Перейти к содержанию
  • записи
    53
  • комментариев
    1 217
  • просмотров
    81 639

Falconist

47 572 просмотра

Уже 100500 раз говорено-переговорено об этом вопросе и всё равно постоянно возникают тупейшие темы по управлению светодиодами. "Юные дарования" почему-то считают, что раз светится - значит, это "лампа" накаливания. Уже и FAQов куча понаписано, и в Интернете море информации - а воз и ныне там...

Повторяю 100501-й раз: СВЕТОДИОДЫ - НЕ ЛАМПОЧКИ!!!!! и требуют к себе совершенно иного подхода.

Для начала давайте повторим, в общем-то, известные сведения о лампах накаливания. Их спираль, выполненная из тугоплавкого вольфрама, представляет собой чисто омическое сопротивление. По закону дедушки Ома (I = U / R) сила тока, проходящего через спираль, прямо пропорциональна приложенному к ней напряжению и обратно пропорциональна сопротивлению спирали. Поскольку у вольфрама температурный коэффициент сопротивления достаточно велик, то при раскаливании (свечении) спирали, ее сопротивление существенно (не менее, чем в десяток раз) увеличивается. В итоге зависимость тока, протекающего через спираль от приложенного к ней напряжения нелинейна. Это позволяет питать лампы, расчитанные, скажем, на 220 В, и 240 вольтами, не особо беспокоясь за их "здоровье". Тем более, что такие колебания напряжения (+\- 10%) считаются допустимыми для сети 220 В. Кстати, в сети бывают единичные всплески напряжения (от молний и других причин), намного больше указанных 10%. Иногда от них лампы перегорают, но в большей части случаев остаются "живыми").

ВАХ ЛН.gif

Зачем я всё это расписываю - будет изложено позже. Теперь о вольт-амперной характеристике (ВАХ) светодиодов. На рисунке представлена ВАХ красного светодиода.

ВАХ LED.png

Для светодиодов другого цвета она будет точно такой же, только сдвинутой вправо.

ВАХ разноцветных LED.png

А теперь сравните ее с ВАХ стабилитрона. Только нужно учесть, что "рабочим" диапазоном для стабилитрона является область обратной ветви (расположенной в левом нижнем квадранте графика).

ВАХ стабилитрона.jpg

Иными словами, ВАХ светодиода (СветоИзлучающего диода = СИД или по английски Light Emitting Diode = LED) практически повторяет ВАХ стабилитрона. Разве что имеет немного больший наклон. Получается, что если прикладывать к СИД (в данном случае - красному) какое-то напряжение, то до значения 1,7...1,8 В он светиться вообще не будет. При увеличении его до 2 В яркость свечения будет номинальной (при номинальном токе = 20 мА). А при увеличении его всего-навсего еще на 0,05 В он тупо сгорит, т.к. ток превысит максимально допустимый. А это составляет ВСЕГО ЛИШЬ 2,5%!!! Кроме того, данный график является усредненным. Для каждого конкретного СИД он может сдвигаться вправо или влево по оси "Х" (напряжений). Т.е., если задать на СИД напряжение 2 В, то одни при нем будут светиться "вполнакала", а другие - могут и сгореть вследствие превышения через них допустимого тока. "Дядюшки Ляо", соединяя СИД в своих дешевых фонариках параллельно, просто ставят их из одной партии, поэтому и параметры ВАХ для использованных СИД оказываются очень близкими. Да еще и плавность наклона "рабочей" ветви позволяет худо-бедно согласовать протекающие через них токи.

Из изложенного следует, что даже если запитать СИД жестко стабилизированным напряжением, всё равно придется либо его подстраивать под конкретные экземпляры, либо мириться или со снижением светоотдачи, или с укорочением времени работоспособности. Этот путь приемлем для тех, кто желает делать "по-китайски". Но мы-то пойдем "взрослым" путем! Он заключается в том, чтобы задать светодиоду(ам) оптимальный для него (них) ТОК. При этом нам будет глубоко начхать на то, какое на СИД упадет напряжение. Оно будет таким, каким позволит быть их ВАХ. Для красных и желтых СИД - примерно 2 В. Для зеленых и синих (и белых тоже!) - примерно 3 В. Указанные значения примерные, и будут несколько различаться для СИД различных производителей (технологий изготовления). Для нас это пока непринципиально.

Наиболее простой путь ограничения тока через СИД - поставить последовательно с ним токоограничительный резистор. Такой способ широко применяется в светодиодных лентах, где они включены последовательно с цепочками из трех (как правило) включенных также последовательно СИД.

СИД-лента.GIF

Просто, но стрёмно. Давайте рассмотрим одну такую цепочку.

Падение напряжения.GIF

Пускай СИД будут белого цвета. На них упадет 3 х 3 = 9 В. На токоограничительном резисторе - 3 В. Для тока через цепочку 20 мА при номинальном напряжении питания = 12 В, его сопротивление должно составлять 150 Ом. А что будет, если мы поставим такую ленту в авто, где напряжение в сети (приблизительно!) будет колебаться от 13,5...14 В (летом при заведенном двигателе) до 11...12 В (зимой, при остановленном двигателе)? На СИДах останется то же падение напряжения = 9 В, а вот на резисторе упадет уже не 3, а 5 В! Следовательно, ток через цепочку возрастет на 67% (до 33 мА). Что для СИДов - "смерти подобно", т.к. приближается к границе максимально допустимого значения. При снижении напряжения светимость СИДов будет стремительно падать. Тоже плохо.

Еще хуже ситуация сложится, если попытаться запитать такую ленту от просто выпрямленного диодным мостом переменного напряжения с 12-вольтового трансформатора. Нужно учесть, что 12 В - это среднее действующее значение переменного тока. Максимальное амплитудное будет в корень из двух (примерно 1,4 раза) больше. Даже если исключить 1,4 В падения на диодах моста, всё равно получится 15,4 В. А значит, в пике ток через цепочку составит 42 мА! Уже больше, чем допустимо. СИДам будет явный гаплык.

Большинство "юных дарований" (и не очень юных), пытаются исключить такую ситуацию, стабилизируя напряжение питания. Однако, импульсные стабилизаторы для них оказываются слишком сложные в повторении, а линейные 3-выводные интегральные стабилизаторы (7812) требуют входного напряжения минимум на 2 В больше, чем стабильное выходное. Т.е., при 14 В на выходе будет нужные 12 В, а при 12 В - всего 10 В, что дает всего 6...7 мА тока через цепочку.

Вот теперь переходим к главному вопросу, ради которого и затевалась вся эта писанина. Какими же средствами можно застабилизировать ток через светодиоды? Желательно - максимально простыми, доступными даже начинающим (несмотря на то, что я неоднократно повторял: "Простота - хуже воровства!"). Однако, еще раз повторю старую и банальную истину: ничего универсального не бывает! Схемотехническое решение обязательно должно адаптироваться под ставящуюся задачу. Поэтому в последующем будет рассматривать два задачи: а) световые эффекты в авто и б) выходной каскад светодиодной светомузыки.

Рассмотрим простейший транзисторный стабилизатор тока.

Простейший СТ.GIF

В минимальном варианте ("А") он состоит из из всего двух деталей: транзистора VT1 с эмиттерным резистором R2. Нагрузка (цепочка из белых СИДов с падением на каждом из них по 3 В, без токоограничительного резистора!) включена между коллектором и шиной питания, а на базу подано опорное напряжение с параметрического стабилизатора на стабилитроне VD1 и балластном резисторе R1. Ток через эмиттерный резистор по закону Ома равен падению напряжения на нем, поделенному на его номинал. Такой же ток по определению протекает между коллектором и эмиттером транзистора и, соответственно, через СИДы. Поскольку транзистор можно рассматривать, как эмиттерный повторитель, то напряжение на эмиттерном резисторе равно напряжению на базе транзистора минус падение на базо-эмиттерном переходе (0,7 В). Т.о., ток через светодиоды можно регулировать либо величиной опорного напряжения на базе, либо номиналом эмиттерного резистора. Входное сопротивление эмиттерного повторителя равно произведению номинала эмиттерного резистора на коэффициент усиления транзистора, поэтому такая простейшая схема годится только для случаев относительно небольшого тока через СИДы. Скажем, в районе 100...200 мА. Если приходится коммутировать мощные, да еще и запараллеленные СИДы, либо достаточно длинную светодиодную ленту, то в качестве транзистора желательно поставить составной транзистор Дарлингтона ("Б"). Коэффициент его усиления равен произведению Ку составляющих его транзисторов. В случае параллельного подключения нескольких цепочек СИДов в каждую из них придется добавлять токовыравнивающие резисторы (R3R5), правда их номинал достаточен в пределах единиц Омов, а в ленте они уже имеются "по жизни".

Для применения такой схемы в авто, где обшей шиной является кузов, придется использовать транзисторы p-n-p проводимости ("А"). Базовое опорное напряжение в этом случае отсчитывается от шины питания.

Авто.GIF

Работа такой схемы ("Б"), обеспечивающей плавное зажигание и гашение СИДов при открывании двери (контакт SA1), показана на ролике.

Данная параметрическая схема, с "аналоговым" управлением, вполне достаточна для применений, не требующих особо стабильного тока, а именно, для авто. Теперь давайте рассмотрим схему источника более стабильного тока а также роль токоограничительных резисторов, встроенных в светодиодную ленту. Правда, должен отметить, что эта схема позволяет регулировать ток только изменением номинала эмиттерного (истокового) резистора, независимо от уровня напряжения, поступающего на управляющий вход ("цифровое" управление). Во всех примерах применены цепочки белых СИДов с падением напряжения на каждом из них по 3 В.

Генераторы тока.gif

 

В простейшем варианте ("А") собственно стабилизатор тока выполнен на регулирующем транзисторе VT2. Напряжение на его базе при наличии управляющего напряжения на входе (левый вывод резистора задается таким, чтобы на его эмиттерном резисторе создавалось падение напряжения, равное 0,7 В, которое приоткрывает дополнительный транзистор VT1, между коллектором и эмиттером которого поддерживается напряжение, обеспечивающее нужный уровень приоткрывания транзистора VT2.

Рассмотрим "бюджет" напряжений в цепочке поддержания стабильного тока через СИДы. На них падает 9 в, на эмиттерном резисторе - 0,7 В и все остальное напряжение (2,3 В) - на регулирующем транзисторе VT2. Т.о., при изменении питающего напряжения (скажем, от 10 В и больше), всё "лишнее" напряжение всё равно упадет между коллектором и эмиттером VT2, а ток в цепи останется на том же уровне.

Если же коммутируется светодиодная лента ("Б"), со встроенными токоограничительными резисторами, то видно, что на них вместо 3 В упадет всего 1,8 В. Это обусловлено наличием т.н. "напряжения насыщения" между коллектором и эмиттером регулирующего транзистора, которое, к сожалению, невозможно "объехать на кривой козе", а значит, максимальной светимости ленты добиться тоже не удастся. Выходом из этой ситуации может быть применение в качестве регулирующего низковольтного полевого транзистора ("В"), имеющего (в отличие от высоковольтных), как правило, очень малое сопротивление канала, в пределах десятка мОм. Падение напряжения на таком малом сопротивлении составляет всего несколько десятков мВ, чем можно пренебречь. При питающем напряжении уже 13 В ("Г") такой стабилизатор обеспечивает номинальный ток.

А что делать, если необходимо всё-таки регулировать яркость СИДов? Да очень просто: применить Широтно-Импульсную Модуляцию (ШИМ) входного напряжения. Т.е., на вход подать либо постоянное входное напряжение (тогда яркость будет максимальной), либо импульсную последовательность с частотой более 400...500 Гц (для исключения стробоскопического эффекта) и изменяющейся скважностью (отношение длительности периода между входными импульсами к длительности этого входного импульса). Чем короче входные импульсы, тем меньше яркость свечения СИДов.

ШИМирование генератора тока.GIF

При этом, в отличие от ламп накаливания, яркость свечения СИДов будет прямо пропорциональной среднему протекающему через них току. При том, что максимальный ток не будет превышать номинального значения.

Яркость от тока.png

Подобным образом можно организовать режим индикации габаритов и стоп-сигнала одними и теми же СИДами красного свечения. Схема генератора ШИМ выходит за рамки данной "статьи" и поэтому здесь не обсуждается. Да хоть банальнейший классический транзисторный мультивибратор! На говоря уже о таймере.

Ну, и наконец, перейдем к светомузыке. Я просто долго и нудно ржу, когда вижу схемы, в которых СИДы питаются каскадами, построенными на транзисторах с общим эмиттером (истоком). Например, вот такую:

Светомузыка.gif

Ведь совершенно очевидно (по крайней мере для меня), что это никаким образом не светомузыка, с плавным режимом свечения СИДов, а просто тупая "мигалка". Три последовательно включенных каскада с ОЭ-ОЭ-ОИ обеспечат режим либо полной отсечки, либо полного насыщения полевого транзистора.

Для данного применения описанные выше схемы, конечно, возможно применить, но коль в исходную схему уже понапихано столько ОУ, то еще 3...4 к существенному усложнению не приведут, а качество работы повысят существенно. Ничего нового по схеме генератора тока на ОУ не скажу, поскольку она известна давным-давно.


 

Принцип ее работы очень похож на описанный выше для двухтранзисторной схемы. ОУ поддерживает падение напряжения на резисторе R2 (а следовательно и ток через него) таким же, как и входное напряжение на неинвертирующем входе. Номинал резистора R2 можно выбрать достаточно малым, чтобы падение напряжения составляло всего 0,1...0,2 В, что позволит спокойно применять светодиодные ленты при практически полной яркости их свечения. Ну, а заодно и применить прецизионные выпрямители на ОУ: http://www.gaw.ru/ht.../funop_13_2.htm . ОУ для данного применения целесообразно применить LM358/LM324. На схеме показано, как лучше "заглушить" неиспользуемый ОУ из одного корпуса LM358 (DA1.1).

ГТ на ОУ.gif

В этой схеме нас совершенно не волнует, какое напряжение будет на затворе полевого транзистора - это "личное дело" ОУ. Главное, чтобы на истоковом резисторе поддерживалось нужное падение напряжения. Кроме того, СИДы можно питать НЕстабилизированным напряжением, прямо с выхода выпрямительного моста с конденсаторным фильтром, а стабилизировать только напряжение питания ОУ. Это существенно снизит токовую нагрузку на стабилизатор напряжения питания. А для схемы стабилизатора тока такой режим - сугубо фиолетовый.

А теперь крепче держитесь за стул! В журнале "Радиолоцман" № 12 за 2015 год, на стр.15-16 описаны "новые" микросхемные стабилизаторы тока для светодиодов BCR420U/BCR421U фирмы "Infineon". Вниманию знатоков, их внутренняя схема!!!

BCR420.PNG

Схема из журнала "Радиомир", 2014, № 11, С.26:

Усовершенствованный ГТ.GIF

Дополнительный диод - германиевый или Шоттки. Схема позволяет существенно (в 2...3 раза) уменьшить падение напряжения на эмиттерном токоизмерительном шунте.

Вот, собственно, и всё, что хотелось бы изложить по этому вопросу. Может быть, что-то запамятовал - так на то и существуют уточняющие вопросы.

Ну и до кучи еще ссылочка на подобную тему: http://forum.cxem.ne...howtopic=134692

49 Комментариев


Рекомендуемые комментарии



Так я об управляющим и говорю. Если его заменить на полевик?

А, вижу, я написал управляющий резистор, я имел в виду управляющий транзистор.

Изменено пользователем _20_
Ссылка на комментарий

@_20_ Напряжение можно поднять добавив диод в схему.Но напряжение на базеVT2 нужно будет немного уменьшить, для этого я поставил R5, он образует делитель совместно с R1. Упс, забыл нагрузку в цепи коллектора VT1 нарисовать/

стабтока.jpg

Изменено пользователем Sstvov
Ссылка на комментарий

@Sstvov

Я немного не понимаю, для чего нужен D1. И для чего нужен R5, разве не достаточно делителя напряжения R4:R2?

@Falconist Температурные характеристики Полевых ранзисторов лучше биполярных?

Ссылка на комментарий

На кремниевом диоде будет примерно 0,7 вольт падение напряжения, и это напряжение стабильно и мало зависит от протекающего тока в отличии от сопротивлений. Это напряжение сложится в напряжением на R2 и будет подано на базу VT2. Если подавать напрямую то это напряжение будет великовато для нормальной работы и его немного нужно убавить, поэтому и стоит делитель R1/R5.

Вы же пользуетесь симулятором, соберите и посмотрите что происходит в схеме.

Ссылка на комментарий

Так, ребята, открывайте свою тему и в ней обсуждайте свои изменения к схеме. Ваши аргументы, как на меня, вполне логичные, но как бы не к данному блогу относящиеся. Можно развить в пристойную схему, но это уже будет ВАША схема.

А мне хватает и собственных разработок, чтобы я примазывался к чужим.

Ссылка на комментарий

Прошу совета как регулировать яркость мощного фито-светодиода 5W Green 7V 250Lm контроллером Attiny13. Есть блок питания с диодным мостом и емкостью на 12В/1А. Что нужно изменить в схеме для решения задачи? Не деградирует ли светодиод от частого включения-выключения питания при плавном регулировании ШИМом? 

ШИМирование генератора тока.GIF

Ссылка на комментарий

Вот только это ютубовского гавно для обладателей только спинного и костного мозга мне в блог, пожалуйста, пихать не надо!

Ссылка на комментарий

Усовершенствованный ГТ.GIFПрошу прощения за беспокойство, помогите разобраться со схемой. Половину  вечера пытался заставить работать её в протеусе. Увы. Нигде не могу найти подобную схему на просторах инета. Спросить более не у кого. Если найдёте минутку, укажите какие-либо начальные значения сопротивлений резисторов для заданного тока, например 20 мА. Заранее благодарен.

Ссылка на комментарий

Статья супер, пусть даже более "100500 раз" толченная.

И хоть "ПРОСТОТА - ХУЖЕ ВОРОВСТВА!!!", но все гениальное, все-таки, предельно простое.

Почерпнул для себя много интересных моментов.

Ссылка на комментарий

Приветствую, кто читает.

А что, веточка завяла ?

Забрел сюда на крик души топикстартера. Полностью солидарен. С другой стороны нельзя у людей отнять право задавать неадекватные вопросы. Да и как говорил вождь - у меня нет для вас других писателей!

Не понял, почему после мощной преамбулы дело свелось к обсуждению милой, но в общем-то весьма узкоприменимой схемы. Хотел бы послушать людей - кто что делает если диодов и числом и током поболее. Моя заморочка - фитолампа на 20-30 3-ваттных LED.  Экспериментирую с двухблочной конструкцией - готовый ИИП 36-42V и импульсный источник тока на 0,3-1,0А.  Поэтому очень интересна идея можно ли все упихать в один флакон, т.е.стабилизировать выходной ток ШИМом высоковольтного ключа. Попадалось упоминание о подобном решении от Старичка, но саму схему найти не удалось.
 

На здешнем сайте долго лазил по форумам по LED, но  к сожалению, не повезло. По большей части то, о чем писал топикстартер !  Если кто знает, подскажите профильный форум, где можно проверить правильность подходов или сменить курс своего LED-драйверостроения. Я не профессионал, но с понятием. 

 

 

Ссылка на комментарий

Откройте тему на форуме, опишите проблему и ожидайте советов. Сюда-то зачем влезли? Эта запись не для обсуждения, а чтобы не топтать клаву, втолковывая "юным дарованиям одно и то же.

Что же касается мощных осветителей - то вот, может, чем поможет: http://cxem.net/pitanie/5-343.php

Ссылка на комментарий

Сожалею, Falconist, если я невольно чем-то помешал.

Я далек от мысли, что моя частная проблема кому-то интересна, чтобы затевать новую тему, коих и так несть числа.  А некоторые подробности привел только для того, чтобы узнать у активистов сайта, к которым безусловно принадлежите и Вы, ссылку на ветку поближе к теме.

Тем не менее благодарю за ссылку - правда, ее я давно изучил, основная тема немного не моя. Стоп-сигнал сделан добротно, но посетила мысль, как соотносятся светотехнические параметры LED-матриц на 60 W и разрешенной для стоп-сигнала ЛН на 21 W. Хотя для профанационного техосмотра это не аргумент.

Еще раз извините !

 

P.S. Если под "юным дарованием"  Вы имели ввиду меня, то я давно пенсионер и тем самым не адресная категория для этой записи.

Ссылка на комментарий

@Rentner , если Ваш вопрос будет интересным - народ к обсуждению подтянется, не сумлевайтесь. А влазить со своей проблемой в чужую, далекую от него тему, считается неэтичным. 

Ссылка на комментарий

Спасибо, форумчане, замечания учел.

Открывать тему рановато - мусора и без меня хватает.

Да и тему с близкими для меня идеями (следящий ИИП) отыскал. Может решусь и вопрос задать,  хотя после пары "желтых карточек"  стремновато.

С уважением,

Ссылка на комментарий

О воин (форумчанин), службою живущий!
Читай Устав (Правила) на сон грядущий.
И утром, ото сна восстав,
читай внимательно Устав (Правила).

Ссылка на комментарий

Юридически да !  Но когда правила непрозрачны для большинства в силу искусственных заградительных свойств, то это не фиксация правового поля а сектантство. Косвенно на это указывают несколько десятков комментариев на 18 тыс. просмотров данного блога. Юные дарования, видно, "построились" и не высовываются.

P.S.  С любопытством прочитал Вашу гипотезу о том, что повышенное АД есть не всегда болезнь сама по себе, а реакция организма на сторонние возмущения. Буду иметь в виду, ибо принимаю разжижители.

С уважением,

Ссылка на комментарий

Присоединяйтесь к обсуждению

Вы публикуете как гость. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Гость
Unfortunately, your content contains terms that we do not allow. Please edit your content to remove the highlighted words below.
Добавить комментарий...

×   Вставлено с форматированием.   Восстановить форматирование

  Разрешено использовать не более 75 эмодзи.

×   Ваша ссылка была автоматически встроена.   Отображать как обычную ссылку

×   Ваш предыдущий контент был восстановлен.   Очистить редактор

×   Вы не можете вставлять изображения напрямую. Загружайте или вставляйте изображения по ссылке.

Загрузка...
×
×
  • Создать...