):

5ba0bef196685_1.jpg.1f993488f7d2a0da704a962cdd68403b.jpg

а также недостаточную защиту от импульсных помех, накладывающихся на сетевую синусоиду. В то же время, дребезг сухих контактов для нее не страшен - оптосимистор при прекращении протекания тока через него запирается и открывается снова только в начале следующего полупериода.

Естественно, лампы с подобным уровнем пульсаций светового потока крайне не рекомендую для применения в жилых и рабочих помещениях, если важны здоровые глаза (жилые комнаты, кухня, рабочий стол и т.п.), однако, вполне приемлемы в подсобных помещениях (прихожая, туалет, ванная, лестничная клетка и т.п.).

Falconist

 Автомобильных стробоскопов для регулировки угла зажигания известно множество, поэтому данная разработка является "одной из многих" и не заслуживает оформления в виде статьи.

В прошлом веке они делались на основе газоразрядных ламп-вспышек, а нынче им на замену пришли светодиоды. Компонентная база - самая различная - от логических элементов и триггеров до таймеров. Схемы из Интернета - под спойлером.

Скрытый текст

03.jpg.cae15e85ce81736b08886a568c194388.jpg01.png.967630a5699df0705099438782dad2bc.png02.gif.a84eefef46c8b242a0814a184612d1f7.gif

Заказчик (начальник отдела механизации) выдвинул еще одно пожелание - снабдить устройство тахометром, показывающим частоту оборотов коленвала. Поэтому пришлось разрабатывать устройство заново. Почти все детали были взяты из загашника. Прикуплены только "крокодилы" (к клеммам аккумулятора и для емкостного датчика), светодиодная матрица и разборный разъем питания.

Первым этапом была апробация индуктивного датчика искрообразования (200 витков на расколотом ферритовом кольце, одеваемом на провод первого цилиндра. Осциллограммы при испытании показали, что ни о какой индуктивной связи речи не идет даже близко. Датчик с  катушкой ТТ оказался емкостным. Поэтому не мудря лукаво он был изготовлен из "крокодила", с приклепанной к его бранше полоской стеклотекстолита, на которой распаяны конденсатор С1 на 100 пФ х 2 кВ и входные резисторы R1R2 (на фото они еще отсутствуют):

5b51d9119f230_.jpg.31fa9521c4bed97db889201e228681f9.jpg

В качестве элементной базы был выбран сдвоенный одновибратор К561АГ1:

5b614ac52b14a_.thumb.GIF.7748572bf2c174a707cd69f42c5d7d31.GIF

На первой половинке (DD1) собран одновибратор аналогового тахометра с выходом на стрелочную измерительную головку на 500 мкА. Его вход отвязан от датчика буферным ключевым каскадом на VT1. Кроме функции тахометра этот одновибратор играет еще и роль защиты от ложных срабатываний - пока не закончится формирование выходного импульса, не запустится повторно следующий каскад (проблеск).

На второй половинке (DD2) собран одновибратор проблеска, нагруженный на управляемый источник стабильного тока на 3 А, нагрузкой которого, с свою очередь, явилась светодиодная матрица на 10 Вт. с неработающей центральной цепочкой светодиодов (итого суммарно на 6 Вт).

5b51d9145351d_.jpg.f9af17417371118b95e39eb1d77f8996.jpg

Матрица установлена на радиаторе северного моста материнской платы, прикрепленной к удлиняющей ручке.

5b51d913526d2_.jpg.dd276f115482fbdc5698d5ba54ae7d33.jpg

Питание одновибраторов застабилизировано интегральным стабилизатором 78L09 на 9 В. Вся "лепестроника" размещена на печатной плате (кроме конденсатора С9, установленного прямо на входном разъеме питания):

5b51d9111ee65_.PNG.97c155485bd81cc153df32d9b30c615b.PNG

5b51d915f2db8_.JPG.a43e8e7cd18b50580fa885eaafbbd779.JPG

Кроме того, на разъеме же установлен диод Шоттки на 3 А, защищающий от переполюсовки при подключении к клеммам аккумулятора.

И все это помещено в корпус от малогабаритного компьютерного блока питания:

5b51d912d2285_2.jpg.04aa060e64eb502cec6f46ab8a6396cd.jpg

В отверстие от кулера тютелька-в-тютельку поместилась стрелочная головка:

5b5302cbaa406_.JPG.6e428894ce722809a1d2db30e0ab0ea7.JPG

Резистор R9 регулировки длительности проблеска вынесен с печатной платы на корпус (вверху слева) для удобства подстройки. Включатель проблеска на ручке (как было показано на схеме) не уместился, поэтому тоже размещен на корпусе (красный тумблер справа по центру). Исключительно чтобы лишний раз не "напрягать" светодиодную матрицу. Все-таки, хоть скважность импульсов и велика, но и ток большой.

Попытался я сделать на головку шкалу программой Старичка "Shkala" - не получилось. Нет в ней таких приборов. Пришлось делать SPlan'ом.

Калибровка частотомера производилась от переменного напряжения 50 Гц х 3 В, что соответствовало 3000 об/мин. прямо на вход датчика, минуя конденсатор С1.

Испытания этого "чудо-девайса" ;) оказались вполне удачными. Яркости было достаточно для наблюдения за меткой, "поднятой" белым маркером для ретуши текстов, в облачный день под капотом машины, стоящей во дворе. Длина ручки позволила подносить головку к любым движущимся частям мотора без опасности получения травм. Наличие частотомера тоже было информативным.

Автостробоскоп.lay6

Falconist

На форуме неоднократно появляются темы по схеме задержки включения чего-либо при подаче питания. Как примеры: раз, два, три и т.п.

Собственно, с простыми схемами особых проблем нет. Времязадающий конденсатор + пороговое устройство. Схемы в качестве примеров, спрятаны под спойлер, чтобы никто по ошибке не принял их за предлагаемую:

Скрытый текст

01.jpg.19df63dbb7b7fcc210d4f9be6e59a1a2.jpg

03.jpg.16847c9ac4af2ebcdc49d875a92ab8fb.jpg

02.jpg.5ed83378e24bd16e7605434739436502.jpg

Однако, я ведь не зря твержу: "Простота - хуже воровства". После того, как задержка отработала свою выдержку, времязадающий конденсатор (С1 на двух последних схемах) остается-то заряженным. При снятии напряжения питания он разряжается не просто через те же зарядные резисторы, но и через реле + закрытый(е) транзистор(ы). Т.е., время разряда оказывается намного больше времени заряда. В итоге, если снять напряжение и тут же вновь его подать, время задержки будет существенно отличаться от расчетного. Чтобы как-то застабилизировать время задержки, требуется очень быстро разрядить времязадающий конденсатор после снятия питания, чтобы его следующий заряд начинался пусть не от совсем нуля, но от напряжения, близкого к нулевому.

Вот такая схема:

Разрядник - circuit.gif

Собственно, к ней относятся резисторы R2, R3 и транзисторы Q1, Q2 (аналог управляемого динистора). Времязадающая цепь - R1С1. Резистор R4 и ключ S1A - "служебные", только чтобы на "осциллограмме был виден период замыкание ключа S1В. Как из нее видно, конденсатор (красный трек) разряжается практически до нуля (до напряжения насыщения транзисторов аналога динистора) при размыкании ключа S1В, независимо от промежутка между его замкнутым состоянием за пренебрежимо малое время.

Разрядник - track.gif

Что, собственно, и требовалось. Кстати, резистор R3 существенен и необходим. Без него схема не работает ни в симуляторе, ни в "железе". Почему - не знаю. Не анализировал.

Ну, и в качестве примера, на таком же принципе работает "классический" диммер на аналоге двухбазового диода:

http://forum.cxem.net/index.php?/topic/15213-регулятор-мощности-паяльника/&do=findComment&comment=868800

Falconist

На статью публикуемая в данной записи информация "не дотягивает". Хотя на сайте видел статейки и попримитивней, но для меня так мелочиться невместно.

Принесла мне сотрудница нерабочие колонки "Maxxtro" со словами: "Разберете на детали":

5aace86ddaf9b_.jpg.0394abb24f2cd727a054f11bd2de9f60.jpg

"Колонки" - это, наверное, слишком громко, реально "индикаторы наличия звука с выхода компьютера" :D .

Открыл я их и увидел, что плата разломана на две половинки (фото сделано уже после её распайки на детали).

5aace870074ff_.jpg.5f811788c7654d323aa0a4ba452d3ed3.jpg

Однако, зеленое пупырчастое замноводное по имени "Плюшка" остановила мою руку на полпути к мусорнику. Ибо напомнило, что неплохо бы еще раз смакетировать в реале схему на TDA2800 со сниженным коэффициентом усиления, и хорошенько её "пощупать", поскольку в разрабатываемом сейчас проекте она планируется для наушникового усилителя. Дабы потом не нарваться на "скрытые в траве грабли". А так - вроде кошки, на которой можно потренироваться, прежде, чем переходить к более продвинутым организмам.

Исходная схема по-китайски минималистична:

5b1f88da2af81_TDA2822.GIF.3b519d70f45f84472753728906f706f5.GIF

Переменный резистор - с линейной зависимостью (импортной группы "В"), поэтому с движка на общую шину стоят резисторы R4 и R5, формирующие псевдоэкспоненциальную зависимость.

Моя доработанная схема:

5b1f7b8ade5d6_TDA2822.GIF.91b18cb2dfbd826a9fd4648ca7a8cde7.GIF

Доработка коснулась подключения конденсаторов С3 и С4, подключенных к инвертирующим входам 5 и 8 микросхемы не непосредственно к общей шине, а через делители R4R2 и R5R3, задающих коэффициент усиления = 10, включенных параллельно внутренним цепям ООС с коэффициентом усиления = 100. Суммарный коэффициент усиления по переменному току в таком случае составил 9,1.

Под эту схему разведена ПП:(по размерам исходной):

5b1f7b8e50f6b_TDA2822PCB.png.8c45dced8520bc056cf4020073269b22.png

Поскольку доработанная схема проектировалась под переменный резистор R1, с линейной характеристикой, а в закромах оказался резистор с экспоненциальной характеристикой (импортная группа "А"), резисторы R11 и R12 не устанавливались, а вместо R9 и R10 установлены перемычки.

Напряжение питания с "родного" трансформатора составило 6,3 В (переменки).

5ab130c9497ef_.jpg.1dd8ee999945d530faa437367659d2c4.jpg

Усилитель запустился сразу же.

При прослушивании колонок с этим усилителем звук был вполне приличным для данных "перделок". Попытался сравнить его со звучанием очень похожих колонок с таким же корпусом и такими же динамиками, но когда открыл их, чтобы сфотографировать начинку - оказалось, что внутри УЖЕ стоял усилитель моего же изготовления на другой микросхеме. Поэтому сравнивал на слух с 14-ваттными колонками Edifier ("честные" китайки, в отличие от "Свенов" в точно таком же корпусе и с точно такими же динамиками, на которых написано целых 22 Вт ;)). Естественно, качество звука до "Эдифайеров" не дотягивало, но не так, чтобы уж слишком. Низа "качали" довольно успешно, что и не удивительно, поскольку ООС бралась ПОСЛЕ разделительных электролитов. К сожалению, снимать АЧХ было влом да и нечем, поэтому впечатления исключительно субъективные. Каюсь, посыпаю голову пеплом и покорно терплю презрение жЮтко продвинутых аудиофилов :D.

Теперь к этой миске мёда пара ложек дегтя. Куда же без него?!

Амплитуда входного сигнала для данной микросхемы не должна превышать минус 10 дБ (0,7 В пик-пик или 0,25 В RMS)!!! Иначе сразу же появляются дикие ключевые искажения: на нижней полуволне - положительный выброс до напряжения питания. К сожалению, осциллограммы на момент публикации этой записи не регистрировал.  Сниму позже и дополню запись.

Т.о., при указанном выше коэффициенте усиления и напряжении питания 7 В амплитуда выходного напряжения без заметных искажений составила 6,9 В пик-пик, что составляет 2 В RMS, следовательно, 0,5 Вт выходной мощности на 8-омных динамиках. Уровень входного сигнала минус 10 дБ примерно соответствует выходному сигналу компьютерной звуковой карты с определенным запасом. Что и требовалось получить. Для наушников подобных параметров будет "выше крыши".

Такие вот пироги с котятами...

Маломощный УМЗЧ для колонок на TDA2822.lay6

Falconist

Читая форум, неоднократно поражался повальному стремлению "юных дарований" создать из лабораторного БП своеобразный "мультитул", т.е. нагрузить его кучей самых разных функций, большая часть из которых если и будет когда-либо востребована, то разве что в единичных случаях, причем, вангую, что эти случаи вообще никогда не возникнут. Тут и возможность зарядки аккумуляторов, и проверка маломощных светодиодов и стабилитронов и много чего другого.  Хорошо известно, что удобство пользования мультитулом ещё никогда и ни при каких обстоятельствах не превышало удобства пользования набором специализированных инструментов. В этой связи припоминается машина изобретателя Шурупчика (из Змеёвки), описанная в книге Н.Носова "Приключения Незнайки и его друзей":

Цитата

5a8877274f335_.gif.69cd8b92e88f6bfaaeb64cc9c9e41aae.gif

«…Машина имеет четыре скорости,.. а также задний и боковой ход. В задней части машины имеется приспособление для стирки белья… В спокойном состоянии, то есть на остановках, машина рубит дрова, месит глину и делает кирпичи, а также чистит картошку

Если боковой ход может пригодиться при парковке в городских условиях (раз-два в месяц), рубка дров и чистка картошки - при поездках на пикник (раз-два в год), а стирка белья - при дальних поездках в отпуск к морю (опять же, раз в два-три года), то для кирпичного производства целесообразен совершенно отдельный специализированный агрегат. Однако, подобные фичи упорно закладываются в конструкцию "городского Е-мобиля" :acute:...

Второе удивительное стремление "юных дарований" - к гигантомании.

Цитата

ГИГАНТОМА́НИЯ -- Стремление к практически не оправданной организации чего-либо в крупных размерах.

И выходное напряжение чуть ли не до сотни вольт, и выходной ток порядка десятка ампер...  Результат - аналогичный описанному выше.

А давайте-ка проанализируем, каким же должен быть Лабораторный Блок Питания (ЛБП)! Заранее соглашусь, что многие из высказанных мною положений будут субъективными, но более, чем 40-летний радиолюбительский опыт в радиоэлектронике позволил выкристаллизовать именно их. 

Сначала определимся с дефинициями (определениями). Что же это такое — «ЛАБОРАТОРНЫЙ» БП.

В отличие от блока питания, интегрированного (встроенного) в общий конструктив питаемого им устройства (как правило, без возможности физического разъединения), ЛБП представляет собой АВТОНОМНЫЙ источник вторичного электропитания, предназначенный для питания стабильным  напряжением различных макетируемых устройств. Ключевое слово здесь — именно «макетируемых», поскольку готовые законченные устройства, в подавляющем большинстве случаев, будут снабжены свои собственным, интегрированным в них, БП. Конечно же, вполне нормально питать от ЛБП схемы, требующиеся в редких случаях, к примеру, тестеры стабилитронов и светодиодов,

57f105959925b_Z-LTestwrPhoto.JPG.81d25118d97906da472d1c3901c6dd33.JPG

тестеры ОУ

5a8921f11ef83_.JPG.852ae90ff94357d51ec42bb54fc8756d.JPG

и т.п., но это именно исключения, подтверждающие общее правило. Не следует возлагать на ЛБП несвойственные ему функции (к примеру, тестера стабилитронов или микроомметра). Для специфических задач, требующих специфических режимов (к примеру, для тестирования мощных электромоторов постоянного тока), к тому же, не нуждающихся в жесткой стабилизации питающего напряжения, лучше использовать специализированные источники вторичного электропитания.

Итак, какими же свойствами должен обладать практичный Лабораторный БП, не содержащий ничего (или минимум) лишнего функционала и в то же время обладающий характеристиками, позволяющими использовать его для обеспечения 99% задач. 

1) Количество выходных напряжений: Для начального уровня вполне приемлемым вариантом может оказаться БП с единственным выходным напряжением. Если понравится и будет нужно — можно построить второй такой же. Однако, всё-таки желательно иметь минимум два выходных напряжения, причем, гальванически изолированных одно от другого. Такой ЛБП будет иметь минимум две пары выходных клемм, по две на каждое из напряжений, которые внешними перемычками можно будет коммутировать как угодно, получая либо две полярности (т.е., положительное и отрицательное напряжения относительно объединенных клемм, образующих нулевой прводник), либо два разных напряжения одной полярности. В практике радиолюбительства нередки схемы, требующие двух различных напряжений питания ОДНОЙ полярности, например, +3,3…5 В для питания логики или микроконтроллера и +12…24 В для питания «силовой» части. Стремление построить двухполярный ЛБП со всего лишь тремя выходными клеммами (положительное напряжение, отрицательное и их общая шина), да еще и объединенной регулировкой сразу обоими полярностями, да к тому же еще и гальванически соединенных вместе, не расширяет, а наоборот, сужает его эксплуатационные качества. Парадоксально, но факт!

Отсюда следует, что минимально оптимальным вариантом ЛБП является «двойное моно», т.е., два идентичных стабилизатора напряжения в общем корпусе с раздельной регулировкой выходного напряжения и одной парой измерителей выходных напряжения и тока, вручную переключаемых между каналами. Питаться стабилизаторы в таком варианте могут либо от отдельных сетевых трансформаторов, либо от одного с минимум двумя обмотками. А вообще-то, идеальным вариантом было бы «тройное моно», т.е., ЛБП с ТРЕМЯ выходными гальванически развязанными напряжениями, что позволило бы питать смешанные схемы с цифровой частью, требующей однополярного питания и аналоговой, требующей двухполярного питания. Понятно, что такое по силам уже продвинутому радиолюбителю, но держать этот вариант «в уме» все-таки сто́ило бы. Можно несколько упростить третий канал, сделав ему не плавную регулировку, а ступенчатую, к примеру, 3,3-5-9-12-15-24-27 В. Всё равно этот канал опциональный и будет использоваться изредка.

2) Минимальное выходное напряжение: Меня просто шокирует повальное стремление обеспечить регулировку выходного напряжения от нуля. На неоднократно задаваемый мною на форумах вопрос: «Что Вы собрались питать НУЛЕМ вольт?», я НИ РАЗУ не получил аргументированного внятного ответа! Построить такую схему, конечно же, вполне возможно, но она при этом усложняется совершенно непропорционально задаче. В 99,99% случаев достаточно порядка 1…1,2 В. Это напряжение соответствует вдрызг разряженным, соответственно, никелевому аккумулятору и батарейке. Если же вдруг (один-два раза за все время занятия электроникой) придется макетировать устройства с более низким напряжением питания (к примеру, фотоэлементы и т.п.), ничто не мешает подключить к выходу ЛБП дополнительный (временный!) регулируемый стабилизатор такого низкого напряжения на одном транзисторе и переменном резисторе. Тем более, что ток питания таких схем совсем небольшой.

3) Максимальное выходное напряжение: определяется максимально допустимым входным напряжением компонентов, использованных в схеме БП. Для ОУ это, как правило, 32…36 В; для интегральных регулируемых стабилизаторов — чуть больше, до 40 В. Поэтому «гигантомания» в плане желания получить на выходе, к примеру, 50 В стабилизированного напряжения, требует применения компонентов, способных работать при входном напряжении до 60…70 В. Такие, конечно, существуют, но их ассортимент не столь обширен, а стоимость достаточно велика, чтобы заставить задуматься: «А надо ли это мне?» Можно, конечно, собрать БП с таким выходным напряжением и на компонентах широкого применения, но его схема существенно усложнится.

Итак, за реально достижимый простыми средствами верхний предел выходного стабилизированного напряжения примем 25…30 В. Если учесть, что в питающей сети допускаются отклонения напряжения в пределах ± 10% от номинальных 230 В, то 36 В выпрямленного и отфильтрованного постоянного напряжения при сетевых 253 В (плюс 10%) можно получить от трансформатора со вторичной(-ыми) обмоткой(-ами) на стандартные 24 В. При 207 В сетевого напряжения (минус 10%) на выходе будет 29 В постоянного напряжения (без учета пульсаций и просадки при максимальных токах нагрузки!).

4) Использование всего диапазона входного напряжения: стабилизированное напряжение всегда меньше входного на величину его падения на регулирующем элементе и амплитуду пульсаций на фильтрующем конденсаторе. Однако, в некоторых случаях из БП желательно "выжать" максимально возможное напряжение, невзирая на его пульсации (к примеру, при ремонте УМЗЧ, обладающих собственным высоким коэффициентом подавления пульсаций питания, либо при прозвонке высоковольтных стабилитронов тестером, фото которого показано выше и стабилизирующим ток, независимо от наличия или отсутствия пульсаций напряжения). Поэтому, нецелесообразно ограничивать выходное напряжение величиной ниже входного напряжения. Если процентов 10 угла поворота ручки переменного резистора и будут неэффективными - не страшно, остальные 90% угла ее поворота позволят регулировать выходное напряжение от минимума до "выше крыши".

5) Максимальный выходной ток: с этим параметром также наблюдается совершенно необоснованная повальная гигантомания. Почему-то многие стремятся соорудить БП с выходным током не менее 5 А, хотя можно заведомо предсказать, что для целей макетирования (а ЛБП, как было выше отмечено, предназначен именно для этого) не только бесполезны, но и вредны. При случайно сбившейся настройке ограничения по току макетируемая схема имеет большой шанс пыхнуть ярким пламенем с испусканием «волшебного дыма». Хорошо, если при этом не случится пожара!

Допустим, что БП на такой выходной ток все-таки построен. При 30 В выходного напряжения и токе 5 А от трансформатора будет требоваться мощность не менее 150 Вт. Другой вариант: при 5 В выходного напряжения и токе 5 А, на регулирующем транзисторе при входном напряжении 35 В, рассеются те же 150 Вт. Во-первых, далеко не всякий транзистор такое потянет (а те, что потянут — до́роги), а во-вторых, чтобы рассеять такую мощность, нужен будет либо радиатор размерами с кирпич, либо охлаждение его кулером. И то и другое ведет к необоснованному усложнению и удорожанию устройства.

Отсюда следует, что выходной ток можно ограничить значением 2…2,5 А, чего более, чем достаточно для подавляющего большинства задач. При этом и на регулирующем транзисторе рассеется не более 60…90 Вт, что не является какой-то экзотикой (те же «народные» КТ818/КТ819 в металле спокойно «держат» до 100 Вт), и силовой трансформатор нужен вменяемой мощности.

6) Ограничение выходного тока (оно же защита от короткого замыкания выхода) —  является обязательным свойством ЛБП. Должно решать двоякую задачу:
а) защитить от выхода из строя сам БП; и
б) защитить от окончательного выгорания макетируемую схему.

Если с первой задачей понятно — максимальный выходной ток определяется максимально допустимыми параметрами трансформатора питания и регулирующего транзистора и составляет упомянутые выше 2…2,5 А, то вторая требует более тщательного анализа. Если питается схема, уже смонтированная на печатной плате, то максимальный ток не должен вызывать разрушения дорожек на ней от перегрева, а также транзисторов средней и (желательно) малой мощности. По собственному опыту (не претендуя на его эксклюзивность) могу сказать, что данная задача решается при ограничении максимального тока уровнем 200...250 мА. Далее. Существует метод выявления коротких замыканий на плате путем питания ее током, еще не разрушающим печатные дорожки, но вызывающим их локальный нагрев. Для этого применяется ограничение тока уровнем порядка 500...600 мА. Такой же максимальный ток является оптимальным при ремонте УМЗЧ, не приводя к выгоранию драйверных и выходных транзисторов уцелевшего плеча. 

Итого, оптимальными уровнями ограничения выходного тока можно считать три фиксированных ступени: 200...250 мА; 500...600 мА и 2...2,5 А. Плавная установка тока ограничения "крутилкой" не только нецелесообразна, но и даже может быть вредна. Просто потому, что ручку регулировочного резистора можно случайно сбить с установленного значения и пустить на макетируемую схему экстра-ток. Указанные выше три уровня ограничения выходного тока позволят реализовать "боковой ход" машины Шурупчика -- заряжать таким ЛБП кислотно-гелевые аккумуляторы током порядка 0,03...0,15 С. А именно, первым (200...250 мА) -- аккумуляторы от фонариков; вторым (0,5...0,6 А) -- аккумуляторы от ИБП и третьим (2...2,5 А, правда, долгонько) -- автоаккумуляторы.

Построить ЛБП с выходным током более 2...2,5 А, конечно же, можно, но это, во-первых, приведет к нерациональному усложнению и удорожанию схемы, а во-вторых, для ЛБП просто избыточно. Я великолепно ремонтировал монструозные эстрадные УМЗЧ на 1...1,5 кВт с помощью двухполярного ЛБП с ограничением выходного тока на уровне 0,5 А и максимальным выходным напряжением 23 В по обеим полярностям (уже нестабилизированным, с пульсациями!). Дело в том, что для окончательной проверки и настройки тока покоя ЛБП уже не нужен -- они выполняются при питании от штатного БП усилителей.

7) Измерители напряжения и тока: вопрос, казалось бы, второстепенный, однако красиво перемигивающиеся циферки цифрового вольтметра на практике, как ни парадоксально, снижают удобство пользования БП. Если уж и применять цифровой вольтметр, то не более, чем 3½-знаковый. Мельтешение цифр в младших разрядах 4-х и более разрядных вольтметров отвлекает от осознавания величины измеряемого напряжения, отнюдь не прибавляя точности. При импульсном характере потребления тока нагрузкой мельтешение цифр будет и в 3½-знаковом вольтметре. Если уж настолько критично выставить стабилизируемое напряжение до единиц-десятков миллиВольт, можно сделать это подключением к клеммам внешнего мультиметра, ибо возникнуть такая задача может примерно с такой же частотой, как рубка дров и чистка картошки в машине Шурупчика. 

С цифровым амперметром ситуация несколько серьезнее. Во-первых, измерение тока производится на его собственном токоизмерительном шунте, который включается последовательно с токоизмерительным шунтом цепи ограничения тока самого БП, тем самым повышая выходное сопротивление БП и снижая точность поддержания выходного напряжения. Во-вторых, из-за дискретности измерений в большинстве амперметров порядка 1...2 Гц, мгновенные скачки выходного тока (к примеру, при подключении к плате с короткозамкнутыми дорожками) отслеживаются с запозданием, обусловленным как этой дискретностью измерений, так и необходимостью какого-то времени на осознавание измеренной величины тока. Можно, конечно, цифровой амперметр и доработать на использование основного токоизмерительного шунта БП, либо же использовать шунт измерителя тока, но при этом потребуется его перекалибровка. 

В этом плане стрелочные измерительные головки намного информативнее и удобнее для встраивания и калибровки. Супер-точность измерений не столь важна, на первом месте стоит удобство примерного считывания показаний.

8) Выходное быстродействие на быстропеременную нагрузку: является своеобразным "камнем преткновения" для разработчиков ЛБП. Если питать им устройство с неизменяемым во времени потреблением тока (к примеру, лампочку, электромоторчик, да хоть заряжать аккумулятор), то быстродействие такой схемы может быть сколь угодно малым. Но если подключить импульсную или же аудио-схему, то ситуация кардинально меняется. Для таких потребителей выходное сопротивление ЛБП должно максимально близко приближаться к нулевому, чтобы обеспечить постоянство выходного напряжения независимо от силы тока (естественно, до момента его ограничения!). Нередко разработчик пытается обеспечить такую характеристику установкой на выходе электролитического конденсатора достаточно большой емкости. Такое схемотехническое решение, нередко встречающееся даже в промышленно выпускаемых ЛБП, на самом деле является профессиональным провалом разработчика, т.к. при подключении макетируемой схемы к выходным клеммам такого БП, через нее обязательно произойдет бросок тока, имеющий шанс сжечь схему, а реакция на быстропеременную нагрузку становится совершенно "дубовой".

На выходе схемы ЛБП может стоять разве что пленочный конденсатор на 1 мкФ (да и то непосредственно на выходных клеммах), зашунтированный керамикой на 0,1 мкФ исключительно для подавления шумов и импульсных помех, циркулирующих по соединительным проводам от ЛБП к макетируемой схеме и обратно. Всё остальное быстродействие должно быть обеспечено за счет быстродействия и стабильности схемы самого ЛБП.

9) Регулирующий элемент - биполярный транзистор в сравнении с полевым: произведение разницы между входным и выходным напряжениями на силу выходного тока в любом случае должно на чем-то выделиться в виде тепла (увеличив этим энтропию Вселенной). Нет никакой принципиальной разницы, на чем это произойдет -- на коллекторном переходе биполярного транзистора, либо на канале полевого. Выделяющееся тепло в обоих случаях будет одинаковым. Поэтому сравнивать следует другие характеристики полевых и биполярных транзисторов, а именно:

  1. Ток управления, который для мощного биполярного транзистора с его невысоким коэффициентом усиления составит порядка 1/10...1/15 выходного тока, против пренебрежимо малого тока управления затвором полевого;
  2. Емкость затвора/базы, которая для полевого транзистора составит единицы нанофарад, что всё равно потребует достаточно существенного тока управления затвором при быстропеременных токах нагрузки, иначе БП не обеспечит нужного быстродействия, тогда как для биполярного транзистора -- десятки пикофарад, причем эта емкость мало изменяется с изменениями коллекторного тока. ;
  3. Падение напряжения база-эмиттер/затвор-исток, которое для биполярного транзистора составляет всего порядка 0,7 В, и слабо зависит от силы базового тока против 5...8 В для ключевых HEXFET транзисторов, что однозначно делает их практически неприемлемыми для работы в линейном режиме, поскольку совершенно впустую будут недоиспользоваться эти 5...8 В входного напряжения (речь идет о простых схемах ЛБП, с единственным входным напряжением). Если уж без полевых транзисторов ЛБП просто не мыслится, то для такого режима работы предназначены боковые (латеральные) МОП-транзисторы, разработанные для применения в звуковых трактах УМЗЧ. В качестве примера приведу графики передаточной характеристики латерального FET 2SK2220 в сравнении с HEXFET IRFP240. Надеюсь, разница достаточно очевидна.

2SK2220.PNG.1a62f6c4e07d20d98bbb2430dcc38d58.PNG   IRFP240.PNG.d83d96a914b0f232fa5a97fa939fda18.PNG

Хотя, всё равно, потеря напряжения (а следовательно, и излишнее тепловыделение) на полевых транзисторах будет больше. Либо же необходимо усложнять схемотехнику БП за счет вольтодобавки ко входному напряжению для управления затворами полевых транзисторов. Тем более, что допустимые токи (десятки Ампер) относятся не к линейному, а к ключевому режиму их работы. В линейном режиме ограничивающим параметром будет максимально допустимая рассеиваемая мощность, которая что у полевых, что у биполярных транзисторов определяется, в основном, типом корпуса, в который упакован кристалл.

Учитывая изложенное в предыдущем пункте анализа относительно выходного быстродействия, преимущество полевых транзисторов для ЛБП по сравнению с биполярными становится достаточно сомнительным.

10) Стабильность выходного напряжения в переходных режимах: в ЛБП при его включении и/или выключении ни в коем случае не должно быть выбросов выходного  напряжения сверх установленного значения!!! Иначе макетируемой схеме с большой долей вероятности придет белый северный пушной зверек. Требование однозначное и ревизии не подлежит, какой бы "вкусной" схема ЛБП ни была по другим параметрам.

В первом приближении это пока что все мои аргументы "за" и "против" тех или иных схемотехнических решений и желаемых параметров ЛБП.

В качестве подтверждения сказанному приведу личный пример своего "ветерана", верой и правдой служащего уже 40 (СОРОК!) лет:

5b059f9a6cdce_.JPG.5128b47d458a75c8fb319e8e715b3dc0.JPG

Верхняя крышка снята, чтобы показать "потрошки". Ни типа, ни марки, кроме надписи на лицевой панели "Блок питания универсальный "Электроника"" нет. Очевидно, "ширпотребовская" продукция какого-то военного завода. Схема, к сожалению, за эти годы тоже утеряна. "Родные" параметры с "родными" регулирующими транзисторами КТ807: 2...15 В / 300 мА. После модернизации (замены на TIP41) поднял ограничение выходного тока до 0,5 А. 

Четыре левых клеммы - выходы стабилизаторов напряжения. Полностью изолированы один от другого, питаются от отдельных обмоток трансформатора. Платы стабилизаторов стоят вертикально слева. В оригинале стояли по одной слева и справа от центрально установленного трансформатора. Крайние правые клеммы - выходы переменного напряжения, переключаемого пакетником над ними с шагом 3 В. Применяю преимущественно для питания мини-дрели на 27...30 В.

На клеммы между стабилизированными и переменным напряжением в оригинале подавалось просто выпрямленное и отфильтрованное конденсатором напряжение. Они задействованы для вывода стабилизированного напряжения от дополнительного более мощного стабилизатора с током до 1,5 А (это уже моя модернизация) на еще К1УТ401Б, размещенного справа от трансформатора. Его регулирующий транзистор вынесен на заднюю стенку. Регулировка выходного напряжения - дискретная (3,3-5-9 В и дальше до 30 В с шагом 3 В), используя тот же пакетник, что и для переменного напряжения.

Итого получается "тройное моно", как я и описывал выше, да еще и с каналом переменного напряжения.

Второй пример - мощный "монстрик" на двухполярное напряжение без стабилизации (только выпрямленное). Токоограничение выполняется автомобильными лампами накаливания:

5ad0af90c6a5a_.jpg.0b6ee2a25776ab1455f9ae2d8874d47a.jpg 

Поскольку падал, плата выпрямителя и фильтров "сворочена" на сторону. Изготовлен для питания эстрадных усилителей при их ремонтах.

Так вот, он НЕ ИСПОЛЬЗОВАЛСЯ НИ РАЗУ!!!

Falconist

В свое время надыбал на просторах Интернета на сайт Рода Эллиотта, позиционирующийся, как сборник любительских (DIY) проектов, посвященных аудио. В их числе - широкий диапазон усилителей мощности, предусилителей, гитарных/басовых усилителей, студийного оборудования, эффектов и других проектов для повторения, включая громкоговорители, сабвуферы и многое другое. 

Единственный недостаток - весь сайт на английском языке. А с тем знанием английского, который наблюдается у современной молодежи (да и не только у нее, к сожалению), вся эта информация практически не поддается осмыслению. Поэтому взял на себя труд перевести хотя бы отдельные проекты на русский. 

Переводы, по согласованию с админом, а также с разрешения автора, будут выкладываться в виде отдельных статей на сайте и дублироваться здесь, в этой записи вордовскими *.doc - файлами.

В комментариях просьба указывать, какие из проектов (ссылка на сайт - вверху) было бы желательно перевести как можно скорее, а также замеченные терминологические ошибки в переводах. 

Итак, начали:

1) Осветительная система LX-800  ( Осветительная система LX-800 (Проект 62).doc)

2) Простой высококачественный Hi-Fi предусилитель ( Простой высококачественный Hi-Fi предусилитель.docx ) - перевод vimay

3) Усовершенствованные регуляторы громкости и баланса  ( Усовершенствованные регуляторы громкости и баланса (Проект 01).doc )

4) Высококачественный предусилитель (вариант 2) ( Высококачественный предусилитель (вариант 2).docx ) - перевод vimay

5) Полный Hi-Fi предусилительПолный Hi-Fi предусилитель (Проект 97).docx ) - перевод vimay

6) Фонокорректор RIAAФонокорректор RIAA (Проект 06).docx ) - перевод vimay

7) Балансные линейные передатчик и приемник аудиосигнала (Проекты 51 и 87)  ( Балансные линейные передатчик и приемник аудиосигнала (Проекты 51-87).doc )

8) Руководство по устранению неисправностей и ремонту. (Руководство по устранению неисправностей и ремонту.doc)

9) Руководство по проектированию усилителей мощности  ( Руководство по проектированию усилителей мощности.doc )

10) Конструкция линейного источника питанияКонструкция линейного источника питания.doc )

Falconist

Первый акт Марлезонского балета

Меня очень давно интересовал вопрос, каково все же значение амплитуды выходного сигнала электретного микрофона и от чего оно зависит. К глубокому удивлению, в Интернете об этом хранится почти гробовое молчание. Удалось найти единственный ресурс, где приводятся их параметры: http://ra4a.narod.ru/Spravka4/d54.htm

Поэтому решил выполнить небольшую лабораторную работу. Достал из загашника три валявшихся в нем микрофона:

XF-18D и SG высотой по 5 мм и диаметром 10 мм xf18d.jpg&key=3cf8137971e58363e11f317572

а также J60 высотой 7,5 мм и диаметром тоже 10 мм . Слепил по-быстрому такую вот схемку:

post-24063-0-02057600-1467223606.gif

Измеритель тока - тестер Mastech MY68 на диапазоне мкА; постоянное напряжение на микрофоне измерял тестером DT832 на диапазоне 20 В и амплитуду сигнала с выхода - осциллографом Rigol DS1052E в режиме закрытого входа. Источником звука была моя "пищалка", расположенная на расстоянии 100 мм от микрофона.

Мысля, положенная в основу этого эксперимента, была проста, как угол дома: изменяя сопротивление цепочки переменных резисторов R1 и R2, получить график зависимости амплитуды выходного сигнала от тока через микрофон, по которому определить оптимальный ток (оптимальный номинал нагрузочного сопротивления).

Однако, реальность жестоко обломала все предварительные предположения. Оказалось, что амплитуда выходного сигнала действительно возрастает при увеличении тока от 100 до 247 мкА. Но при дальнейшем уменьшении сопротивления цепочки R1R2 ток через микрофон НЕ УВЕЛИЧИВАЛСЯ(!!!) Он так и оставался таким до близкого к нулевому сопротивлению резисторов. Амплитуда выходного сигнала тоже практически не изменялась во всем диапазоне стабильного тока через микрофон. А вот напряжение, падающее на микрофоне, увеличивалось с примерно 0,1 В при максимальном сопротивлении цепочки резисторов, т.е. около 50 кОм до 4,7 В при минимальном сопротивлении. Амплитуда выходного сигнала при этом составила порядка 50 мВ от пика до пика. Естественно, при данной конкретной громкости звукового излучателя!

Такое поведение лично для меня объяснило, почему никто, нигде и никогда не применял для электретного микрофона генератор тока вместо банального нагрузочного резистора. Сам микрофон, оказывается, является генератором стабильного тока. Разве что один "шибко вумный знаток" с "Радиокота" предложил такое подключение: http://radiokot.ru/forum/viewtopic.php?f=1&t=51784&hilit=генератор+тока&start=20 с битием себя пяткой в грудь, что оно якобы хорошо работает.

Быстренько попробовал микрофон J60 - получил значение "плато" тока, равное 270 мкА. Оставшийся микрофон (SG) уже и не "пытал".

Вывод из этого эксперимента очень простой. Номинал нагрузочного резистора должен быть таким, чтобы он обеспечивал ток через микрофон, не менее, чем значение "плато" его стабильного значения для данного типа микрофона. А вот с падением напряжения на микрофоне возможны варианты. Дабы чрезмерно не грелся полевик, находящийся внутри микрофона, номинал резистора должен соответствовать началу "плато". При напряжении питания 5 В (как в эксперименте) и токе 0,25 мА, сопротивление должно быть около примерно 15 кОм. При этом падение напряжения на микрофоне составит порядка 1...1,2 В. На некоторых схемах я видывал и 47 кОм при таком же напряжении питания, что очевидно нерационально. При таком сопротивлении ток через микрофон составляет менее 100 мкА, что недостаточно для нормального режима его работы.

Если же предвидится большая громкость аудиосигнала, то падение напряжения на микрофоне можно поднять и до половины напряжения питания. Номинал нагрузочного резистора при этом будет составлять порядка 10 кОм. Зато перегрузочная способность будет максимальной. Как видите, экономичность схемы сильно не упадет, зато головной боли с верным воспроизведением аудиосигнала тоже не предвидится.

Еще один интересный результат этого эксперимента (правда, я его наблюдал еще 25 лет назад). В пищалке стоит релаксационный генератор, фактически подающий на излучатель импульсное напряжение. Однако, сигнал с выхода микрофона имеет практически синусоидальную форму. Т.е., воздух хорошо демпфирует несинусоидальные сигналы.
 

Второй акт Марлезонского балета

При проведении экспериментальной части (предыдущий "акт") изменение амплитуды сигнала с микрофона при изменении сопротивления нагрузочного резистора все-таки наблюдалось. Не столь выраженное, как ожидалось, но было. Поэтому была проведена вторая часть эксперимента - симуляционная. С использованием Мультисима 14-й версии.

Принципиально важным вопросом для этого был выбор адекватной модели электретного микрофона. То угребище, которое было использовано в статье ( http://cxem.net/sound/amps/amp221.php ), соответствует динамическому микрофону, но никак не электретному.

post-24063-0-38300100-1468302019.gif

А коль скоро неверна предпосылка, то неверны и все истекающие из нее выводы.

Поэтому моя модель основывалась на схеме встроенного в микрофон предусилителя на полевом транзисторе с p-n переходом.

post-24063-0-42121900-1468301523.gif

Взят был первый попавшийся из библиотеки Мультисима. Истоковый резистор R1 предназначался для подгонки тока стока под значение, близкое к измеренному в предыдущем исследовании. За точностью сильно не гнался - важнее было получить качественный результат. Мультиметр ХХМ1 показывал ток стока (как постоянный, так и переменный), а ХХМ2 - переменное напряжение на стоке полевого транзистора (на "микрофоне"). Генератор сигнала V3 выдавал синусоиду с амплитудой 10 мВ пик-пик и частотой 1 кГц. Источник питания выдавал те же 5 В, как и в экспериментальном исследовании. На "осциллограмме" в качестве примера показаны выходной сигнал (красный) и ток через нагрузочный резистор (синий)

post-24063-0-27707000-1468301524.gif

Измерения проводились через каждые 5% сопротивления нагрузочного резистора R2 (от 0 до 30 кОм - больше не увидел смысла). Результаты измерений приведены в экселевской таблице (для недоверчивых)

post-24063-0-55504700-1468306740.gif

и сведены на графике в Экселе же:

post-24063-0-52443300-1468301526_thumb.gif

Принципиальное (и единственное) отличие полученных результатов от экспериментальных заключалось только в том, что чувствительность (амплитуда выходного сигнала) линейно нарастала при увеличении номинала нагрузочного резистора от нуля до 17,5 кОм. А дальше - было полное совпадение с описанными в предыдущем посте результатами. При сопротивлении R2 более 20 кОм выходная амплитуда резко падала. Что совершенно естественно - генератор стабильного тока на полевом транзисторе вышел из режима стабилизации тока.

Электрет_модели.rar

 

Третий акт марлезонского балета

Любые теоретические построения подтверждаются или опровергаются экспериментом. Поэтому разыскал у себя в загашниках шесть электретных микрофонов, сгреб все свои рабочие тестеры и собрал вот такую измерительную схему:

59108597122e9_.GIF.866bef75d9a70b98e488606ff982032c.GIF

Небольшие пояснения к ней. Переменный резистор R6 - сдвоенный. Одна его часть регулирует ток через микрофон, а вторая измеряется омметром (дабы не было никакого влияния на первую часть). То, что обе части не полностью согласованы по сопротивлениям в данном случае не важно, т.к. "вылизывать" данные до сотых посл запятой не вижу никакого смысла. Переменное напряжение с микрофонов под воздействием пищалки (показанной на схеме в первом "акте" выпрямлялось активным выпрямителем на ОУ DA1 и измерялось стрелочным мультиметром с целью интегрирования "скачущих" значений. К сожалению, даже на самом чувствительном пределе постоянного тока 0,3 В, амплитуда сигнала была довольно малой и точность таких измерений невысока. Кто пожелает - может перемерить. 

Питание осуществлялось от 12-вольтового аккумулятора от ИБП для исключения любых наводок и пульсаций по питанию.

Первые два микрофона (XF-180 и J60) тестировались с шагом изменения резистора по примерно 2,5 кОм. Остальные 4 микрофона (34J9E, XL-R и два SG) - с шагом около 5 кОм. По результатам измерений в Экселе построены графики. По оси "Х" отложено сопротивление резистора R6, зеленый трек - падение на микрофоне по постоянному току (в вольтах), красный трек - ток через микрофон (в мкА) и синий трек - напряжение с выхода выпрямителя (в мВ). 

Итак, графики:

XF-180.gif.3851f1ebd7ecf2e2712489736ed54b3f.gif

J60.gif.d990f512f69d2d91ee32093e3d89d2b2.gif

34J9E.gif.78ce2ef3124400409c09676c9883905d.gif

XL-R.gif.8b0207d4bb4b2ff2fbd2e3e4bad46349.gif

59108597b5c7c_SG(1).gif.4215904273e9aecf4b6d4f3788492fd9.gif

59108597db2ac_SG(2).gif.b756b29db49096d4ed91944f71e0c536.gif

Как видно, характеристики всех микрофонов индивидуальны, даже у двух однотипных SG.

Основное отличие от результатов, полученных при симулировании - "горб" чувствительности, достаточно точно соответствующий падению постоянного напряжения на микрофонах (около 6 В - зеленый трек), равному половине напряжения питания (12 В). Хотя можно отметить, что наибольшее усиление электретных микрофонов соответствует "плато" тока через них. Что важно для практического применения. Кстати, это полностью соответствует первому прикидочному наблюдению за поведением электретных микрофонов, не выявившему линейного нарастания усиления при увеличении сопротивления нагрузочного резистора.

Тем не менее, можно отметить и общие для всех микрофонов закономерности. Во-первых, это близкое к линейному падение напряжения на микрофонах, обратно пропорциональное сопротивлению нагрузочного резистора. Во-вторых, достаточно выраженное "плато" тока через микрофоны, мало зависящее от сопротивления нагрузочного резистора (в определенных пределах, конечно). Оба эти момента подтверждают то, что встроенный в микрофоны усилитель на ПТ представляет-таки собой генератор тока. Не идеальный, конечно. Никто не знает, какое гуано ставят им вовнутрь дядюшки Ляо. 

Sapienti sat. 

Feci quod potui, faciant meliora potentes. 

Falconist

Собственно, вопрос достаточно мелкий и в "железе" еще не апробирован. Тем не менее, хотелось бы застолбить саму идею, пока ее техническое решение ожидает своего воплощения.

Суть заключается в том, что меня буквально коробит применение дежурки для одной-единственной функции: первичного запуска ИИП, после чего она продолжает "молотить" вхолостую. Я могу понять необходимость этого узла в БП телевизора либо другой подобной аппаратуры, которую требуется включать/выключать "ленивчиком". С другой стороны, на холостом ходе двухступенчатого лимпульсно-линейного ИИП, когда потребление тока нагрузкой минимально, длительности широтно-модулированного импульса (ШМИ) недостаточна, чтобы "пробиться" через диод самопитания и обеспечить достаточное напряжение питания микросхемы ШИМ. На первый взгляд, дежурка в этой ситуации является единственным спасением. Однако, если логически проанализировать процесс самопитания, то оказывается, что достаточно ограничить минимальную длительность ШМИ. Всего-навсего.

Самый простой вариант - поставить резистор параллельно нагрузке. Однако, простота хуже воровства. Чтобы обеспечить достаточный ток в режиме Х.Х. при минимальном выходном напряжении, сопротивление такого резистора должно быть достаточно мало. При повышении выходного напряжения совершенно ненужный для штатной работы БП ток через резистор пропорционально возрастает и начинает зря подгружать БП. Поскольку дальше будет рассматриваться не резистор, а электронный узел, назовем его "нагрузочным узлом".

Таким образом, сопротивление нагрузочного узла должно быть маленьким при малом выходном напряжении и большим при большом выходном напряжении. Исходя из закона дедушки Ома, это значит, что ток через нагрузочный узел должен быть стабильным. А это - функция генератора втекающего тока ("поглотителя тока")..Схемотехническое решение

58d51ec8711da_.GIF.fc9265f078931b3537b224344c8a94a7.GIF

состоит из двух частей: 
а) компаратора на TL431 с делителем R1R2 напряжения самопитания микросхемы ШИМ (для TL494 порог срабатывания настроен на 20 В) и
б) собственно генератора втекающего тока (ГТ) на транзисторах VT1VT2 и резисторах R3, R4.

Пока напряжение самопитания больше 20 В, TL431 открыт и шунтирует базо-эмиттерный переход VT2, препятствуя работе ГТ. Если оно снижается до 20 В, TL431 запирается и ГТ начинает потреблять ток 100 мА от силовой шины. Если нагрузка возрастает, длительность ШМИ увеличивается, напряжение самопитания восстанавливается до номинального и ГТ отключается, тем самым зря не подгружая БП.

Для одноступенчатых ИИП (т.н. "лабораторных") такое решение, естественно, не подойдет, поскольку не обеспечивает минимального выходного напряжения на Х.Х., но для двухступенчатых импульсно-линейных БП вполне приемлемо: повышенное напряжение на входе линейного стабилизатора в практическое отсутствие потребления тока нагрузкой для регулирующего транзистора - как слону дробина. Зато исключаются такие "паровозные" компоненты, как высоковольтный ключевой транзистор и трансформатор.

В конце концов, такой "поглотитель тока" является альтернативой дежурке, но использовать его или нет - обусловлено исключительно личными предпочтениями. Мне так удобнее. Кто-то является горячим поклонником дежурки. Лишь бы работало...

P.S. Вставлю-ка я прямо сюда исправленную схему, дабы народ не смущать:

58d622a5ba3cf_2.gif.f240fe34418970fb74522dc2d75c3331.gif

Falconist

Выловил меня намедни мой старинный приятель - инженер студии звукозаписи с предложением сваять ему десяток активных микрофонных модулей на электретных микрофонах. Нужно это ему для озвучивания очередной церкви (меня всегда удивляла прижимистость батюшек, не желающих заплатить за промышленно выпускающееся оборудование, ну да Бог им судья). 

В качестве основных требований было:
а) Два электретных микрофона параллельно;
б) Дифференциальный (парафазный выход для работы на длинный кабель до пульта).
в) Питание от фантомного напряжения +48 В, поступающего с микшерного пульта.

Хозяин - барин. Хочет "белый верх, черный низ" - пожалуйста. Любой каприз за его деньги.

На первый взгляд задача тривиальна, но она заинтересовала меня двумя моментами:
1) Микширование двух и более электретных микрофонов по входу предусилителя (законченной рабочей реализации такого нигде не встречал, хотя на форуме несколько раз появлялись темы по подключению двух электретных микрофонов);
2) Возможность реализации своей старой задумки, заключающейся в дифференциальном включении электретного микрофона.

Приятель настаивал на "классической" схеме, в которой предусиление с микрофона осуществляется на одном ОУ, а второй ОУ инвертирует выходной сигнал первого для подачи в двухпроводную дифференциальную линию. Я решил сильно не спорить, а сваять две схемы - "классическую" и свою "дифференциальную".

"Классическая" схема: 

Предусилитель для электрета классик.GIF

отличается от известных разве что суммирующим включением двух микрофонов через цепочки C1R3 и C2R4 к инвертирующему входу ОУ DA1.2. В качестве ОУ предполагался TL062, как имеющий очень низкий собственный ток потребления (менее 0,5 мА), что существенно для питание от фантомного напряжения, которое не может выдать ток более 7 мА по каждому проводу. Однако, из-за того, что, модули нужны были, как всегда, "на вчера", поставил JRC4885 (3,5 мА типовых).

Печатка:

Предусилитель для электрета классик (PCB).GIF

Параллельно была отсимулирована в Мультисиме схема дифференциального включения электретного микрофона, подтвердившая свою принципиальную работоспособность:

Дифференциальное включение электретного микрофона.GIF

Эквивалентная схема электретного микрофона - Q1V3.

Теперь надо было решить задачу микширования сигналов с двух дифференциально включенных микрофонов. За основу был взят первый каскад инструментального усилителя (без третьего ОУ). Поскольку для адекватного микширования требуется минимальное входное усиление микширующего каскада (чтобы максимально развязать источники сигналов), сигналы были поданы на инвертирующие входы, тогда как на неинвертирующие - "искусственная средняя точка".

Предусилитель - схема.gif

Эпюры напряжений: относительно общего провода по переменному напряжению: 

Предусилитель - трек 2.gif

Дифференциальный сигнал между выходами ОУ:

Предусилитель - трек 1.gif

Окончательная схема:

Предусилитель для электрета дифференциальный.GIF

Полярность включения C1C2 и C3C4 ПРАВИЛЬНАЯ! Резистор R12 нужен! При его номинале 10 кОм появлялись ВЧ шумы. При снижении до 2 кОм - НЧ шумы. Диоды VD1-VD4 на обеих схемах защищают выходы ОУ от бросков напряжения при подаче фантомного питания.

Печатка: 

Предусилитель для электрета дифференциальный (PCB).GIF

Фото собранного модуля: 

Предусилитель - фото.jpg

Второй модуль просто не фотографировал (есть же печатка - и достаточно).

Обе собранные платы были оттарабанены на студию и подключены к пульту. Обе заработали сразу же. Поэтому режимы не измерял. 

К "классической" плате были подключены новые микрофоны, а к "дифференциальной" - Б/У от Панасоника. "Классика" при прослушивании на "уши" выдала "бубнение" по низам, а "дифференциальная" - отличны прозрачный звук. На положение крутилки Gain внимания не обратил, но фейдер в положении минус 12 дБ обеспечил полное зажигание линейки уровня сигнала. На расстоянии 1...1,5 м ото рта говорящего, при спокойном, не форсированном разговоре! 

Для чистоты эксперимента микрофоны поменяли местами. Теперь "забубнила" "дифференциалка", а "классика" показала отличный результат. Иными словами, существенной разницы между схемами на слух выявлено так и не было. "Грязь" выдавали сами микрофоны.

С "классики" (с микрофонами от Панасоника) сняли частотку при воздействии шумового сигнала. Делалось это на компьютере с помощью какой-то дорогой приставки. Поскольку все делалось в темпе "давай-давай!" я нюансами не интересовался. При следующей встрече, если будут вопросы, уточню. Существенной разницы между формой кривой со звуковой карты и ответкой с микрофона выявлено не было (менее 0,5 дБ). 

Итак, схема дифференциального включения электретного микрофона продемонстрировала свою принципиальную работоспособность, однако существенных преимуществ перед "классической" схемой с инвертированием сигнала первого ОУ не показала.

Falconist

Обратился ко мне за помощью коллега (стоматолог), перешедший на работу под оптическим увеличением бинокулярной налобной лупой. Для комфортной работы ему необходимо достаточно яркое освещение рабочего поля. К сожалению, вся медтехника (кстати, аналогично автотехнике), раз в 5, если не больше, дороже, чем точно такая же техника бытового назначения. Поэтому он начал приспосабливать более-менее бюджетные фонарики под свою задачу. При этом столкнулся с гроздью проблем, среди которых было отсутствие плавной регулировки яркости светодиода, очень быстрое исчерпание энергии повербанков на два параллельных аккумулятора по 2,2 А*ч, применяемых для питания осветителя с быстрым снижением яркости освещения (приходилось их подзаряжать до нескольких раз в течение одного рабочего дня) ну и, наконец, быстрый выход из строя светодиодов.

Я проникся его проблемами и начал с ними разбираться. Начал с вышедших из строя светодиодов. Оказалось, что они фирмы Cree, типа таких:

Светодиод.jpg

но из четырех нерабочих ТРИ кристалла банально отвалились с подложки!!! Перегрева не было, т.к. питались они от платки фонарика, откуда были взяты, так что, по-видимому, причина в бессвинцовой пайке. Подложка нагревалась на корпусе (нагревателе) паяльника и после расплавления припоя кристалл пинцетом помещался на свое место.

Еще в одном оторвались площадки для подпайки проводников. Были подпаяны прямо к к зачищенным от краски дорожкам. В итоге были восстановлены ВСЕ ЧЕТЫРЕ светодиода.

Рачал разбираться с повербанками. Выполнены они были на микросхемах HT4921 (два в одном), содержащих как драйвер заряда аккумуляторов так и импульсный повышающий преобразователь в 5 В. Если с первой задачей эти микросхемы справлялись, то узел повышающего преобразователя "приказал долго жить": При 3,9 В на аккумуляторе на выходе было только 3,5 В. Стало понятно, почему повербанки так быстро истощались. "Родные" платы были выкинуты и поставлены на драйверах TP4056.

А теперь перейдем к главному вопросу, а именно, проклятой проблеме стабилизации тока мощного белого светодиода на 3 Вт, питаемого от ОДНОГО литиевого аккумулятора.

Суть проблемы заключается в том, что падение напряжения на светодиоде (до 3,3...3,4 В) находится в диапазоне колебаний напряжения на аккумуляторе (4,2...2,75 В - https://ru.wikipedia.org/wiki/Литий-ионный_аккумулятор ). Обойти ее можно несколькими путями:

1) Применением импульсного преобразователя:
   а) SEPIC;
   б) Step Up/Down;
   в) Inverting

2) Применением линейного стабилизатора с недоиспользованием заряда аккумулятора.

По размышлению было решено пойти по второму пути. Основным аргументом в его пользу явилось даже не то, что импульсные преобразователи сложнее по схеме, а то, что светодиод - источник света безинерционный и как ни фильтруй выходное напряжение, но пульсации все равно будут присутствовать. Для глаза, примерно половину рабочего времени подвергающегося воздействию пульсирующего света (пускай даже высокочастотного), это зерр шлехт. Глаза - тоже "рабочий инструмент" и беречь их надо не менее тщательно, чем руки.

Для линейного стабилизатора необходимо было обеспечить минимально возможное падение напряжения на регулирующем транзисторе, чтобы "высосать" из аккумулятора максимум запасенной в нем энергии. Этого можно, в принципе, достичь использованием полевого регулирующего транзистора в "классической" схеме стабилизатора тока на ОУ. Ан нет! В действительности все не совсем так, как на самом деле :acute:. Даже с применением LogicLevel полевика напряжение на его затворе должно быть порядка 2,5...3 В, что потребовало бы применение неоправданно дорогих Rail-to-Rail ОУ.

Выход был найден путем использования нового класса биполярных транзисторов, т.н. BISS. Пошарив по Интернету нашел подходящий: PBSS4540X с током коллектора 4 А, рассеиваемой мощностью более 1 Вт и эквивалентным сопротивлением коллектор-эмиттер порядка 40 мОм. В управление к нему выбрал одиночный низковольтный LMV321. Схема получается вот такая:

Линейный LED-драйвер на LM358 схема.GIF

Но пока заказанные "блошки" ехали с отдаленного склада, покопался у себя в загашниках и нашел близкие по параметрам (напряжение насыщения - порядка 0,35 В) транзисторы PBSS4540X в корпусе DPAK. К ним поставил ширпотребовскую LM358, "заглушив" ОУ, выходящий на ножки с меньшими номерами. Получилось вот что:

Линейный LED-драйвер на LMV321 схема.GIF

Делитель R2R3R4 формирует на верхнем выводе переменного резистора R5 напряжение, которое может изменяться от 30 до 70 мВ подстроечным резистором R3, определяя максимальный выходной стабилизируемый ток. С его движка задается падение напряжения на эмиттерном резисторе R6, обеспечивая регулировку выходного тока от нуля до максимального. Яркость визуально не изменялась при снижении питающего напряжения до 3,55 В.

Просто, как угол дома. Печатка:

Линейный LED-драйвер PCB.jpg

Выполнена под корпус (а не наоборот!!!). Изготовлено два таких стабилизатора. Один - под повербанки (оставшиеся от прежней конструкции, на фото виден на затылке):

В работе 1.JPG

И второй - под одиночный аккумулятор (расположен с другой стороны наголовника относительно корпуса собственно стабилизатора тока):

Вид справа.JPG

Большая белая кнопка включения подсветки расположена так, чтобы можно было включать/выключать ее либо тылом кисти, либо предплечьем. Хотя стерильность рук стоматолога и относительна, но лазить пальцами после рта или чисто вымытыми по кнопкам - не есть гут.

Вид слева.JPG

Освещенность рабочего поля более, чем достаточна:

В работе 2.JPG

Полной зарядки одного аккумулятора хватало, чтобы без снижения яркости отработать ДВЕ полных рабочих смены. Т.е., принятое "командирское" решение относительно применения именно линейного стабилизатора тока было верным. И начхать на неполное использование заряда аккумулятора. Всё равно литиевые аккумуляторы "эффекта памяти", как у никелевых, не имеют.

Клиент остался доволен результатом, как слон после водопоя :D...Я - тоже.

2SD1802.pdf

 

P.S. На следующей странице я отписался о стабилизаторе тока для налобного фонарика на 10 обычных белых светодиодах, выполненном на компараторах LM393.

Falconist

Микроскоп в роли молотка?

На форуме как-то исподволь сложилось мнение, что я являюсь каким-то "микроконтроллероненавистником"... Отнюдь нет! МК - великолепный инструмент для решения множества достаточно сложных задач, которые с применением рассыпной логики решались с огромным геморроем. Ключевые слова здесь: "достаточно сложных"! Но когда МК пихают во все дырки куда ни попадя (типа помигать светодиодами) - поневоле приходят на ум слова "забивать гвозди микроскопом". Причем, апологеты массового применения МК заливаются соловьями (сиречь нагло врут), утверждая, что при изменении алгоритма работы "в железе ничего менять не надо - только в прошивке".

Ситуация вчерашнего и сегодняшнего дней, категорически противоречащая этому утверждению: взял субподряд на изготовлении узла управления специфической мигалки для авто. Алгоритм такой: при подаче напряжения питания должно последовать 4 вспышки, после чего светодиод светится постоянно, пока не снято напряжения питания. Если снова подать питание - цикл повторяется. Если снять питание, пока идут вспышки, то при его новой подаче цикл начинается сначала. Причем, первый импульс должен начинаться в момент подачи питания.

Собственно, схема была уже изготовлена "умельцем", выполнена на микроконтроллере. Показана в работе клиенту. Тому не понравилась частота вспышек (слишком частые), потребовал ее уменьшить. А "умелец" куда-то сдрыстнул и сейчас находится за пределами реального доступа. ВСЁ! Прошивка неизвестна. Программатора нет. Средств изменения констант на плате нет.

Даже если бы всё (за исключением последнего пункта) и было - попробую ситуацию немного усугубить. Изменили константу, отвечающую за частоту. Прошили МК заново. Показали клиенту. Ему не понравилось количество вспышек. Потребовал увеличить с 4 до 8  Изменили константу, отвечающую за к-во вспышек. Прошили МК заново. Показали клиенту. Теперь ему снова не понравилась частота вспышек - слишком мала. Изменили константу, отвечающую за частоту. Прошили МК заново. Показали клиенту... И т.д. и т.п. Причем, клиент ничего не может поменять сам - только ехать на сервис, чтобы перепрошивали МК.

Причем, утрировал ситуацию я не сильно. Буквально вчера речь шла о 4-х вспышках. А сегодня генподрядчик возжелал, чтобы их было 8!

Покрутил я Т.З. и так и эдак... И уже ночью сообразил, что вся "хотелка" может быть реализована с помощью одной-единственной КМОП микросхемы CD4060:

Мигалка - логика.GIF

Собственно, схема известна, применяется в реле времени/таймерах, я только использовал младшие разряды счетчика для формирования начальных вспышек.

При подаче напряжения питания счетчик обнуляется через конденсатор С1 и запускается тактовая генерация. С выходов Q9 или Q10 (выбираемых перемычкой Х2) единичные импульсы поступают на силовой блок, запрещая его работу (т.е., формируя паузы между импульсами). Через 4-8-16 таких импульсов (опять же их количество выбирается перемычкой Х3), единица через диод VD1 "затыкает" генератор тактовых импульсов и счетчик остается в этом состоянии до снятия напряжения питания. На исполнительный узел поступает логический ноль, разрешая его работу. Частота генерации регулируется подстроечным резистором R1. ВСЁ! Алгоритм соблюден. Меняться в определенных пределах может клиентом, совершенно незнакомым с МК самостоятельно. Размеры платы практически такие же, как и с МК. Не требует программатора и умения программирования.

Засим еще раз повторюсь: я целиком и полностью "ЗА" широкое применение микроконтроллеров при условии, что для данной задачи их применение обосновано!!!


 

Falconist

Аквакомбайн

Сваял для жены комбинированный блок для аквариума, объединяющий светодиодную подсветку и термостабилизатор. 

Аква-комбайн.jpg

По большому счету, ничего особенного, представляющего какую-то схемотехническую новизну, в нем нет. Отписываюсь о нем только потому, что в явном виде реализована схема диммируемого (методом ШИМ) аналогового стабилизатора тока для соединенных последовательно трех мощных одиночных 5-ваттных светодиодов, оставшихся от сценических осветителей (верхний "этаж"):

 Аквакомбайн.GIF

Максимальный ток через светодиоды выбран величиной 1 А. Его среднее значение (а, соответственно, и яркость свечения светодиодов) плавно регулируется от максимума до едва видимой засветки, т.к. в крайнем левом положении движка резистора остается генерация коротких импульсов.

Это получился уже третий вариант данного устройства. Первые два, с самодельной схемой терморегулятора, закончены так и не были. Первый - потому, что содержал только терморегулятор, с датчиком, требующим индивидуальной настройки. Без подсветки, с питанием от маломощного ИИП. Второй - с датчиком, допускающим взаимозаменяемость без дополнительной подстройки, но, поскольку питание осуществлялось от одного трансформатора с подсветкой, проявилось паразитное влияние ее димирования на срабатывание компаратора терморегулятора. Вместо четкого переключения получалась пачка импульсов. А тут буквально вдруг обнаружил  готовый терморегулятор для инкубатора W1209, с точностью 0,1°С, укомплектованный термодатчиком и стоимостью всего-навсего $2,40 прямо в Киеве. Кроме собственно терморегуляции, если не подключать нагреватель (летом), показывает актуальную температуру воды.

Терморегулятор W1209.jpg

Только выкорчевал из него реле, клеммник, разъем (остались, как дополнительный бонус), снабберный диод для обмотки реле и заменил SMD-светодиод на 3-мм выводной. На коммутацию сетевого напряжения для нагревателя поставил бесконтактный симисторный узел (симистор из загашников + MOC3043).

Корпус, конечно, оказался великоват, но он остался от предыдущей версии и я не стал его переделывать. На задней стенке выведен также сетевой разъем для компрессора, чтобы можно было на ночь отключить все это хозяйство одним сетевым выключателем.

Светодиоды были прикреплены к радиаторам от северных мостов старых материнок, установленных на крышке:

Крышка снаружи.jpg

Изнутри светодиоды защищены от брызг воды, образуемых компрессором, плексигласовой пластинкой. 

Крышка изнутри.jpg

Без такой защиты светодиодные ленты, используемые ранее, буквально "сгорали" всего за месяц-полтора. Микробрызги воды перемыкали на них дорожки с выгоранием светодиодов. 

Размеры радиаторов для синего и зеленого светодиодов оказались все-таки маловаты. При максимальном токе через них греются до температуры, с трудом терпимой пальцами. Красный светодиод греется, естественно, меньше. При этом радиатор регулирующего транзистора генератора тока, площадью 100 кв.см - чуть теплый. 

Ну и, полученный результат. К сожалению, на фото так и не удалось получить реальных цветов.

Общий вид.jpg

Слева - синий, по центру - красный и справа - зеленый. Аквариум на 24 литра. Освещенности вполне достаточно. Даже с учетом того, что световой поток цветных светодиодов в 3...5 раз меньше, чем белых аналогичной мощности. Скажем, синие дают всего 60...70 Лм.

Радиаторы, скорее всего, придется менять. Хотя при примерно половинной яркости (вполне достаточной для освещенности) их нагрев умеренный.

P.S. Не, менять точно не буду! С этим освещением и нагреватель оказался не нужен. Сегодня, за день непрерывной работы, вода нагрелась с 22,6° утром до 24,7° к вечеру. А надо бы 24°. Но для гуппешек это тоже нормально.

 

Добавлено.

Через пару недель эксплуатации в аквариуме начала расти "борода" - нитевидные водоросли черного цвета на камнях, стенках и т.п. Аквариумисты утверждают, что причиной ее роста является избыток сине-зеленой полосы спектра в освещении. Поэтому синий и зеленый светодиоды поменял на 2-ваттные теплые белые. Кроме того, что бело-красное освещение оказалось не очень приятным для глаз, так еще и светодиоды плохо совместились друг с другом по параметрам или просто новые белые оказались никудышного качества, в общем, один из них через неделю тупо сгорел с обрывом, Поэтому все они были заменены на 9-ваттные 10-вольтовые матрицы теплого белого света, включенные параллельно, чтобы не переделывать питание. Три точки свечения - потому что одна тозе не очень комфортно выглядела. Получился явный недогруз по току (всего чуть больше, чем по 100 мА на каждую матрицу), но яркость свечения на максимуме (при коэффициенте заполнения 100%) вышла даже больше нужной, так что всё так и было оставлено.

Falconist

От ныне покойных родственников и знакомых в памяти остались некоторые притчи, высказывания, поговорки. Очевидно, что не их авторства, но в Интернете подобных найти не удалось. Может, плохо искал. Поэтому передаю так, как их запомнил. По типу сборника "устного народного творчества".


Ящик гнилых помидоров

Купил мужик по случаю ящик помидоров. Принес домой, перебрал. Среди основной массы хороших обнаружил несколько, начинавших портиться. Он их отложил, остальные спрятал в холод. В отложенных повырезал подпорченные участки, остальное съел.

На следующий день снова перебрал, обнаружил еще несколько подпорченных. Вырезал подпорченное, остальное съел.

На следующий день снова перебрал, обнаружил еще несколько подпорченных. Вырезал... съел...

Вот так за две недели он и съел ящик ГНИЛЫХ помидоров.

(© Моя покойная матушка)



 

Ближе, но дальше

Едет барин на бричке, догоняет мужика.

- Эй, мужик, как проехать в ... (пусть будет в Ивановку)?

- Если поедешь прямо - то эта дорога будет в десять верст. Дальше, но ближе. А если через полверсты повернешь налево - той дороги будет три версты. Ближе, но дальше.

Барин думает: "Ну до чего ж дурные эти мужики! Как может дорога в три версты быть дальше, чем 10-верстная?" Повернул налево.

Через какое-то время нагоняет его мужик. Смотрит - а бричка-то увязла по оси в грязи, конь из сил выбился - не может ее вытянуть. Барин бегает вокруг, ругается почем зря. На мужика с кулаками набросился:

- Ах ты, такой-сякой! Почему посоветовал мне эту дорогу?

- А чего ты, барин, ругаешься-то? Я ж тебе ясно сказал: "Эта дорога ближе, но дальше"...

(© Мой покойный батюшка)



Бедному Ванюшке всё бугорки да камушки

Жил-был мужик. Трудно жил, бедно. Очень бедно. Жилы рвал, но построил-таки себе домишко.

Только въехал - бац, гроза! Ударила молния в домик, подожгла. Спас мужик кое-какое барахлишко. Крякнул, вырыл на пепелище землянку.

Только въехал - бац, гроза! Ударила молния в землянку, подожгла. Выскочил мужик в одном исподнем, упал на колени и взмолился:

- Господи, да за что???!!!

А тучка этак отодвигается в сторонку и из-за нее Боженька выглядывает:

- Ну не нравишься ты мне, мужичок. Понимаешь? НЕ НРА-ВИШЬ-СЯ!..

(© Мой покойный батюшка)



Скорость или качество?

Не гонись за скоростью. Гонись за качеством.

Забудут, что делалось быстро. Будут помнить, что сделано плохо.

Забудут, что делалось долго. Будут помнить, что сделано хорошо.

(© Мой покойный батюшка)



Семь лет мак не родил - и голода не было...

Заработай своим трудом и дай заработать Мастеру.

Если дураком назовут умного - он поблагодарит и задумается, где совершил оплошность. Если дураком назовут дурака - он обидится.

Берущий всегда смертельно ненавидит дающего.

(© Мой покойный батюшка)



Не надо думать, а надо знать!

(© Моя покойная тетушка Катя

в ответ на блеянье: "Да я вот думал...")



О песнях

Одни люди поют, что знают. Другие - знают, что поют.

(© Мой покойный любимый учитель, проф. В.Я.Фищенко)



Петушиные яйца

Сейчас ты выйдешь из ординаторской направо, потом повернешь налево, выйдешь к лифтам, нажмешь кнопку, вызовешь лифт, съедешь на первый этаж, перейдешь улицу, сядешь на трамвай и проедешь две остановки, потом выйдешь, повернешь налево, к остановке троллейбуса, сядешь на 8-й или 9-й маршрут, проедешь до Бессарабки, перейдешь по подземному переходу к рынку, зайдешь в него, купишь петуха...

...и будешь крутить ему яйца!

(© Мой покойный любимый учитель, проф. В.Я.Фищенко)




Разница между умным, мудрым и дураком

Умный учится на своих ошибках. Мудрый - на чужих. А дурак вообще никогда и ничему не учится.

(© Мой покойный школьный товарищ Саша Вознюк)

 

 

Об Искусстве (с большой буквы)

"Искусство начинается с ТОЧНО дозированной неправильности".

Пример. 

Жил когда-то такой известный завоеватель Тамерлан (Тимур). И вот, когда он уже завоевал полмира, решил увековечить себя в портрете. Пригласил самого лучшего художника своей империи и отдал приказ. А надо сказать, что Тамерлан был крив на один глаз и хром на одну ногу.

Художник изобразил писаного красавца. Тамерлан взглянул на портрет и приказал сжечь его, а автора - казнить.

Пригласили второго по известности художника. Он изобразил Тамерлана таким, каким он и был - кривым и хромым. И его портрет и его самого постигла та же участь.

Все остальные художники испугались и попрятались... Но вот в ворота дворца постучал молодой художник, заявивший, что сможет выполнить желание повелителя.

Он изобразил Тамерлана во время охоты на тигра, целящегося в зверя из лука. "Кривой" глаз - прищурен, а "короткая" нога стоит на камне...

(© Мой ныне покойный знакомый, композитор и аранжировщик, Андрей Остапенко)

Falconist

Время от времени на форуме периодически возникают подобные темы. Ну, то, что "юные дарования" не пользуются поиском по форуму - это их горе, но схема, в принципе, мною была разработана, неоднократно повторена как мною, так и другими. В данном посте хотелось бы обобщить различные варианты ее построения и закрыть этот вопрос на обозримое будущее.

Итак. Условия: На входе появляется какой-то сигнал. Это может быть аудиосигнал или постоянное напряжение - неважно. Схема должна в момент его появления/исчезновения включить/выключить исполнительное устройство и удержать его в этом состоянии какое-то время. Для решения подобной задачи существует специализированная микросхема M51957/M51958. Её внутренняя структура из даташита:

M51957.gif

Как видно их принципиальной схемы, M51957 формирует высокий выходной уровень при превышении входным сигналом фиксированного порога срабатывания, а M51958 - соответственно, низкий. К сожалению, эти микросхемы уже давно устарели и найти их весьма сложно. Кроме того, уровень срабатывания задается внутренним источником опорного напряжения = 1,2 В, что требует применения предусилителя при работе с низкоуровневыми входными сигналами (например, аудио по уровню минус 10...20 Дб). Да и выходной вытекающий ток у них всего 25 мкА. Некомильфо, однако.

Поэтому внутренняя структура была повторена на широко распространенном сдвоенном компараторе LM393 с небольшой обвязкой. Рассмотрим подробно один из вариантов построения схемы для задачи включения светодиода при появлении звукового сигнала.

Индикатор LM393.GIF

Для начала следует отметить, что выход компаратора LM393, в отличие от ОУ (имеющих полноценный двухтактный выходной каскад), выполнен с открытым коллектором.

LM393.GIF

Поэтому он может только принимать ток (втекающий) от шины питания на общую. Без нагрузочного резистора, подключенного между выходом и шиной питания, на выходе будет напряжение, близкое к нулевому, независимо от состояния входов. Вытекающего тока на общую шину он обеспечить не способен в принципе!!! Входные каскады выполнены на p-n-p транзисторах и способны работать не только от уровня потенциала общей шины, но даже "минусовее" её на 0,3 В. При наличии выходного резистора ничего плохого со входами не случится и при превышении этого значения, т.к. всего-навсего откроется в прямом направлении коллекторный переход входного транзистора, ток которого будет ограничен этим самым входным резистором.

Итак, первый каскад представляет собой обычный компаратор DA1.2, на инвертирующий вход которого подано небольшое опорное напряжение, заведомо ниже предполагаемого уровня входного сигнала. В случае аудиосигнала оно может составлять 30...50 мВ. Можно и меньше. Минимальный уровень этого опорного напряжение определяется уровнем шумов на входе и должен их превышать. На неинвертирующий вход поступает входной сигнал. Поскольку он стерео, то на входе стоит примитивный микшер из резисторов R1R2, суммирующий сигналы правого и левого каналов. Если предполагается моно-сигнал, один из резисторов можно исключить. На "всякий пожарный" сигнальный вход зашунтирован германиевым диодом VD1, предотвращающим появление на нем отрицательного напряжения более -0,3 В. Гистерезис в данном каскаде не предусмотрен специально, поскольку нужно обеспечить его высокую чувствительность к изменениям входного сигнала.

В отсутствие входного сигнала потенциал инвертирующего входа больше, чем неинвертирующего и на выходе - низкий уровень. Выходной транзистор компаратора шунтирует базо-эмиттерный переход транзистора VT1 и на его коллекторе - высокий уровень. Времязадающий конденсатор С2 заряжается через резистор R7 до уровня, превышающего второе опорное напряжение, сформированного делителем R8R9, поступающего на инвертирующий вход второго компаратора DA1.1. Между его выходом и неинвертирующим входом включен резистор R10, обеспечивающий гистерезис переключения данного каскада. Выход подтянут резистором R11 к шине питания и на нем присутствует низкий уровень сигнала. Такой вариант можно использовать, если предусматривается управление электромагнитным реле. При этом схема дополняется выходным ключевым транзистором, подключенным аналогично аналогично VT1. При низком уровне выходного сигнала компаратора DA1.1 его базо-эмиттерный переход будет шунтироваться выходным транзистором компаратора, а сам дополнительный выходной транзистор - заперт и реле обесточено.

Если нужно, чтобы выходной сигнал в отсутствие входного имел высокий уровень, входы второго компаратора DA1.1 нужно поменять местами. Такой вариант применяется для световой индикации появления сигнала. Тогда последовательно с резистором R11 включается светодиод, который не будет светиться, пока не появится входной сигнал.

Дроссель L1 и конденсаторы C3C4 образуют фильтр по питанию. Собственно, дроссель является опциональным (необязательным) элементом и его можно исключить. Но лучше оставить, если ток потребления реле будет достаточно большим, а источник питания этой схемы - маломощным.

При появлении входного сигнала первый компаратор DA1.2 будет срабатывать всякий раз, как его уровень превысит уровень первого опорного напряжения. На его выходе при этом периодически будет появится высокий уровень, транзистор VT1 будет открываться и разряжать конденсатор C2. На выходе второго компаратора DA1.1 появится высокий синал, также открывающий дополнительный выходной транзистор (не показан). Реле сработает. Собственно, всё это показано на эпюрах под схемой. В таком состоянии схема будет находиться всё время, пока входной сигнал не пропадет и вновь не зарядится конденсатор С2 до уровня, превышающего второе опорное напряжение. При данном соотношении R7C2 это время составляет около 5...10 с (зависит от тока утечки конденсатора С2 и значения второго опорного напряжения).

Устройство световой индикации аудиосигнала

Индикатор.GIF

выполнено на печатной плате.

Сигнализатор-PCB.GIF

Красным обведены дорожки, подведенные к обеим входам второго компаратора. Ненужные следует пересечь. "Ненужность" определяется необходимым уровнем выходного сигнала, который следует получить. Дополнительного ключевого транзистора и реле на плате нет, их нужно доразвести. Переключатель SA1 обеспечивает два времени задержки отключения: около 5 с для настройки (при разомкнутом переключателе) и около 30 с (при замкнутом) - для штатной работы.

Гистерезис во второй компаратор не введен, т.к. он обеспечивается за счет небольшой просадки питающего напряжения при зажигании светодиода.

Общий вид готовых устройств.

Начинка.JPG

Питается оно от китайского зарядника для мобилок.

Комплект.JPG

Что осталось непонятно - спрашивайте.


 

Индикатор.lay

Falconist

Ма-а-ахонькая такая поделка, нужная в хозяйстве, которую сваял для жены. :buba: Суть в том, что на кухне имеется проточный фильтр для воды. Скорость фильтрации должна быть маленькой (толщина струйки не больше спички). Пока 2-литровый кувшин наберется - стоять и ждать влом. А ушел - забыл. И водичка течет себе через край. Но при этом зазря расходуется фильтрующий картридж, а он денюжек стОит...Так вот, простейший сигнализатор уровня воды. Всего 4 детали. Баззер со встроенным генератором купил за 4,3 грн. Держатель для литиевой баратейки на 3 В выпаял из материнки. Резистор и транзистор - тоже из распая. Сначала попробовал полевик 2N7000, но то ли его цоколевка отличалась от даташитовской, то ли партия попалась бракованная - оказался всё время в открытом состоянии. Поставил составной Дарлингтона - и получилось зер гут.

Схема:

Звонок.GIF

Печатка:

Звонок-PCB.GIF

Внешний вид:

Звонок.jpg

Жена довольна! :dance2:

P.S. А меньшая дочка попросила сваять такую же для ванны. Уже пару раз, когда ее набирала, та переливалась через край...

_______________________________________________

Добавлено.

В процессе эксплуатации оказалось, что примененная батарейка никуда не годится из-за малой емкости. Хватило на неделю. Поэтому была изготовлена другая плата на 2 элемента АА. Кроме того, по рекомендации Гор'а
 

В 20.09.2014 в 08:57, Гор сказал:

Техническая грамотность требует вставить ограничительный резистор в цепь контроля =то есть цепь базы.

добавлен резистор с плюса питания к положительному контакту во избежание пробоя базо-эмиттерных переходов при случайном перемыкании между собой контактных щупов.

Исправленная схема:

Индикатор уровня воды схема.GIF

Новая печатка:

Индикатор  уровня воды PCB.GIF

Фото:

Индикатор.jpg




 

Индикатор уровня воды.lay6

Falconist

Прозвонка

Уже много лет пользуюсь звуковым пробником-прозвонкой. Подробно описан тут: http://forum.cxem.ne...140#entry414343 Добавить к написанному нечего.

А седни релил сваять еще одну схему, разработанную NOPROBLEM (с "Казуса"). Также подробно описана тут: http://forum.cxem.ne...40#entry1785037

Собственно, схема:

Прозвонка.JPG

Добавлен конденсатор по питанию, выключатель и светодиодный индикатор включенного состояния, т.к. схема постоянно потребляет ток от источника питания и требует отключения в нерабочем состоянии. Изменен номинал резистора R (увеличен до 680 Ом), т.к. частота при К.З. щупов оказалась слишком большой, а звук из динамичка - слишком тихим. При этом существенно снизилась чувствительность к большим сопротивлениям (при номинале 100 Ом замыкание просто пальцами давало треск с частотой около 30...40 Гц). Однако, для практических целей всё равно достаточна.

Печатка:

Прозвонка.GIF

Фото (первый вариант печатки, менее удачный на мой взгляд, чем выложенный выше, но рабочий):

Прозвонка.jpg

Сейчас у меня она на тестовом прогоне (испытаниях). Первое впечатление - хорошее.


 

Прозвонка.lay6

Falconist

Что меня поражает: схемы ЛБП традиционно выполняются на ОУ. И настолько этот постулат въелся в сознание, что другое даже себе не представляется. Я не имею в виду дискретные компоненты! Именно интегральные микросхемы. А задумывался ли кто-нибудь о быстродействии ОУ, да еще при их последовательном включении? Видимо, нет. А я вот задумался и щас кого-то, наверное, очень сильно удивлю. Так что крепче держитесь за стул.

Не так давно я макетировал схему терморегулятора и прифигел от результатов. Повторил в симуляторе (Мультисим) - получил то же самое. Поэтому иллюстрации к данному посту выполнены в виде "осциллограмм" из Мультисима. Не вижу смысла гонять паяльник, если результат практически один-в-один.

Итак, давайте сравним самые банальные микросхемы - ОУ LM358 и компаратор LM393. Их внутренняя структура приведена на рисунке ниже:

LM358-LM393_Compare.gif

Как видим, за исключением двухтактного выходного каскада (обведено рамкой) и некоторых различий в токах, формируемых генераторами тока, обе микросхемы очень похожи (НЕ идентичны, а именно похожи).

В Мультисиме включил их параллельно в режиме компаратора. Для выхода LM393 подключил нагрузочный резистор 2 кОм. На вход подал прямоугольный сигнал частотой 5, 50 и 500 кГц.

Сравнение ОУ и компаратора.gif

И вот что получил на выходе. Красный трек - "осциллограмма" с выхода ОУ LM358, синий - компаратора LM393. Частота 5 кГц:

5 кГц.gif

Компаратор формирует четкие прямоугольные импульсы. С выхода ОУ фронты завалены.

Частота 50 кГц.

50 кГц.gif

Компаратор формирует четкие прямоугольные импульсы. С выхода ОУ - хиленький треугольник.

Частота 500 кГц (!!!)

500 кГц.gif

Компаратор формирует прямоугольные импульсы со слегка заваленными фронтами. С выхода ОУ - фиг знает что.

Это я специально взял отнюдь не самые лучшие приборы! Токмо чтобы показать разницу в работе.


 

Falconist

Попросил меня знакомый сваять ему блок питания для домашнего пользования автоприемника. Лежал у меня БП формата АТХ. Я по-быстрому повыпаивал лишние шнурки, а зеленый проводок (PC-ON) подпаял на общий. Включаю в сеть - а фигушки! Кулер дергается и дальше не вращается. На выходе - ничего нет. Дежурное питание +5 присутствует. Разбираться с проблемой было некогда, т.к. на следующий день я отчаливал на гастроли. Взял тайм-аут. Честно признаюсь, так до сих пор и не разобрался, что ж там была за причина :vava: .

По возвращению мне подкинули больше десятка компьютерных БП, среди которых обнаружился один старенький формата АТ. Взял я его, повыпаивал из платы ВСЁ лишнее (включая обмотки по цепям +/-5 В на ДГС), оставив только цепь +12 В (обе обмотки ДГС по цепям + и минус 12 В запараллелил). Подстроил ее под 13,6 В.

Заодно заменил полумост их двух FR302 на MBR20100 (синяя стрелка) с радиатором большей площади, ключевые транзисторы на 13007, добавил дроссель и конденсаторы в фильтр сетевого питания (обведено фиолетовым), а также поставил прямо на плату светодиод индикации наличия выходного напряжения (красная стрелка) и запитал кулер через два последовательно включенных диода, на которых упало "лишние" 1,4 В (зеленая стрелка).

Питальник.gif

Плата выдает свои 10 А при стабильных 13,6 В. Единственное, что не дает пока запихнуть ее в корпус и отдать человеку - то, что совершенно нет защиты от перегрузки по току. А ведь почти 100% вероятности, что он это "чудо" рано или поздно сожжет.

А может, и не сожжет? Х.З. ...

Как утверждал Starichok: "Старый стал, ленивый"...


Еще раз внимательно рассмотрел печатку, пошастал по Интернету и нашел схему контроля ширины управляющих импульсов:

pic40.jpg

Защиту восстановил (R21D23C16R25R26). Правда, что на этой схеме делает С16 - ума не приложу. Ведь 15-й вывод подключен к референтному напряжению (14-й вывод) напрямую... Но работает - и ладно (3-й закон схемотехники).
 

В 23 жовтня 2014 р. в 18:58, Starichok сказал:

С16 входит в состав пикового детектора.

на самом деле это не контроль ширины импульсов, а контроль тока ключей.

за счет обмотки ПОС по току управляющий трансформатор одновременно работает, как ТТ. и на средней точке первички получается напряжение более-менее пропорциональное току ключей. это напряжение детектируется и подается через делитель на 16 ногу.

когда мне нужна было только защита (без регулировки тока), я тоже оставлял всю эту цепь защиты. а делителем настраивал защиту (нужное ограничение тока).

при этом 15 ногу требуется отвязать от 14 ноги резистором (например, 4,7 кОм), иначе конденсатор С16 с 15 ноги на 3 ногу бесполезен, и будем возбуждение схемы при срабатывании защиты по току.

Я-то его поставил на всяк случай, но чешу себе репу: что ж там в этой цепи за постоянная времени на 15-й ноге получается, если выходной ток 14-го вывода составляет до 10 мА (т.е., входное сопротивление соединенных вместе 14 и 15 выводов весьма низкое).

В 23 жовтня 2014 р. в 18:58, Starichok сказал:
при этом 15 ногу требуется отвязать от 14 ноги резистором (например, 4,7 кОм), иначе конденсатор С16 с 15 ноги на 3 ногу бесполезен, и будет возбуждение схемы при срабатывании защиты по току.

Вот и я о том же! Спасибо, Володя.




 

Falconist

Мини-генероттор

Понадобилось мне отобрать парочку трансформаторов из кучки, выпаянных из дежурок. Причем, в эту кучку я их сбрасывал не глядя, так что скорее всего, какие-то могли попасть и с короткозамкнутыми витками. Да и с вторичными обмотками разобраться надо было точно. Какое выходное напряжение и какой полярности. Поэтому быстренько слепил на макетке обычный блокинг-генератор на высоковольтном транзисторе (! КТ805Б пробился через пару секунд работы!). Такой себе "мини-генерототтор".

Пробник.GIF

А потом опять-же по-быстренькому слепил печатку размером 25 х 40 мм, распаял ее, апробировал и закинул в коробку с подобными "простыми схемами".

Пробник - печатка.GIF

Входов у схемы четыре: два - для подключения 220 В и два - плюс и минус 56 В (столько у меня выдает ЛБП). Если схема заводится от 56 В, то подключение ее к 220 В является только контрольным тестом. Ну, и проверить, какой номинал резистора смещения (составленного из двух последовательно - постоянного R1 и переменного R2) будет нужен для надежного запуска.

К выходам подпаяны 4 многожильных проводочка с однополюсными мини-разъемами для подключения к выводам трансформатора. Взяты от комплекта соединительных проводов от старого компьютерного корпуса.

Пробник.jpg

С помощью этого приспособления за час проверил больше десятка трансформаторов, нашел один, не работающий ни при каких подключениях к первичным обмоткам (пойдет на перемотку), отобрал подходящие и определился с разводкой вторичных обмоток для разводки ПП. Контроль осуществлял осциллографом.

Вроде бы и всё.


 

Falconist

База-эмиттерный резистор

Вопрос, неоднократно поднимаемый на форумах: есть схема ключевого каскада.

Схема 1.jpg

Осциллограмма 3.jpg

Если с номиналом базового (токоограничительного) резистора (в данном случае R3) особых проблем не возникает, для ключевого режима он должен обеспечивать базовый ток не меньше, чем коллекторный (через резистор R1), деленный на коэффициент усиления (h21, бета) данного транзистора (хотя это "не меньше" должно быть НАМНОГО не меньше, что будет показано ниже), то с номиналом базо-эмиттерного резистора R2 возникают существенные непонятки не только у "юных дарований", но даже у казалось бы грамотных и квалифицированных инженеров. Нередки рекомендации ставить его в диапазоне 10...100 кОм (искать ссылки несколько лениво, прошу поверить на слово). Либо вообще не ставить. Последнее наиболее часто можно наблюдать в буржуинских схемах. Поэтому давайте в конце концов разберемся, зачем этот резистор вообще нужен и каким должен быть его номинал.

У биполярного транзистора существует такой паразитный параметр, как неуправляемые коллекторный и базовый токи. Их величина зависит от материала (у германиевых они примерно на порядок больше, чем у кремниевых) технологии (качества изготовления), мощности и т.п. При определенных сочетаниях режимов работы транзистора (высокое напряжение между коллектором и эмиттером, повышенная температура, влияние импульсных помех и др.) эти неуправляемые токи могут привести к самопроизвольному (при)открыванию транзистора с дальнейшим переходом в лавинный режим работы и соответствующими печальными результатами. Чтобы такого не произошло, между базой и эмиттером ставится внешний резистор, через который этот неуправляемый базовый ток и закорачивается. Для кремниевого транзистора такого резистора, как правило, достаточно. Для германиевого - обычно было недостаточно и приходилось подавать через него небольшое запирающее напряжение. Сейчас, поскольку германиевые транзисторы применяются разве что в экзотических схемах, этот момент для них стал неактуален.

С назначением базо-эмиттерного резистора вроде понятно. Так каким же должен быть его номинал? Дома у меня лежат пара бумажных справочников по транзисторам:

1. Транзисторы для аппаратуры широкого применения: Справочник / К.М.Брежнева и др.; Под ред. Б.Л.Перельмана.- М.: Радио и связь, 1981.- 656 с.

2. Мощные полупроводниковые приборы. Транзисторы: Справочник / Б.А.Бородин и др.; Под ред. А.В.Голомедова.- М.: Радио и связь, 1985.- 560 с.

Приведенный ниже сканы взяты из первого из них. Во втором эти данные тоже есть. Давайте внимательно посмотрим в разделе "Максимально допустимые параметры" на такой параметр, как постоянное напряжение коллектор-эмиттер UКЭ max, а именно, условие его измерения - номинал базового резистора RБ (обведено красной рамкой).

для маломощного транзистора КТ104 RБ = 10 кОм.

КТ104.jpg

Для транзистора средней мощности КТ611 RБ = 1 кОм.

КТ611.jpg

Для транзистора большой мощности среднечастотного КТ803 RБ = 100 Ом.

КТ803.jpg

Для транзистора большой мощности высокочастотного КТ913 RБ = 10 Ом (!!!)

КТ913.jpg

А-ФИ-ГЕТЬ!!! Разброс на ТРИ порядка! От 10 кОм до 10 Ом. Конечно же, для каждого типа транзистора значения свои. Так, для ГТ109 его номинал равен 200 кОм; для КТ630 - 3 кОм. Для ГТ122 он равен нулю. И т.д. и т.п. А для МП39...МП42, МП111...116, да и для немалого количества других типов транзисторов (особенно маломощных) его номинал вообще не приведен. Но суть не в этом, а в том, что чем больше мощность транзистора, тем меньший номинал базо-эмиттерного резистора гарантирует, что при любых температурных (и прочих) условиях транзистор самопроизвольно не откроется.

Кстати, пересмотрел десятка два даташитов на буржуинские биполярные транзисторы - ни в одном из них (в разделе Absolute Maximum Rating) не нашел даже упоминания о таком резисторе.

В первом приближении можно принять зависимость между мощностью и номиналами RБ, приведенную выше на сканах: 10 кОм для маломощных, 1 кОм - средней мощности и 100 Ом - для мощных транзисторов. Кроме того, чем выше граничная частота работы данного типа транзистора, тем меньше должен быть номинал RБ.

Естественно, такая зависимость не является догмой. Каждый может сам для себя выбирать, что ему по вкусу. Но именно сам для себя, когда "выбирающий" и отвечает за работоспособность устройства. Если же устройство должно выполнять какие-то критические функции, то выбор "с потолка" становится уже неприемлемым. В действие вступает правило: "Не делайте тяп-ляп. Делайте хорошо. Плохо само получится"!

В 25.12.2014 в 06:59, IMXO сказал:

утверждать стопроцентно не буду, но помоему для расчета RБ в справочниках есть четко оговоренный параметр IКБО от которого и пляшем , падение на RБ принимается равным 0,1в , а дальше обычный закон ома

КТ819 IКБО =1мА - RБ <=100ом

КТ817 IКБО =0,1мА - RБ<=1000ом

кт3117 IКБО =10мкА - RБ<=10000ом

или нет?

IMXO, спасибо за наводку. Очень даже похоже на истину. Только почему-то очень мало кто использует этот параметр для расчета. Лепят отсебятину кто во что горазд. Не сложно ли будет пояснить, откуда взялась цифра 0,1 В?

В 25 грудня 2014 р. в 09:35, IMXO сказал:

скажем так напряжение при котором переход база-эмиттер однозначно закрыт... и ток протекающий через него не может повлиять на ток коллектор-эмиттер при любом разумном Н21е

Отсимулировал этот каскад при отключенном Rб.

Ключевой каскад - схема.jpg

Вот что получилось.

Ключевой каскад - осциллограммы.jpg

Выходит, что транзистор начинает открываться при напряжении на базе, равном 425 мВ (канал "С", красная вертикальная метка Т1). Но это при температуре 20оС! Если она повысится до предельно допустимой (как это сделать в Мультисиме, пока не знаю), скажем, до 150оС, то учитывая, что напряжение на р-п переходе снижается на 2...2,5 мВ/град. получается как раз около 0,1 В.

А теперь я увеличил чувствительность трека "В" (красный), показывающего базовый ток до 50 мВ/дел.

Ключевой каскад - осциллограммы 2.jpg

В точке начала открывания транзистора (Т1) его величина составляет 224 нА (коэффициент преобразования датчика тока составляет 1 В/мА). Еще увеличил чувствительность (до 1 мВ/дел). Переместил маркер Т2 в точку, где базовый ток начинает отклоняться от нуля. Она соответствует базовому напряжению 225 мВ. Делим на 2 (для надежности) - получаем этот самый 0,1 В.

Ключевой каскад - осциллограммы 3.jpg



 

Falconist

Архивные схемы

Начал перебирать свои архивы. Нашел несколько схем, которые сейчас хоть и могут считаться старыми, но в свое время были достаточно востребованы.

Первая схема - MIDI-интерфейс "для бедных". В начале 2000-х было изготовлено около 20 экземпляров такого устройства, которые разошлись среди музыкантов и аранжировщиков. Ни один из них до сих пор не вернулся с претензией! Тогда я работал на студии звукозаписи и данная схема была призвана удовлетворить самые требовательные "хотелки". Схема.

MIDI-интерфейс Circuit.GIF

К 15-контактному разъему GAME аудиокарты интерфейс подключался шнурком (Х1). От компьютера же бралось и питание. Поэтому контакты MIDI-IN и MIDI-OUT, идущие с GAME-порта не имеют оптронной развязки. Таковая предусмотрена только для инструмента. Сзади из корпуса выходили два постоянно подсоединенных кабеля с DIN-разъемами, подключавшиеся к инструменту. Спереди установлены 4 платных DIN- разъема для подключения дополнительных кабелей. По одному дополнительному MIDI-IN и MIDI-OUT ко второму инструменту (тыльный и лицевой входы MIDI-IN коммутировались переключателем SA1 типа ПКН) и два разъема "Through" ("сквозных").

Опторазвязка осуществлялась оптроном с ТТЛ-выходом К293ЛП1 (их у меня была жменька). Сейчас ассортимент подобных, конечно, пошире. Мультивибратор К155АГ3 использовался исключительно для индикации прохождения сигналов туда-сюда, поскольку сами MIDI-посылки могли быть единичными и из-за их малой длительности незаметными. Вообще без индикации - худо, т.к. если что-то не "идет", то непонятно, из-за проблем с этим интерфейсом или из-за каких-то других причин. Поэтому времязадающие резисторы и конденсаторы обозначены на схеме звездочками - подбираются при настройке.

Вся эта "радость" проектировалась под польскую пластмассовую коробчонку на плате 85 х 52 мм.

MIDI-интерфейс PCB.GIF

Сделать фото готового устройства, к сожалению, не могу, т.к. ни одного у меня с тех времен не осталось.

А вот так выглядела разводка этой платы "карандашиком и резинкой". Правда, мне повезло пользоваться диаграммной лентой для самописцев с шагом 2,5 мм, на которой все это и разводилось (со стороны дорожек).

MIDI-интерфейс.gif


Следующая плата - Предусилитель-корректор электромагнитного звукоснимателя. Схема из какого-то журнала "Радио" 80-х годов.

Предусилитель-корректор circuit.GIF

Этим предусилителем была снабжена какая-то импортная вертушка (название за давностью лет, естественно, уже не помню), имевшая только "сквозной" выход прямо со звукоснимателя.

Поскольку вертушка использовалась на студии звукозаписи, то профессиональные уши качеством воспроизведения удовлетворились. Плата (файл в формате *.lay6 - в аттаче).

Предусилитель-корректор PCB.GIF

"Силовая" и "сигнальная" земли на плате проведены отдельными, не соединяющимися дорожками (!!!). К блоку питания они должны подключаться отдельными проводниками. Поскольку габариты конденсаторов (расстояние между выводами) могут очень сильно колебаться, то для каждого пленочного/керамического конденсатора предусмотрены несколько "пятачков".


Диагностический электростимулятор

Разработан и изготовлен в конце 80-х, когда я оперировал на спинном мозге. Вернулся ко мне совсем недавно, когда хирурги, пользовавшиеся им после моего ухода, ухайдокали его до полной невменяемости.

Схема:

NeuroImp.thumb.GIF.521e011aaec79d6e89074ae2b4012499.GIF

Микросхемы в корпусах DIP ставились на платы (левая и правая деталями друг к другу), как SMD, что позволило тянуть дорожки между выводами. В то время единственной технологией "на коленках" было рисование дорожек нитрокраской обрезанной инъекционной иглой.

Микросхемы DD1 и DD2 питались от батарейки постоянно (за счет их мизерного тока потребления они служили своеобразной "памятью" состояний). Кнопка SА1 включает питание всего этого пепелаца. При этом нижний триггер на DD2 устанавливается на счет либо вверх, либо вниз. Кнопкой SА2 этот счет и производился. Выходной каскад - стабилизатор тока двухполярных импульсов от 0 до 7 мА, с дискретностью 1 мА

В начале 90-х это было круто. Сейчас, конечно же, все это целесообразнее выполнить на МК. Хотя... Схема есть, конструкция несложная, можно спокойно повторить.

Falconist

Выполнил вырисовку по плате схемы компьютерного БП ISP-120S на микросхеме KА1M0680.

ISP120S.GIF

Вырисовывал очень тщательно, но наличие ошибок не исключаю. Особенно в части справа внизу (стабилизация выходного напряжения и ON/OFF). Тем не менее, считаю, что лучше хоть такая схема, чем вообще никакой. Ибо в Интернете вообще ничего по этому БП не нашел. Да и по микросхеме - тоже.

Кроме чисто архивно-музейного значения данная схема может служить и в качестве примера построения прямохода на данной микросхеме. Причем, самопитание ее отсутствует - питается она с отдельной обмотки дежурки.

С трансформаторами не разбирался - обозначил их в виде "черных ящиков". Номиналы большинства конденсаторов (кроме пары-тройки) измерял тестером Mastеch-MY68, Номиналы индуктивностей тоже измерял универсальным измерителем. Позиционные обозначения деталей старался сохранить такими же, как на плате.



Схема дежурки на SG6848 (вырисовка по плате).

"Холодную" часть не вырисовывал ввиду ее отсутствия (плата частично распаяна, оставалась только сама дежурка).

Дежурка на SG6848.GIF



Попалась мне в свое время в руки платка от телефонной зарядки (вроде бы). Под названием JIALE. Распайка "горячей" части (слева от трансформатора) под ключевой биполярный транзистор - "родная".

Charger_JIALE-bipol.GIF

"Холодную" часть (справа от трансформатора) я в свое время модернизировал под TL431, поэтому эта часть (кроме диода VD7 и конденсаторов C6 и C7) сейчас полностью распаяна, схема восстановлена по "голой" плате.

В "горячей" части имеются незапаянные детали (диод без номера, транзистор VT3 и резистор R5). Если их установить, получается схема под ключевой полевой транзистор.

JIALE-FET.GIF

R19 не запаян и что он там вообще делает - мне совершенно непонятно. Темна китайская конструкторская мысль!.. Да и сама разводка платы совершенно "кривая": дорожки, ведущие к светодиоду, расположены в непосредственной близости от "горячей" части.

Однако, вопрос несколько в другом. Цоколевка ни одного из 3-выводных компонентов в "горячей" части (VT4, VT5, VT6) не соответствует установке туда TL431. А оптрон-то ООС имеется! Т.е., получается, что данный ИИП не предназначен для стабилизации выходного напряжения. Остается стабилизация тока. R12, R13 - шунт, с которого снимается сигнал на базу VT4, а его коллектор управляет оптроном.

Роль VT5 и VT6 я подробно не разбирал. Что-то, связанное с индикацией. Трансформатор выполнен на сердечнике Е19, т.е. 5...7 Вт потянет, а может и больше. Трансформатор в "обычных" зарядках (на 2...4 Вт) выполнен, как правило, на сердечнике Е13.

Собственно, выкладываю эту схему больше для коллекции.



Очередная конструкция от "дядюшек Ляо".

JS-04(Short).GIF

Компоненты пронумерованы согласно шелкографии на лицевой стороне платы. Компоненты со звездочкой (*), в основном, резисторы - SMD типа, поэтому и без нумерации.

Я бы не тратил на этот примитив ни времени, ни дискового пространства сервера, если бы все ограничивалось только приведенной схемой. Но в "холодной" части находится немало мест под незапаянные компоненты. Решил вырисовать их всех и вот что получилось:

JS-04(Full).GIF

Транзистор VT1 с резистором R5, а также 3 и 4 выводы оптрона подключены именно так, как на схеме, т.е. непришейкобылехвост. полярность VD7 и С3 перевернул согласно шелкографии. И все равно так схема работать не может в принципе. Подтверждено Старичком. Поэтому и похерил ее красным крестом.

А вот в "холодной" части оказалась довольно любопытная схемка стабилизатора тока с ограничением максимального напряжения. В режиме холостого хода стабилизация выходного напряжения происходит "классическим" способом посредством TL431 и оптрона. Напряжение стабилизации задается делителем R? (подстроечный) и параллельно ему R*, последовательно с R2 в верхнем плече и R* на 47,5 кОм в нижнем. В рабочем режиме, при токе потребления, создающем на R5 падение напряжения больше, чем напряжение отпирания транзистора VT3, R? (подстроечный) и параллельно ему R* в верхнем плече шунтируются переходом коллектор-эмиттер VT3 с последовательно включенным правым верхним R*, приводя к снижению выходного напряжения, а следовательно, к снижению тока через нагрузку.

Лично мне подобные схемы стабилизации тока с использованием p-n-p транзистора, в связке с TL431, не встречались. Кроме того, промелькнула мысль: "А нельзя ли в этом узле использовать германиевый p-n-p транзистор?" С полсотни ГТ115 у меня валяется. Надо будет попробовать.



Прикупил недавно адаптер, позарившись на параметры (позиционируется как 5 В х 3 А (ТРИ Ампера!) в Интернет-магазине.

YL-859.GIF

Когда получил в руки - сомнения возникли сразу же. Типичная китайчатина с непомерно задранными параметрами. Но ладно. Жена попользовалась месячишко для зарядки своего смартфона. А вчера я с его помощью стал заряжать аккумулятор 18650 током 1А (на этот ток настроена плата зарядника). Через полчаса раздался "пшик" и зарядник перестал работать. Разобрал. Увидел угольки (обведено красным): Номиналы R6 и R7, обгоревших до состояния угольков, поставлены по результатам измерений, т.е. совершенно не гарантируются. VT1 также полностью взорвался

Адаптер PCB.JPG

 

Силовой транзистор и стоящий за ним голубой резистор 2,7 Ома - тоже испустили "волшебный дым". Абыдна-а...

Вот, сижу и размышляю: восстанавливать или, используя трансформатор, сваять полностью новый?

 

Сетевой адаптер 12 В х 1 А DSA-12GX на китайской микросхеме ШИМ OB2216AP. Выкладываю потому, что в даташите никаких номиналов не приведено, а схема адаптера точно соответствует приведенной в даташите.

DSA-12GX.GIF.28223262b2e1ad5759668efa0ed1c1ea.GIF

 

 

Схема защиты от переРАЗряда аккумуляторов.

Братец попросил починить портативный офтальмоскоп (оптический прибор для исследования глазного дна) отечественного производства. Лампочка на 3 В питается от трех никелевых аккумуляторов. Аппарат снабжен собственным зарядным устройством.

Поставил новые аккумуляторы, включил - лампочка не засветилась. Пришлось разбирать. В батарейном отсеке вместо 4-го аккумулятора располагалась платка. Навскидку представляющая собой схему схему защиты от глубокого переразряда питающих аккумуляторов, вырисовку которой выкладываю ниже:

5a75e005779fd_.gif.f772c2cd00b619b3b7c91be812e7a567.gif

Интегрального регулятора U1, естественно, нет - я его поставил, только чтобы регулировать входное напряжение. При приведенных на схеме номиналах лампочка зажигается при входном напряжении 3,09 В и гаснет при 2,94 В. При погасшей лампочке ток потребления всей схемы составляет всего 815 мкА. Поскольку офтальмоскоп снабжен выключателем, то этот ток совершенно не критичен.

Думаю, что параметры этой схемы защиты достаточно высоки, чтобы ее можно было рекомендовать для повторения.