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Proportional-Integral-Derivative (PID) control is still widely used in industries because of its 
simplicity. No need for a plant model. No design to be performed. The user just installs a 
controller and adjusts 3 gains to get the best achievable performance. Most PID controllers 
nowadays are digital. In this document we discuss digital PID implementation on an embedded 
system. We assume the reader has some basic understanding of linear controllers as described in 
our other document.  

 

Different forms of PID 

A standard “textbook” equation of PID controller is  
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where the error e(t), the difference between command and plant output,  is the controller input, 
and the control variable u(t) is the controller output. The 3 parameters are K (the proportional 
gain), Ti (integral time), and Td (derivative time).  

Performing Laplace transform on (1), we get 
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Another form of PID that will be discussed further in this document is sometimes called a 
parallel form. 
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With its Laplace transform 
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We can easily convert the parameters from one form to another by noting that  
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Discrete-time PID Algorithm 

 

For digital implementation, we are more interested in a Z-transform of (3) 
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Rearranging gives 
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(7) can then be rewritten as 
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which then converted back to difference equation as 

   ]2[]1[][]1[][ 321  keKkeKkeKkuku   (9) 

a form suitable for implementation. Listing 1 shows how to code this algorithm in C. We assume 
that the plant output is returned from a function readADC( ), and the control variable u is 
outputted using writeDA( ). Note that u must be bounded above and below depending on the 
DAC resolution. For instance, UMAX = 2047 and UMIN = -2048 for 12-bit DAC. 
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double e, e1, e2, u, delta_u;  

k1= kp + ki + kd; 

k2=-kp – 2*kd; 

k3= kd; 

void pid( )  

{ 

 e2 = e1;     // update error variables  

 e1 = e; 

 y = readADC( );     // read variable from sensor 

 e = setpoint – y;      // compute new error  

 delta_u = k1*e + k2*e1 + k3*e2;  // PID algorithm (3.17) 

 u = u + delta_u;   

 if (u > UMAX) u = UMAX;  // limit to DAC range 

 if(u < umin) u = UMIN; 

 writeDA(u);     // send to DAC hardware 

} 

 

Listing 1: C code for the PID algorithm  

 

FPGA Implementation 

 

Listing 2 demonstrates a Verilog code to implement (9) on a CPLD or FPGA chip, assuming that 
the values of 3 parameters are hard-coded.  One could modify this code to make the parameters 
user-adjustable. It is left as an exercise. 
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module PID #(parameter  W=15)  // bit width – 1 

(output signed [W:0] u_out, // output 

 input signed [W:0] e_in, // input 

input clk, 

input reset); 

parameter k1=107;  // change these values to suit your system 

parameter k2 = 104; 

parameter k3 = 2; 

 

reg signed  [W:0] u_prev; 

reg signed [W:0] e_prev[1:2]; 

 

assign u_out = u_prev + k1*e_in – k2*e_prev[1] + k3*e_prev[2]; 

 

always @ (posedge clk) 

 if (reset == 1) begin 

  u_prev <= 0; 

  e_prev[1] <= 0; 

  e_prev[2] <= 0; 

 end 

 else begin  

  e_prev[2] <= e_prev[1]; 

  e_prev[1] <= e_in; 

  u_prev <= u_in; 

 end 

endmodule 

 
 

Listing 2: PID implementation on FPGA using Verilog 
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PID Autotuning 

 

Adjusting the PID gains to achieve a good response could be problematic, especially for an 
inexperienced user. As a result, most commercial PID controllers have functions to tune the 3 
parameters automatically. This is normally called “autotunig” feature. There are some variants of 
autotunig methods suggested in the literature. Here we mention one of them, the relay feedback, 
which is closely related to a manual tuning scheme known as Ziegler-Nichols Frequency Domain 
(ZNFD) method. 

So we start by explaining ZNFD procedure. First we have to caution that, to conform to the 
derivation from [1], our ZNFD discussion refers to the “textbook” PID equation (1), not the 
parallel form (3). This does not pose any problem since the two forms are closely related by (5). 

To tune a PID controller manually by ZNFD method, we start by turning off both the integral 

and derivative terms. From (1) we see this can be done by letting iT  and 0dT . So now 

the PID is left only with the proportional gain K. We crank K up to the point that the closed-loop 
system starts to oscillate. At this point, the plant output will swing in a constant sinusoid motion, 
not growing and not dying out. Write this value down on a paper as Ku. Then find a way to 
measure the period of oscillation.  Note this period as Tu. That’s all. Suggested values of the 3 
parameters can be found from Table 1. Example 1 demonstrates this procedure in simulation. 

Controller Form K Ti Td 
P 0.5Ku - - 
PI 0.4Ku 0.8Tu - 

PID 0.6Ku 0.5Tu 0.125Tu 
Table 1: suggested PID parameters from ZNFD method 

 

Example 1: We want to experiment ZNFD method on this plant 
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Figure 1 shows a SIMULINK setup used for this simulation. We turn off the I and D terms and 
adjust K until K = 8, the output oscillates. Figure 3 captures the oscillation. Hence Ku = 8, and 
from Figure 3 Tu = 3.5. Using Table 1, we get K = 4.8, Ti = 1.75 and Td = 0.4375. Figure 3 shows 
a step response when these values are used. Note that the overshoot is quite excessive (50%). In 
a sense, ZNFD just gives us some good values to start with. We can often fine-tune the PID to 
improve the response. 
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Figure 1: A SIMULINK setup for Example 1 

 

Figure 2: Oscillation captured from scope 

 

Figure 3: Step response from PID values given by ZNFD method 
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The ZNFD method could be explained using a Nyquist diagram in Figure 4. The diagram shows 
how a point x on the curve is moved related to the P, I , and D terms. Using the P term alone, x 
could be moved in radial direction only. The I and D terms help provide more freedom to move 
perpendicular to the radius. It can be shown that by using ZNFD method, the critical point (-
1/Ku, 0)  is moved to the point -0.6 – 0.28i. The distance of this point to the critical point is 0.5. 
So the sensitivity peak is at least 2. This explains the high overshoot in the step response.  

 

Figure 4: How a point on Nyquist curve is moved with PID control 

 

Automatic Tuning 

 

As simple as it sounds, the ZNFD method may be difficult to perform in certain industrial 
applications. It is problematic to adjust the gain until the close-loop system oscillates. A little 
beyond that results in instability. Automatic tuning scheme exploits some component that could 
make the system oscillate, but does not become unstable. A relay is one such component. 

 

Example 2: In Figure 5, we put a relay in place of the PID controller. The relay output swings 
between + 1.  Using the same plant (10), the simulated response in Figure 6 shows the plant 
output oscillates, with the same period as in Figure 2. We see that the oscillation is automatic and 
the magnitude of plant output is related to the relay output. We can keep things under control, so 
this scheme is suitable for PID autotuning.  
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Figure 5: A relay feedback diagram 

 

Figure 6: Oscillatory response from the relay feedback 

 

Since a relay is a nonlinear element, we have to find some linear representation using some math 
tool. A suitable approach is to use “describing function.” Using such technique, the relay is 
replaced by a dependent gain )(aN , where a  is the size of relay input. And the condition for 

oscillation is 

 1)()( iPaN     (11) 

One can easily check this condition graphically by plotting )(/1 aN on the Nyquist plot. If the 

graph of )(/1 aN  and )( iP  intersects, that means the relay feedback should oscillate, where 

the magnitude and frequency of oscillation equals the values at that intersection point. So, if we 
can measure the magnitude and frequency of oscillation, we can determine the intersection point. 
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In case the relay is a non-hysteresis type, its describing function is 
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where d is the magnitude of relay signal and a  is the magnitude of oscillating output. Note that 
(12) is a real function, so the system should oscillate if the Nyquist curve intersects the negative 
real axis. Hence, using relay feedback could help us find the intersection point between the 
Nyquist curve and the negative real axis, which is the same point acquired using the manual 
ZNFD method.  

From Figure 6, we can measure 15.0a  and d = 1. From (12), it can be computed that the 
Nyquist curve must intersect the negative real axis at  )(/1 aN , or -0.118, which is close to the 

value found in Example 1, which is -1/8 or -0.125. 

 

Autotuning Implementation 

 

To transform all these to C code, the components needed are a relay, and a function to read the 
magnitude and frequency of oscillation. A relay could be implemented in software as follows 

#define  RELAYOUT 204 // change this to your desired output value  
 
void relay( void)  
{ 
 int  e; 
 e = read_input( );  // read from specified input source 
 if (e < 0)  out_dac(RELAYOUT); // send output. Note opposite phase 
 else out_dac( -RELAYOUT); 
} 

And  functions to detect a  and Tu and compute magnitude and frequency of oscillation 

 
/************ Global Variables **********************************/ 
/*These two variables are what we want to find  */ 
double p;  // magnitude of P 
double w;  // frequency of P 
 
double  tu;  // oscillation period  (w = 1/tu) 
double d;    // relay amplitude. This is constant for a particular relay 
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double a;  // peak process output amplitude.  
double yold;  // keep previous process output 
double ts;     //sampling period 
int i=0;    // a counter to keep the number of iterations between two peaks 
/**********************************************************/ 
 
void detect_a_tu(void)   / this must be a timer ISR running each ts seconds 
{ 
 double y;  // use to keep process output each sampling period 
 y = read_input( );  // read input from specified channel 
 if (y>a) a = y;  // compare new input with a, if greater keep it as new a 
 if (yold<0 && y>=0)    {  // detect zero crossing 
  tu=i*ts;  
  i=0; 
 } 
 yold=y; 
 i++; 
} 
   
void compute_pw(void)    // run this after we get values for a and tu 
{   
 double Na; 
 Na = (4*d)/(pi*a); 
 p = -1/Na; // gain of P(jw) at point of intersection 
 w = 2*pi/tu; // frequency in rad/s   
}  
 

The functions are straightforward. detect_a_tu( ) has to be implemented as a timer ISR. The 
magnitude a is detected by comparing the new read value with the previous largest value, and 
keep the larger. The period tu is found by detecting two zero crossings and compute the time 
between them. Then the function compute_pw( ) just compute the magnitude and frequency of 
the point of intersection between Nyquist plot and the negative real axis. After this point is 
found, we can determine where to move it to give a good gain and phase margins. The values in 
Table 1 can be used. 
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