
www.dewinz.com Page 1

Digital PID Controllers

Dr.Varodom Toochinda

http://www.dewinz.com

July 2009

Proportional-Integral-Derivative (PID) control is still widely used in industries because of its
simplicity. No need for a plant model. No design to be performed. The user just installs a
controller and adjusts 3 gains to get the best achievable performance. Most PID controllers
nowadays are digital. In this document we discuss digital PID implementation on an embedded
system. We assume the reader has some basic understanding of linear controllers as described in
our other document.

Different forms of PID

A standard “textbook” equation of PID controller is









 

t

d
i dt

tde
Tde

T
teKtu

0

)(
)(

1
)()( (1)

where the error e(t), the difference between command and plant output, is the controller input,
and the control variable u(t) is the controller output. The 3 parameters are K (the proportional
gain), Ti (integral time), and Td (derivative time).

Performing Laplace transform on (1), we get

 







 d

i

sT
sT

KsG
1

1)((2)

Another form of PID that will be discussed further in this document is sometimes called a
parallel form.

)()()()(
0

te
dt

d
KdeKteKtu d

t

ip    (3)

With its Laplace transform

 d
i

p sK
s

K
KsG )((4)

www.dewinz.com Page 2

We can easily convert the parameters from one form to another by noting that

dd

i
i

p

KTK

T

K
K

KK







 (5)

Discrete-time PID Algorithm

For digital implementation, we are more interested in a Z-transform of (3)

)()1(
1

)(1
1

zEzK
z

K
KzU d

i
p 



 


 

 (6)

Rearranging gives

)(
1

)2()(
)(

1

21

zE
z

zKzKKKKK
zU ddpdip
















 



 (7)

Define

d

dp

dip

KK

KKK

KKKK







3

2

1

2

(7) can then be rewritten as

  )()()(2
3

1
21

1 zEzKzKKzUzzU   (8)

which then converted back to difference equation as

]2[]1[][]1[][321  keKkeKkeKkuku (9)

a form suitable for implementation. Listing 1 shows how to code this algorithm in C. We assume
that the plant output is returned from a function readADC(), and the control variable u is
outputted using writeDA(). Note that u must be bounded above and below depending on the
DAC resolution. For instance, UMAX = 2047 and UMIN = -2048 for 12-bit DAC.

www.dewinz.com Page 3

double e, e1, e2, u, delta_u;

k1= kp + ki + kd;

k2=-kp – 2*kd;

k3= kd;

void pid()

{

 e2 = e1; // update error variables

 e1 = e;

 y = readADC(); // read variable from sensor

 e = setpoint – y; // compute new error

 delta_u = k1*e + k2*e1 + k3*e2; // PID algorithm (3.17)

 u = u + delta_u;

 if (u > UMAX) u = UMAX; // limit to DAC range

 if(u < umin) u = UMIN;

 writeDA(u); // send to DAC hardware

}

Listing 1: C code for the PID algorithm

FPGA Implementation

Listing 2 demonstrates a Verilog code to implement (9) on a CPLD or FPGA chip, assuming that
the values of 3 parameters are hard-coded. One could modify this code to make the parameters
user-adjustable. It is left as an exercise.

www.dewinz.com Page 4

module PID #(parameter W=15) // bit width – 1

(output signed [W:0] u_out, // output

 input signed [W:0] e_in, // input

input clk,

input reset);

parameter k1=107; // change these values to suit your system

parameter k2 = 104;

parameter k3 = 2;

reg signed [W:0] u_prev;

reg signed [W:0] e_prev[1:2];

assign u_out = u_prev + k1*e_in – k2*e_prev[1] + k3*e_prev[2];

always @ (posedge clk)

 if (reset == 1) begin

 u_prev <= 0;

 e_prev[1] <= 0;

 e_prev[2] <= 0;

 end

 else begin

 e_prev[2] <= e_prev[1];

 e_prev[1] <= e_in;

 u_prev <= u_in;

 end

endmodule

Listing 2: PID implementation on FPGA using Verilog

www.dewinz.com Page 5

PID Autotuning

Adjusting the PID gains to achieve a good response could be problematic, especially for an
inexperienced user. As a result, most commercial PID controllers have functions to tune the 3
parameters automatically. This is normally called “autotunig” feature. There are some variants of
autotunig methods suggested in the literature. Here we mention one of them, the relay feedback,
which is closely related to a manual tuning scheme known as Ziegler-Nichols Frequency Domain
(ZNFD) method.

So we start by explaining ZNFD procedure. First we have to caution that, to conform to the
derivation from [1], our ZNFD discussion refers to the “textbook” PID equation (1), not the
parallel form (3). This does not pose any problem since the two forms are closely related by (5).

To tune a PID controller manually by ZNFD method, we start by turning off both the integral

and derivative terms. From (1) we see this can be done by letting iT and 0dT . So now

the PID is left only with the proportional gain K. We crank K up to the point that the closed-loop
system starts to oscillate. At this point, the plant output will swing in a constant sinusoid motion,
not growing and not dying out. Write this value down on a paper as Ku. Then find a way to
measure the period of oscillation. Note this period as Tu. That’s all. Suggested values of the 3
parameters can be found from Table 1. Example 1 demonstrates this procedure in simulation.

Controller Form K Ti Td
P 0.5Ku - -
PI 0.4Ku 0.8Tu -

PID 0.6Ku 0.5Tu 0.125Tu
Table 1: suggested PID parameters from ZNFD method

Example 1: We want to experiment ZNFD method on this plant

3)1(

1
)(




s
sP (10)

Figure 1 shows a SIMULINK setup used for this simulation. We turn off the I and D terms and
adjust K until K = 8, the output oscillates. Figure 3 captures the oscillation. Hence Ku = 8, and
from Figure 3 Tu = 3.5. Using Table 1, we get K = 4.8, Ti = 1.75 and Td = 0.4375. Figure 3 shows
a step response when these values are used. Note that the overshoot is quite excessive (50%). In
a sense, ZNFD just gives us some good values to start with. We can often fine-tune the PID to
improve the response.

www.dewinz.com Page 6

Figure 1: A SIMULINK setup for Example 1

Figure 2: Oscillation captured from scope

Figure 3: Step response from PID values given by ZNFD method

www.dewinz.com Page 7

The ZNFD method could be explained using a Nyquist diagram in Figure 4. The diagram shows
how a point x on the curve is moved related to the P, I , and D terms. Using the P term alone, x
could be moved in radial direction only. The I and D terms help provide more freedom to move
perpendicular to the radius. It can be shown that by using ZNFD method, the critical point (-
1/Ku, 0) is moved to the point -0.6 – 0.28i. The distance of this point to the critical point is 0.5.
So the sensitivity peak is at least 2. This explains the high overshoot in the step response.

Figure 4: How a point on Nyquist curve is moved with PID control

Automatic Tuning

As simple as it sounds, the ZNFD method may be difficult to perform in certain industrial
applications. It is problematic to adjust the gain until the close-loop system oscillates. A little
beyond that results in instability. Automatic tuning scheme exploits some component that could
make the system oscillate, but does not become unstable. A relay is one such component.

Example 2: In Figure 5, we put a relay in place of the PID controller. The relay output swings
between + 1. Using the same plant (10), the simulated response in Figure 6 shows the plant
output oscillates, with the same period as in Figure 2. We see that the oscillation is automatic and
the magnitude of plant output is related to the relay output. We can keep things under control, so
this scheme is suitable for PID autotuning.

www.dewinz.com Page 8

Figure 5: A relay feedback diagram

Figure 6: Oscillatory response from the relay feedback

Since a relay is a nonlinear element, we have to find some linear representation using some math
tool. A suitable approach is to use “describing function.” Using such technique, the relay is
replaced by a dependent gain)(aN , where a is the size of relay input. And the condition for

oscillation is

 1)()(iPaN (11)

One can easily check this condition graphically by plotting)(/1 aN on the Nyquist plot. If the

graph of)(/1 aN and)(iP intersects, that means the relay feedback should oscillate, where

the magnitude and frequency of oscillation equals the values at that intersection point. So, if we
can measure the magnitude and frequency of oscillation, we can determine the intersection point.

www.dewinz.com Page 9

In case the relay is a non-hysteresis type, its describing function is

a

d
aN


4

)( (12)

where d is the magnitude of relay signal and a is the magnitude of oscillating output. Note that
(12) is a real function, so the system should oscillate if the Nyquist curve intersects the negative
real axis. Hence, using relay feedback could help us find the intersection point between the
Nyquist curve and the negative real axis, which is the same point acquired using the manual
ZNFD method.

From Figure 6, we can measure 15.0a and d = 1. From (12), it can be computed that the
Nyquist curve must intersect the negative real axis at)(/1 aN , or -0.118, which is close to the

value found in Example 1, which is -1/8 or -0.125.

Autotuning Implementation

To transform all these to C code, the components needed are a relay, and a function to read the
magnitude and frequency of oscillation. A relay could be implemented in software as follows

#define RELAYOUT 204 // change this to your desired output value

void relay(void)
{
 int e;
 e = read_input(); // read from specified input source
 if (e < 0) out_dac(RELAYOUT); // send output. Note opposite phase
 else out_dac(-RELAYOUT);
}

And functions to detect a and Tu and compute magnitude and frequency of oscillation

/************ Global Variables **********************************/
/*These two variables are what we want to find */
double p; // magnitude of P
double w; // frequency of P

double tu; // oscillation period (w = 1/tu)
double d; // relay amplitude. This is constant for a particular relay

www.dewinz.com Page 10

double a; // peak process output amplitude.
double yold; // keep previous process output
double ts; //sampling period
int i=0; // a counter to keep the number of iterations between two peaks
/**/

void detect_a_tu(void) / this must be a timer ISR running each ts seconds
{
 double y; // use to keep process output each sampling period
 y = read_input(); // read input from specified channel
 if (y>a) a = y; // compare new input with a, if greater keep it as new a
 if (yold<0 && y>=0) { // detect zero crossing
 tu=i*ts;
 i=0;
 }
 yold=y;
 i++;
}

void compute_pw(void) // run this after we get values for a and tu
{
 double Na;
 Na = (4*d)/(pi*a);
 p = -1/Na; // gain of P(jw) at point of intersection
 w = 2*pi/tu; // frequency in rad/s
}

The functions are straightforward. detect_a_tu() has to be implemented as a timer ISR. The
magnitude a is detected by comparing the new read value with the previous largest value, and
keep the larger. The period tu is found by detecting two zero crossings and compute the time
between them. Then the function compute_pw() just compute the magnitude and frequency of
the point of intersection between Nyquist plot and the negative real axis. After this point is
found, we can determine where to move it to give a good gain and phase margins. The values in
Table 1 can be used.

Reference

[1] K.J. Astrom and T.Hagglund. PID Controllers, 2nd ed., Instrument Society of America, 1995.

