Поиск по сайту

Результаты поиска по тегам 'ШИМ'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип публикаций


Категории и разделы

  • Вопрос-Ответ. Для начинающих
    • Песочница (Q&A)
    • Дайте схему!
    • Школьникам и студентам
    • Начинающим
    • Паяльник TV
    • Обсуждение материалов с сайта
  • Радиоэлектроника для профессионалов
    • Световые эффекты и LED
    • Роботы и модели на ДУ-управлении
    • Автоматика
    • Самодельные устройства к компьютеру
    • Программное обеспечение
    • Автомобильная электроника
    • Системы охраны и наблюдения. Личная безопасность
    • Питание
    • Электрика
    • Промышленная электроника
    • Ремонт
    • Металлоискатели
    • Измерительная техника
    • Мастерская радиолюбителя
    • Сотовая связь
    • Спутниковое ТВ
    • КВ и УКВ радиосвязь
    • Жучки
    • Телефония и фрикинг
    • Высокое напряжение
    • Идеи и технологии будущего
    • Справочная радиоэлементов
    • Литература
    • Разное
  • Аудио
    • FAQ, Технологии и компоненты
    • Для начинающих
    • Источники звука
    • Предусилители, темброблоки, фильтры
    • Питание аудио аппаратуры
    • Усилители мощности
    • Акустические системы
    • Авто-аудио
    • Ламповая техника
    • Гитарное оборудование
    • Прочее
  • Микроконтроллеры
    • МК для начинающих
    • AVR
    • PIC
    • STM32
    • Arduino и Raspberry Pi
    • ПЛИС
    • Другие микроконтроллеры и семейства
    • Алгоритмы
    • Программаторы и отладочные модули
    • Периферия и внешние устройства
    • Разное
  • Товары и услуги
    • Коммерческие предложения
    • Продам-Отдам, Услуги
    • Куплю
    • Уголок потребителя
    • Вакансии и разовая работа
    • Наши обзоры и тесты
  • Разное
    • Конкурсы сайта с призами
    • Сайт Паяльник и форум
    • Курилка
    • Технический английский (English)
    • Наши проекты для Android и Web
    • FAQ (Архив)
    • Личные блоги
    • Корзина
    • Вопросы с VK
  • ATX->ЛБП Переделки
  • Юмор в youtube Киловольты юмора
  • Надежность и группы продавцов Радиолюбительская доска объявлений exDIY
  • разные темы Переделки

Блоги

Нет результатов для отображения.

Нет результатов для отображения.

Местоположения

  • Пользователи форума

Группа


ICQ


Skype


Интересы


Город


Сфера радиоэлектроники


Оборудование

Найдено 99 результатов

  1. Atmega32u4 частота ШИМ

    Всех приветствую! Сам я программирую на стандартной среде ардуинки, и в одном проекте потребовалось увеличить частоту ШИМ на портах 5,6,9,10,11,13 Arduino Micro. На этой ардуино стоит Atmega32u4, есть тут знатоки avr? Как повысить частоту на этих пинах?
  2. Если какая-нибудь профессиональная литература на русском, в которой приводились бы сведения о преимуществах симметричной ШИМ, областях применения?
  3. Здравствуйте, дорогие форумчане, хочу задать вопрос знающим людям. Нашел в интернете схему управления вентилятором при помощи драйвера вот по схеме приведенной на рисунке. Что про нее скажете, какие замечания? Сколькими вентиляторами можно управлять по такой схеме взяв в расчет то что сила тока одного примерно 120-200 мА ? Ваше мнение очень важно, так как я хочу транзисторы заказать в китае, а ждать месяц, чтобы в итоге спаять нерабочее барахло тот еще резон... Заранее спасибо
  4. Димирование PT4115

    Помогите с такой задачей. Нужно реализовать диммирование драйвера PT4115 с гальванической развязкой от шим сигнала 24В Пробовал через оптопару - в результате получаем инвертированное диммирование. Как это исправить?
  5. Tl494 имеет два компаратора, можно ли схему использовать как компаратор с гистерезисом? Задача такая чтоб ШИМ появлялся при напряжении 11.0 вольт и пропадал при 10.8 в. Причем не плавно нарастал и исчезал, а есть или нет. Если есть такая возможность у схемы подскажите примерную обвязку.
  6. Надумал собрать регулятор оборотов кулера. Пригодится и радиатор охлаждать на БП и в компе можно применить и пр. Перелопатил почти весь инет, схем разных огромное количество, но так и не нашел именно того, что хотел. Все схемы можно разделить на 3 большие группы: 1) кулер включается на полную при достижении нижнего порога температуры, 2) кулер включается на низкую скорость при нижнем пороге и переключается на полную скорость при верхнем пороге, 3) плавное увеличение напряжения начиная от нижнего порога. Ну и метод управления либо аналоговый, либо ШИМ. В различных комбинациях и на разной элементной базе вроде схем полно, но, гулять так гулять... Хотелось бы регулировку шим и что бы напряжение на кулер подавалось только начиная с определенного уровня (например 7 вольт). Зачем на кулере напряжение от 0 до 6 вольт если он не в состоянии вращаться при таком низком напряжении. Ну и совсем чудесно было бы что бы в первоначальный момент начала вращения (6-7 вольт) на кулер подавалось кратковременно (1-2 сек) полное напряжение (для гарантированного запуска). Вот вариант близкий (включение скачком) (график 2), но не шим (ну и полтора корпуса (или 3\4 если 084, 324 и пр) как-то не по феншую...): Вот неплохой вроде бы вариант с шим, но напряжение на кулер подается начиная от нуля. Встречались схемы на таймере 555, но тоже не то что хотелось. Вот тут схема на 555 http://cxem.net/comp/comp121.php , но напряжение на кулер идет от нуля вольт, да и три резистора параллельно на выходе заставляют засомневаться в работоспособности схемы. Пару раз попадались высказывания типа: это элементарно можно собрать на 494, но готовой схемы так и не нашел. Собственно вопрос: что изменить в последней схеме (так как она наиболее близка к желаемому), что бы напряжение на кулер подавалось начиная от 6-7 вольт. Насколько я понимаю: пороговый элемент нужно где-то добавить, то ли стабилитрон, то ли на 431 что-то. Вроде пришла мысль поставить стабилитрон на 7 вольт на выход ОР4, но стабилитрон работает с точностью до наоборот от того, что хочется: малое напряжение пропускает, а от определенного уровня срезает. Нужно наоборот: малое гасить, а от 7 вольт пропускать все. Подскажите господа что изменить в этой схеме (либо предложите другую) для получения желаемого результата. (скачок в начале включения - это хотелка. но не обязательная.)
  7. Есть контроллер для светодиодных лент с частотой ШИМ около 2КГц, при яркости отличной от 100% есть мерцания видные ч\з камеру телефона. Т.к. этот контроллер будет управлять основным освещением в детской, то хотелось бы увеличить частоту ШИМ с возможностью регулировки яркости освещения. Есть ШИМ контроллер для управления скоростью вращения мотора на основе таймера 555, который многие используют в качестве регулятора LED освещения, частота у него примерно 22,7КГц, но управляется он переменным резистором. Мерцания во всём диапазоне у него нет. Схема у него примерно такая (переменный резистор только на 100КОм, не хватает стабилизатора напряжения и кондёров): Есть у кого мысли как объединить эти 2 контроллера или какой-то другой способ увеличения частоты? Другой основной контроллер не предлагать. Пытался Атмегой 328й считывать ШИМ, но частота в 2КГц для неё предельная – значения прыгают, особенно на низкой яркости. Хотел потом цифровым потенциометром управлять 2м контроллером. Пробовал RC фильтрами сгладить, но мерцание так и не поборол. Частоты замерял осциллографом.
  8. Здравствуйте. Разбирался с работой tl494 в схемах компьютерных БП, и возник момент, который не могу понять. Если отключить все усилители ошибки, то на базы встроенных выходных транзисторов будут подаваться импульсы со скважностью около 45%, за счет deadtime компаратора. То есть в момент его срабатывания оба транзистора будут закрыты. А во всех схемах БП эти транзисторы стоят по схеме с общим эмиттером, т.е. инвертируют сигнал, и на коллекторах обоих транзисторов будет максимум напряжения, скажем, 12В. Получается, что в момент deadtime-а мы этими 12В открываем оба внешних транзистора раскачки (С945), что по сути должно вызвать сквозной ток. Если я правильно рассуждаю, почему так сделано и работает? Ниже типичная схема БП. MIcroLab M-ATX-360 схема.pdf
  9. Всем доброго дня, Начинаю изучать STM32. Запустил пример http://www.avislab.com/blog/stm32-timer-pwm/ в котором при нажатии двух кнопок увеличивается и уменьшается яркость на ножке PB6 все работает. Хотел переключить ШИМ на другую ножку в 28 строке поменял GPIO_Pin_6 на GPIO_Pin_7 переключил светодиод на PB7 код не работает. Подскажите что я не правильно делаю?
  10. Всем привет! Пишу диплом, на тему импульсных источников питания. Один из разделов это анализ вариантов преобразования напряжения для питания систем управления электроприводом. Необходимо рассмотреть три варианта преобразований: 1. Преобразование AC/DC 220/15V, затем 15V в 5V(DC) 2. Преобразование AC/DC 220/5V, затем 5V в 15V (DC) 3. Использование импульсного источника питания с различным выходным напряжением. Определить какой вариант преобразований эффективней в использовании, и как влияет паразитная емкостная связь. Подскажите пожалуйста какие-нибудь книги или статьи,автора по этим темам. Сам я нашел какую-то информацию, но ее очень мало, а книгу всего одну "Импульсные источники питания от А до Z" Санджай М. Благодарю.
  11. Проблема с ШИМ

    Есть вот такой фрагмент кода отвечающий за ШИМ в программе управления BLDC. { TCCR0A |= (1 << COM0A1)|(0 << COM0A0)| // Сброс вывода OC0A при совпадении (1 << COM0B1)|(0 << COM0B0)| // Сброс вывода OC0B при совпадении (1 << WGM01)|(1 << WGM00); // Режим Fast PWM TCCR0B |= (1 << CS00); // Предделитель CLK/1 TCCR2A |= (1 << COM2B1)|(0 << COM2B0)| // Сброс вывода OC2B при совпадении (1 << WGM01)|(1 << WGM00); // Режим Fast PWM TCCR2B |= (1 << CS00); // // Предделитель CLK/1 PCMSK0 |= (1 << PCINT2)|(1 << PCINT1)|(1 << PCINT0); // Активируем входы внешних прерываний PCICR |= (1 << PCIE0); // Разрешаем прерывание по изменению состояния порта B ADMUX |= (1 << MUX1)|(1 << MUX0); // Вход ADC3 ADCSRA |= (1 << ADEN) | (1 << ADPS1); // Разрешаем АЦП, предделитель на 4 DDRC |= (1 << PC2)|(1 << PC1)|(1 << PC0); // Порт С - выход(светодиоды) PORTC &= ~(1 << PC2)|(1 << PC1)|(1 << PC0); DDRB |= (1 << PB2)|(1 << PB1)|(1 << PB0); // Кратковреммено подаем лог.1 на входы датчиков PORTB |= (1 << PB2)|(1 << PB1)|(1 << PB0); // для первоначального запуска двигателя PORTB &= ~(1 << PB2)|(1 << PB1)|(1 << PB0); DDRB = 0x00; // Порт B - вход sei(); // Глобально разрешаем прерывания DDRD = 0xFF; // Порт D - выход программа работает но двигатель пищит что очень напрягает нервы, я так понимаю что писк происходит из-за низкой частоты ШИМ. Проект собран на AVR Atmega48 с кварцем на 16МГц. Как поднять частоту ШИМ (в программировании я не силен но стараюсь разобраться, данный отрывок программы брался из интернета и как он работает я понимаю хреновато)
  12. Хочу понять суть и смысл цепи обратной связи у TL494. Объясните на пальцах, как первокласснику. 1. Зачем она нужна и может ли шим работать без неё? 2. Если не сложно, накидайте словами простую схему с использованием обратки у ШИМа в инверторе УМЗЧ к примеру. Только не кидайтесь бананами. Нет у меня желания курить гугл, вычитывать и вдумываться в заумные радиотехнические термины.
  13. Здравствуйте! Хочу сделать программную регулировку контрастности для дисплей 1602. МК у меня atmega8. В эмуляторе не видно результата по этому думаю как плату разводить. Я перечитал много тем но толком не нашел ответ. Мне нужно от 5 вольт с помощью ШИМ регулировать напряжение на дисплее от 0 до 5В. Для сглаживая я хотел использовать RC фильтр, но видимо в простом варианте это не подойдет судя по ответам на других форумах. Встречал предложения сделать подряд несколько фильтров, использовать транзистор, добавить ОУ, использовать инвертор напряжения на двух диодах и двух конденсаторах. У меня есть парочка LM358. Решил остановится на этом варианте. Если я выход фильтра подключу на положительный вход ОУ а отрицательный соединю с выходом ОУ - я избавлюсь от неизвестности сопротивления нагрузки. МК работает на частоте 8MHz ШИМ 31250Hz. Нашел формулу расчета цепочки. R = 1/(2 * 3.14 * 31250Hz * 1nF) = 5k. Кто нибудь делал такую регулировку? Этого достаточно? Или можно выкинуть ОУ? Или лучше сделать два фильтра подряд? Тогда как расчитывать номиналы?
  14. Не работает ШИМ на PIC

    Имеется микроконтроллер dsPIC30F5011. Хочу реализовать на нём ШИМ через Output Compare Module, так как у этого модуля есть как раз режим PWM. Всё проинициализировал, задал период и коэффициент заполнения ШИМ (duty cycle - 50%), выбрал Timer2. На соответствующей ноге тыкаюсь осциллографом, ничего нет. Не могу понять в чём проблема. Вроде по даташиту настроил правильно. #define PERIOD_PWM 12484 #define PERIOD_PWM_div2 6242 WriteTimer2 (0); OpenTimer2 (T2_ON & T2_GATE_OFF & T2_IDLE_STOP & T2_PS_1_8 & T2_32BIT_MODE_OFF & T2_SOURCE_INT, PERIOD_PWM); ConfigIntTimer2 (T2_INT_PRIOR_5 & T2_INT_ON); OpenOC3(OC_IDLE_STOP & OC_TIMER2_SRC & OC_PWM_FAULT_PIN_ENABLE, PERIOD_PWM, PERIOD_PWM_div2); ConfigIntOC3(OC_INT_PRIOR_0 & OC_INT_ON); void __attribute__((interrupt, auto_psv)) _T2Interrupt(void) { IFS0bits.T2IF = 0; // Clear Timer interrupt flag Nop(); } void __attribute__((interrupt, auto_psv)) _OC3Interrupt(void) { IFS1bits.OC3IF = 0; // Clear interrupt flag } dsPic30F5011-5013.pdf
  15. Увидел такую схему (на ютуб) шим регулятора напряжения. скажите, чтобы использовать её как регулятор оборотов моторчика на +24V, надо что то доработать? читал коменты под видео, пишут что 555 горит при подключении моторчика.
  16. Добрый день! В преобразователе частоты ENDA E100 0.75 кВт вылетела микросхема ШИМ на плате питания, возможности прочитать маркировку нет. 8 ножек, дип корпус , последнее читаемое или М65 или 165 Подскажите какая скорее всего это микросхема, спасибо.
  17. китайские AC/DC

    ПОМОГИТЕ! Заказал на АЛИ блок питания 24v! при первом включении БАХ! ШИМ затерт, но думаю это NCP1200P60(вроде бы мал-мала подходит), НО НЕ СТАРТУЕТ! Hv-290v Vcc-10.6v OUTPUT-0! на выходе блока питания вместо 24 v - 2.5v! ВОПРОС - ЧТО БЫ ЭТО ЗНАЧИЛО?!
  18. Прошу помощи сообщества в решении такой проблемы. Имеем Attiny13 задачей которой стоит формирование ШИМ сигнала, скважность задаём состояние входов PB4 PB3 PB2. Загвоздка в том, что не могу заставить тиньку сменить скважность, несмотря на то, что на прерывание по состоянию входов реагирует, значения в OCR0A заносит. Маленькое замечание в железе не делал, только в Proteus. Код: #define F_CPU 9600000 #include <avr/io.h> #include <avr/eeprom.h> #include <avr/interrupt.h> volatile bool SetMode_flag = false; volatile char Select_Mode = 0; //------------------------------------------------- void PWM_init() { //Порты PB0 и PB1 устанавливаем на выход, остальные на вход DDRB = 0b00000011; //Входные порты PINB0 и PINB1 в HIGH, остальные в Pull-UP PORTB = 0b00111111; //Разрешаем прерывания PCINT1 - по изменению вывода GIMSK |= (1<<PCIE); //Накладываем маску на выводы PCMSK |= (1<<PINB4) |(1<<PINB3) |(1<<PINB2); //Запрещаем все прерывания пo совпадению и переполнению TIMSK0 = 0x00; //Устанавливаем режим работы таймера в режиме ШИМ с фазовой коррекцией TCCR0A |= (1<<COM0A1) |(1<<COM0B1) |(0<<WGM01) |(1<<WGM00); TCCR0B |= (1<WGM02); //Предделитель частоты уставливаем clk\1024 или приблизительно 18Гц // Fclk_I/O //Fpcpwm = -------- (N предделитель 1, 8, 64, 256, 1024) // N *510 TCCR0B |= (1<<CS02) |(0<<CS01) |(1<<CS00); //Обнуляем счётный регистр TCNT0 = 0x00; } //------------------------------------------------- ISR (PCINT0_vect) { SetMode_flag = true; // Устанавливаем флаг события Select_Mode = (PINB >> 2); //Сохраняем значение со сдвигом младших разрядов } //------------------------------------------------- int main(void) { PWM_init(); sei(); while (1) { if (SetMode_flag) { switch ( Select_Mode ) { case 0: OCR0A = 0; break; // ШИМ выключен case 1: OCR0A = 40; break; //Скважность 15% case 2: OCR0A = 80; break; //Скважность 30% case 3: OCR0A = 120; break; //Скважность 45% case 4: OCR0A = 150; break; //Скважность 60% case 5: OCR0A = 180; break; //Скважность 75% case 6: OCR0A = 210; break; //Скважность 90% case 7: OCR0A = 255; break; //Включен постоянно default: break; } SetMode_flag = false; //Сбрасывем флаг } } } main.cpp PWM neew.pdsprj
  19. Доброго времени суток. Имеется: 1. RGB LED лента 12 метров, 11,4вт/м. 2.Импульсный блок питания JC12-240-12. Входное напряжение 170-240В, выходное 10-15В (регулируется), 20А. 3. китайский LED - контроллер, собранный на ШИМ регуляторе LM2576S - 3.3. Управление осуществляется через приложение, подключение - по WiFi. При подключении ленты через контроллер - блок питания начинает сильно пищать и заметно нагреваться. Если снизить яркость - писк становится тише. Залил дроссель эпоксидкой - не помогло. Помимо дросселя в БП установлены трансформатор и две катушки индуктивности. Кажется, этот ансамбль и издает этот противный писк. Пробовал добавить на выход БП керамические конденсаторы разной емкости (47 пФ, 47 нФ, 10пФ и т.д.) - не дало никакого результата. Как я понимаю это проблема возникает именно из-за ШИМ модуляции. и частота с которой пищит БП и есть частота работы ШИМ. Если подключать ленту напрямую - никакого писка нет. без нагрузки БП также ведет себя тихо. Подскажите, как проще всего избавиться от этого писка?
  20. Этот ШИМ генератор мне предоставил на обзор магазин ICstation (ссылка на генератор) Фото генератора. Что может этот генератор? Взглянем на параметры. Рабочее напряжение: 3.3 - 30V; Частота генерации: 1Hz - 150KHz; Точность генерации частоты: 2%; Мощность нагрузки: 5…30mА; Амплитуда выходного сигнала равна напряжению питания; Температура окружающей среды: -20 … +70 °С. На дисплей можно вывести только 2 числа по 3 цифры в каждом. В нижней строке отображается скважность ШИМ в процентах, а в верхней – частота. Частота выводится на дисплей по следующим правилам: XXX, шаг в 1Гц, в диапазоне 1 – 999Гц; X.XX, шаг в 0.01кГц, в диапазоне 1.00 - 9.99кГц; XX.X, шаг в 0.1кГц; в диапазоне 10.0 - 99.9кГц; X.X.X, шаг в 1 кГц; в диапазоне 100 - 150 кГц. Дисплей управляется микросхемой HT1621B, дисплей универсальный, на нем имеются символы, необходимые для построения термометра, гигрометра, вольтметра, амперметра и ваттметра, но в нашем случае они не используются. Дисплей имеет яркую синюю подсветку. К слову, замечу, что дисплей на моем генераторе оказался потертым, будто его откуда-то сняли. Так же отсутствовала защитная пленка на дисплее. Главной микросхемой генератора является микроконтроллер STM8S003F3P6. И поскольку этот микроконтроллер имеет EEPROM память, то настройки сохраняются при выключении. Управлять генератором можно двумя способами: кнопками и по UART. С кнопками всё ясно, одна пара кнопок управляет частотой, вторая скважностью. А вот с UART всё намного интереснее. Обмен данными должен происходить со следующими параметрами: 9600 bps Data bits: 8 Stop bit: 1 Check digit: none Flow control: none Для того что бы установить частоту генерации, необходимо отправить частоту так, как она отображается на дисплее прибавив перед значением частоты букву F. Например, для установки частоты в 100 Гц необходимо отправить F100, для 105 кГц - F1.0.5, для 10.5 кГц - F10.5 и так далее. Для установки скважности необходимо отправить трехзначное число скважности добавив перед ним букву D . Например, D050, D100, D001. Что бы прочитать установленные параметры, необходимо отправить слово "read". Если отправлена верная команда, то генератор ответит DOWN, если ошибочная – FALL. Но есть одно НО, я так и не смог настроить работу с генератором через UART. Я решил проверить генератор при помощи логического анализатора. Вот что получилось. Частота 1 Гц, скважность 1%. Как видим погрешность пока небольшая. Частота 1 Гц, скважность 50%. Частота 1 Гц, скважность 99%. Частота 1 кГц, скважность 1%. Частота 1 кГц, скважность 50%. Частота 1 кГц, скважность 99%. Тут мы видим, что при установленных 99% скважности на самом деле заполнение составляет 100%. Частота 1 кГц, скважность 91%. Я начал снижать скважность, и вплоть до 92% заполнение составляло 100%, и только при 91% ситуация исправляется. Частота 50 кГц, скважность 1%. Как видим что тут всего 0,2% вместо 1%. Частота 50 кГц, скважность 50%. Здесь отличается на -1%. Частота 50 кГц, скважность 99%. И тут снова отклонение -1%. Частота 100 кГц, скважность 1%. А вот тут ещё ничего нет. Частота 100 кГц, скважность 2%. А при 2% сигнал появляется, но на самом деле заполнение 0,4%. Частота 100 кГц, скважность 50%. Отклонение почти -2%. Частота 100 кГц, скважность 99%. И тут почти -1%. Частота 150 кГц, скважность 1%. Снова нет сигнала. Частота 150 Гц, скважность 3%. И появляется сигнал только при 3%, но заполнение составляет 0,6%. Частота 150 кГц, скважность 50%. Но на самом деле заполнение 46,5%, на -3,5% уже отличие. Частота 150 кГц, скважность 99%. И тут отличается, но всего -1,5%. Выборка достаточно грубая, но на этом исследования не закончены. Я решил измерить скважность при различном заполнении (шаг 5%) и на различных частотах (шаг 25000 Гц) и занести их в таблицу. Верхняя строка содержит частоту, я выбрал шаг в 25 кГц, левый столбец – установленная скважность, в остальных ячейках замеренная скважность. В этой таблице указана разница между установленной и замеренной скважности. Чем выше частота, тем больше отклонение между установленным и замеренным значениями. Так же замеренная скважность всегда ниже установленной, но строгой закономерности в отклонении не наблюдается. Так же я проверил соответствие установленной и замеренной частоты. Результат так же занес в таблицу. Заявленная точность в 2% от установленной частоты соблюдается. В итоге, если вам необходимо установить точные значения генерации, то проверяйте установленные параметры перед использованием генератора. Если же необходимо просто управлять яркостью светодиода или скоростью вращения двигателя, то этот генератор без проблем подойдет для этих задач.
  21. Здраствуйте. Мне нужен шим регулятор на полуавтомат , двигатель подачи проволоки напряжение 80v 1.5А 30W. Может кто подскажет какую то несложную схему. Буду очень благадарен.
  22. Помогите собрать схему Преобразователь код-ШИМ. На входе 2-х разрядный код, который определяет коэффициент заполнения по следующему правилу: 00 0% 01 33% 10 66% 11 100% Сделал делитель частоты на 3 на основе двух D-триггеров, но не могу додуматься, как проссумировать сигналы...
  23. Здравствуйте, давно читаю форум, зарегистрировался только сегодня, хочу попросить советов у вас для очередной работы. 1. Мощность 30 кВт, напряжение 2 кВт, 15 А ток. 2. Планирую полумост; вопросы: 1. Шим контроллер должен поддерживать регулировку к.заполнения, с заданным dU/dT, это планирую делать с МК, потому что в случае пробоя быстроействуюий ключ даст сигнал об остановке преобразователя, потом будет строб, потом пуск источника, при этом он должен выйти на напряжение на котором произошла остановка работы с более коротким (быстрее) dU/dT, это можно реализовать с МК, завести сигнал с датчика КЗ. При этом нужна регулировка напряжение и регулировка уставки максимального тока(в приципе в схеме защиты от КЗ она уже реализована) 2. Полумоста хватит на такую мощность? 3. Можно ли с помощью софта рассчитать трансформатор на такие характеристики? Lite_calcIT не осилил такую задачу. 4. 1 трансформатор или набор модулей соединенных последовательно для обеспечения нужного напряжения? 5. Ткните носом в краткую но понятную ветку/статью о резонансных и квазирезонансных и других типах схем, т.к. я недостаточно в этом подкован, немного другие интересы, однако. Заранее спасибо!
  24. Управление светодиодами

    Уже 100500 раз говорено-переговорено об этом вопросе и всё равно постоянно возникают тупейшие темы по управлению светодиодами. "Юные дарования" почему-то считают, что раз светится - значит, это "лампа" накаливания. Уже и FAQов куча понаписано, и в Интернете море информации - а воз и ныне там... Повторяю 100501-й раз: СВЕТОДИОДЫ - НЕ ЛАМПОЧКИ!!!!! и требуют к себе совершенно иного подхода. Для начала давайте повторим, в общем-то, известные сведения о лампах накаливания. Их спираль, выполненная из тугоплавкого вольфрама, представляет собой чисто омическое сопротивление. По закону дедушки Ома (I = U / R) сила тока, проходящего через спираль, прямо пропорциональна приложенному к ней напряжению и обратно пропорциональна сопротивлению спирали. Поскольку у вольфрама температурный коэффициент сопротивления достаточно велик, то при раскаливании (свечении) спирали, ее сопротивление существенно (не менее, чем в десяток раз) увеличивается. В итоге зависимость тока, протекающего через спираль от приложенного к ней напряжения нелинейна. Это позволяет питать лампы, расчитанные, скажем, на 220 В, и 240 вольтами, не особо беспокоясь за их "здоровье". Тем более, что такие колебания напряжения (+\- 10%) считаются допустимыми для сети 220 В. Кстати, в сети бывают единичные всплески напряжения (от молний и других причин), намного больше указанных 10%. Иногда от них лампы перегорают, но в большей части случаев остаются "живыми"). Зачем я всё это расписываю - будет изложено позже. Теперь о вольт-амперной характеристике (ВАХ) светодиодов. На рисунке представлена ВАХ красного светодиода. Для светодиодов другого цвета она будет точно такой же, только сдвинутой вправо. А теперь сравните ее с ВАХ стабилитрона. Только нужно учесть, что "рабочим" диапазоном для стабилитрона является область обратной ветви (расположенной в левом нижнем квадранте графика). Иными словами, ВАХ светодиода (СветоИзлучающего диода = СИД или по английски Light Emitting Diode = LED) практически повторяет ВАХ стабилитрона. Разве что имеет немного больший наклон. Получается, что если прикладывать к СИД (в данном случае - красному) какое-то напряжение, то до значения 1,7...1,8 В он светиться вообще не будет. При увеличении его до 2 В яркость свечения будет номинальной (при номинальном токе = 20 мА). А при увеличении его всего-навсего еще на 0,05 В он тупо сгорит, т.к. ток превысит максимально допустимый. А это составляет ВСЕГО ЛИШЬ 2,5%!!! Кроме того, данный график является усредненным. Для каждого конкретного СИД он может сдвигаться вправо или влево по оси "Х" (напряжений). Т.е., если задать на СИД напряжение 2 В, то одни при нем будут светиться "вполнакала", а другие - могут и сгореть вследствие превышения через них допустимого тока. "Дядюшки Ляо", соединяя СИД в своих дешевых фонариках параллельно, просто ставят их из одной партии, поэтому и параметры ВАХ для использованных СИД оказываются очень близкими. Да еще и плавность наклона "рабочей" ветви позволяет худо-бедно согласовать протекающие через них токи. Из изложенного следует, что даже если запитать СИД жестко стабилизированным напряжением, всё равно придется либо его подстраивать под конкретные экземпляры, либо мириться или со снижением светоотдачи, или с укорочением времени работоспособности. Этот путь приемлем для тех, кто желает делать "по-китайски". Но мы-то пойдем "взрослым" путем! Он заключается в том, чтобы задать светодиоду(ам) оптимальный для него (них) ТОК. При этом нам будет глубоко начхать на то, какое на СИД упадет напряжение. Оно будет таким, каким позволит быть их ВАХ. Для красных и желтых СИД - примерно 2 В. Для зеленых и синих (и белых тоже!) - примерно 3 В. Указанные значения примерные, и будут несколько различаться для СИД различных производителей (технологий изготовления). Для нас это пока непринципиально. Наиболее простой путь ограничения тока через СИД - поставить последовательно с ним токоограничительный резистор. Такой способ широко применяется в светодиодных лентах, где они включены последовательно с цепочками из трех (как правило) включенных также последовательно СИД. Просто, но стрёмно. Давайте рассмотрим одну такую цепочку. Пускай СИД будут белого цвета. На них упадет 3 х 3 = 9 В. На токоограничительном резисторе - 3 В. Для тока через цепочку 20 мА при номинальном напряжении питания = 12 В, его сопротивление должно составлять 150 Ом. А что будет, если мы поставим такую ленту в авто, где напряжение в сети (приблизительно!) будет колебаться от 13,5...14 В (летом при заведенном двигателе) до 11...12 В (зимой, при остановленном двигателе)? На СИДах останется то же падение напряжения = 9 В, а вот на резисторе упадет уже не 3, а 5 В! Следовательно, ток через цепочку возрастет на 67% (до 33 мА). Что для СИДов - "смерти подобно", т.к. приближается к границе максимально допустимого значения. При снижении напряжения светимость СИДов будет стремительно падать. Тоже плохо. Еще хуже ситуация сложится, если попытаться запитать такую ленту от просто выпрямленного диодным мостом переменного напряжения с 12-вольтового трансформатора. Нужно учесть, что 12 В - это среднее действующее значение переменного тока. Максимальное амплитудное будет в корень из двух (примерно 1,4 раза) больше. Даже если исключить 1,4 В падения на диодах моста, всё равно получится 15,4 В. А значит, в пике ток через цепочку составит 42 мА! Уже больше, чем допустимо. СИДам будет явный гаплык. Большинство "юных дарований" (и не очень юных), пытаются исключить такую ситуацию, стабилизируя напряжение питания. Однако, импульсные стабилизаторы для них оказываются слишком сложные в повторении, а линейные 3-выводные интегральные стабилизаторы (7812) требуют входного напряжения минимум на 2 В больше, чем стабильное выходное. Т.е., при 14 В на выходе будет нужные 12 В, а при 12 В - всего 10 В, что дает всего 6...7 мА тока через цепочку. Вот теперь переходим к главному вопросу, ради которого и затевалась вся эта писанина. Какими же средствами можно застабилизировать ток через светодиоды? Желательно - максимально простыми, доступными даже начинающим (несмотря на то, что я неоднократно повторял: "Простота - хуже воровства!"). Однако, еще раз повторю старую и банальную истину: ничего универсального не бывает! Схемотехническое решение обязательно должно адаптироваться под ставящуюся задачу. Поэтому в последующем будет рассматривать два задачи: а) световые эффекты в авто и б) выходной каскад светодиодной светомузыки. Рассмотрим простейший транзисторный стабилизатор тока. В минимальном варианте ("А") он состоит из из всего двух деталей: транзистора VT1 с эмиттерным резистором R2. Нагрузка (цепочка из белых СИДов с падением на каждом из них по 3 В, без токоограничительного резистора!) включена между коллектором и шиной питания, а на базу подано опорное напряжение с параметрического стабилизатора на стабилитроне VD1 и балластном резисторе R1. Ток через эмиттерный резистор по закону Ома равен падению напряжения на нем, поделенному на его номинал. Такой же ток по определению протекает между коллектором и эмиттером транзистора и, соответственно, через СИДы. Поскольку транзистор можно рассматривать, как эмиттерный повторитель, то напряжение на эмиттерном резисторе равно напряжению на базе транзистора минус падение на базо-эмиттерном переходе (0,7 В). Т.о., ток через светодиоды можно регулировать либо величиной опорного напряжения на базе, либо номиналом эмиттерного резистора. Входное сопротивление эмиттерного повторителя равно произведению номинала эмиттерного резистора на коэффициент усиления транзистора, поэтому такая простейшая схема годится только для случаев относительно небольшого тока через СИДы. Скажем, в районе 100...200 мА. Если приходится коммутировать мощные, да еще и запараллеленные СИДы, либо достаточно длинную светодиодную ленту, то в качестве транзистора желательно поставить составной транзистор Дарлингтона ("Б"). Коэффициент его усиления равен произведению Ку составляющих его транзисторов. В случае параллельного подключения нескольких цепочек СИДов в каждую из них придется добавлять токовыравнивающие резисторы (R3R5), правда их номинал достаточен в пределах единиц Омов, а в ленте они уже имеются "по жизни". Для применения такой схемы в авто, где обшей шиной является кузов, придется использовать транзисторы p-n-p проводимости ("А"). Базовое опорное напряжение в этом случае отсчитывается от шины питания. Работа такой схемы ("Б"), обеспечивающей плавное зажигание и гашение СИДов при открывании двери (контакт SA1), показана на ролике. Данная параметрическая схема, с "аналоговым" управлением, вполне достаточна для применений, не требующих особо стабильного тока, а именно, для авто. Теперь давайте рассмотрим схему источника более стабильного тока а также роль токоограничительных резисторов, встроенных в светодиодную ленту. Правда, должен отметить, что эта схема позволяет регулировать ток только изменением номинала эмиттерного (истокового) резистора, независимо от уровня напряжения, поступающего на управляющий вход ("цифровое" управление). Во всех примерах применены цепочки белых СИДов с падением напряжения на каждом из них по 3 В. В простейшем варианте ("А") собственно стабилизатор тока выполнен на регулирующем транзисторе VT2. Напряжение на его базе при наличии управляющего напряжения на входе (левый вывод резистора задается таким, чтобы на его эмиттерном резисторе создавалось падение напряжения, равное 0,7 В, которое приоткрывает дополнительный транзистор VT1, между коллектором и эмиттером которого поддерживается напряжение, обеспечивающее нужный уровень приоткрывания транзистора VT2. Рассмотрим "бюджет" напряжений в цепочке поддержания стабильного тока через СИДы. На них падает 9 в, на эмиттерном резисторе - 0,7 В и все остальное напряжение (2,3 В) - на регулирующем транзисторе VT2. Т.о., при изменении питающего напряжения (скажем, от 10 В и больше), всё "лишнее" напряжение всё равно упадет между коллектором и эмиттером VT2, а ток в цепи останется на том же уровне. Если же коммутируется светодиодная лента ("Б"), со встроенными токоограничительными резисторами, то видно, что на них вместо 3 В упадет всего 1,8 В. Это обусловлено наличием т.н. "напряжения насыщения" между коллектором и эмиттером регулирующего транзистора, которое, к сожалению, невозможно "объехать на кривой козе", а значит, максимальной светимости ленты добиться тоже не удастся. Выходом из этой ситуации может быть применение в качестве регулирующего низковольтного полевого транзистора ("В"), имеющего (в отличие от высоковольтных), как правило, очень малое сопротивление канала, в пределах десятка мОм. Падение напряжения на таком малом сопротивлении составляет всего несколько десятков мВ, чем можно пренебречь. При питающем напряжении уже 13 В ("Г") такой стабилизатор обеспечивает номинальный ток. А что делать, если необходимо всё-таки регулировать яркость СИДов? Да очень просто: применить Широтно-Импульсную Модуляцию (ШИМ) входного напряжения. Т.е., на вход подать либо постоянное входное напряжение (тогда яркость будет максимальной), либо импульсную последовательность с частотой более 400...500 Гц (для исключения стробоскопического эффекта) и изменяющейся скважностью (отношение длительности периода между входными импульсами к длительности этого входного импульса). Чем короче входные импульсы, тем меньше яркость свечения СИДов. При этом, в отличие от ламп накаливания, яркость свечения СИДов будет прямо пропорциональной среднему протекающему через них току. При том, что максимальный ток не будет превышать номинального значения. Подобным образом можно организовать режим индикации габаритов и стоп-сигнала одними и теми же СИДами красного свечения. Схема генератора ШИМ выходит за рамки данной "статьи" и поэтому здесь не обсуждается. Да хоть банальнейший классический транзисторный мультивибратор! На говоря уже о таймере. Ну, и наконец, перейдем к светомузыке. Я просто долго и нудно ржу, когда вижу схемы, в которых СИДы питаются каскадами, построенными на транзисторах с общим эмиттером (истоком). Например, вот такую: Ведь совершенно очевидно (по крайней мере для меня), что это никаким образом не светомузыка, с плавным режимом свечения СИДов, а просто тупая "мигалка". Три последовательно включенных каскада с ОЭ-ОЭ-ОИ обеспечат режим либо полной отсечки, либо полного насыщения полевого транзистора. Для данного применения описанные выше схемы, конечно, возможно применить, но коль в исходную схему уже понапихано столько ОУ, то еще 3...4 к существенному усложнению не приведут, а качество работы повысят существенно. Ничего нового по схеме генератора тока на ОУ не скажу, поскольку она известна давным-давно. Принцип ее работы очень похож на описанный выше для двухтранзисторной схемы. ОУ поддерживает падение напряжения на резисторе R2 (а следовательно и ток через него) таким же, как и входное напряжение на неинвертирующем входе. Номинал резистора R2 можно выбрать достаточно малым, чтобы падение напряжения составляло всего 0,1...0,2 В, что позволит спокойно применять светодиодные ленты при практически полной яркости их свечения. Ну, а заодно и применить прецизионные выпрямители на ОУ: http://www.gaw.ru/ht.../funop_13_2.htm . ОУ для данного применения целесообразно применить LM358/LM324. На схеме показано, как лучше "заглушить" неиспользуемый ОУ из одного корпуса LM358 (DA1.1). В этой схеме нас совершенно не волнует, какое напряжение будет на затворе полевого транзистора - это "личное дело" ОУ. Главное, чтобы на истоковом резисторе поддерживалось нужное падение напряжения. Кроме того, СИДы можно питать НЕстабилизированным напряжением, прямо с выхода выпрямительного моста с конденсаторным фильтром, а стабилизировать только напряжение питания ОУ. Это существенно снизит токовую нагрузку на стабилизатор напряжения питания. А для схемы стабилизатора тока такой режим - сугубо фиолетовый. А теперь крепче держитесь за стул! В журнале "Радиолоцман" № 12 за 2015 год, на стр.15-16 описаны "новые" микросхемные стабилизаторы тока для светодиодов BCR420U/BCR421U фирмы "Infineon". Вниманию знатоков, их внутренняя схема!!! Схема из журнала "Радиомир", 2014, № 11, С.26: Дополнительный диод - германиевый или Шоттки. Схема позволяет существенно (в 2...3 раза) уменьшить падение напряжения на эмиттерном токоизмерительном шунте. Вот, собственно, и всё, что хотелось бы изложить по этому вопросу. Может быть, что-то запамятовал - так на то и существуют уточняющие вопросы. Ну и до кучи еще ссылочка на подобную тему: http://forum.cxem.ne...howtopic=134692
  25. Здравствуйте. Делаю ночник с плавно меняющимися цветами, в корпусе недорогого светильника, который включается в полной темноте. Включение/отключение реализовал через фоторезистор и составной транзистор. Для МК atMega8 в DIP-корпусе места в корпусе уже впритык. Думал напрямую к пинам подключить RGB-светодиод, но, внезапно, обнаружил, что они у меня с общим анодом. На макетной плате собрал с 3-мя транзисторами, работает. Но можно ли обойтись без транзисторов? Это дополнительные 6 элементов... Сейчас задам, возможно, сумасшедший вопрос, но если подключить светодиод катодами к пинам, а анод на +5 вольт ? Будет ли это работать как обратный сигнал ШИМ (т.е. при скважности 10%, обратная величина - 90%)? Или это просто загубит МК?