
© 2000 by CRC Press LLC 

CHAPTER 9 
 

MONITORING INTERNAL 
COMBUSTION ENGINES BY NEURAL 

NETWORK BASED VIRTUAL SENSING 
 

R.J. Howlett, M.M. de Zoysa, and S.D. Walters 
Transfrontier Centre for Automotive Research (TCAR) 
Engineering Research Centre, University of Brighton 

Brighton, U.K. 
R.J.Howlett@Brighton.ac.uk 

 
 
Over the past two decades the manufacturers of internal-combustion 
engines that are used in motor vehicles have been very successful in 
reducing the harmful side effects of their products on the environment. 
However, they are under ever-increasing pressure to achieve further 
reductions in the quantities of polluting gases emitted by the engine, 
and a decrease in the amount of fuel consumed per kilometer. At the 
same time, vehicle characteristics that are desirable to the driver must 
not be compromised. Satisfying these diverse requirements requires 
precise engine control and comprehensive monitoring of the operational 
parameters of the power unit. Engines are highly price sensitive, and it 
is desirable to achieve the increased level of measurement that is 
required for enhanced control without additional sensory devices. Thus, 
the indirect estimation of quantities of interest using virtual-sensor 
techniques, without direct measurement using dedicated sensors, is a 
research area with considerable potential. Intelligent-systems techni-
ques, such as neural networks, are attractive for application in this area 
because of their capabilities in pattern recognition, signal analysis and 
interpretation. For this reason, the use of neural networks in the 
monitoring and control of motor vehicle engines is an area of research 
which is receiving increasing attention from both the academic and 
commercial research communities. A virtual-sensor technique, the 
Virtual Lambda Sensor, is described here which uses a neural network 
for the estimation of air-fuel ratio in the engine. 

 



1 Introduction 

The internal-combustion engine is likely to be the most common motor-
vehicle power plant until well into the twenty-first century, although 
new variants such as the Gasoline Direct Injection (GDI) and High 
Speed Direct Injection (HSDI) Diesel engines may supplant more 
conventional engine variants. 

There are two recurrent themes in the area of automotive engine design: 
fuel economy and the reduction of harmful emissions from the exhaust. 
The emission of exhaust gases from Internal-Combustion (IC) engines 
is a major cause of environmental pollution. In addition the exhaust 
contains carbon dioxide, which is believed to contribute to the 
greenhouse effect and global warming. To reduce damage to the 
environment, governments in the United States, Europe, and parts of 
the rest of the world have introduced regulations that govern the 
permissible levels of pollutant gases in the exhaust. All manufacturers 
of motor-vehicles are required to undertake measures to ensure that 
their vehicles meet emission standards when they are new. In addition, 
the vehicle owner is required to ensure that the vehicle continues to 
meet in-service standards, by submitting it to periodic testing during 
routine maintenance. In the future, an on-board diagnostic system must 
be provided which carries out continuous monitoring. 

Emission standards have been tightened progressively for over twenty 
years, to the point where emissions have been reduced by 
approximately an order of magnitude, measured on a per-vehicle basis. 
However, regulations are becoming even more stringent. Although 
existing methods of emission control are adequate to meet current 
regulations, they need improvements to enable them to meet future 
legislation [1]. The 1998 California Clean Air Act requires 10% of a 
manufacturer’s fleet to be zero-emission vehicles (ZEVs), an 84% 
decrease in hydro-carbon (HC) emissions, a 64% decrease in oxides of 
nitrogen (NOx) output and a 60% reduction in carbon monoxide (CO) 
production for the entire fleet by the year 2003 [2]. 

On January 1, 1993, mandatory emission standards were introduced in 
Europe. This required all new petrol (gasoline) fueled vehicles in 
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Europe to be fitted with three-way auto-catalysts, thus bringing 
European standards to comparable levels with the US standards that 
had been introduced in the 1980s. In 1997, the second stage of 
regulations was brought into effect which covered both petrol and 
diesel vehicles. These regulations brought European standards into 
conformance with US standards up to 1996. The third stage of 
regulations, which sets standards for year 2000 and beyond, has been 
proposed. These regulations, when brought into effect, will require 
petrol-fueled vehicles with electronically controlled catalytic converters 
to be fitted with on-board diagnostic systems [1]. 

2 The Engine Management System 

In order to achieve these standards it is necessary to maintain strict 
control of the operating parameters of the engine using a 
microprocessor-based Engine Management System (EMS) or Engine 
Control Unit (ECU). The EMS implements control strategies which aim 
to achieve optimum efficiency and high output power when required, 
while at the same time maintaining low emission levels. At the same 
time, in a spark-ignition engine, the EMS must operate the engine in a 
region favorable to the operation of a three-way catalytic converter, 
which further reduces the harmful content of the exhaust. The engine 
must also exhibit good transient response and other characteristics 
desirable to the operator, known among motor manufacturers as 
driveability, in response to movements of the driver’s main control, the 
throttle or accelerator pedal. The EMS governs the amount of fuel 
admitted to the engine (via the fuel-pulse width), the point in the 
engine-cycle at which the mixture is ignited (the ignition timing), the 
amount of exhaust gas recirculated (EGR), and other parameters in 
advanced engine designs, for example, the valve timings. It determines 
values for these parameters from measured quantities such as speed, 
load torque, air mass flow rate, inlet-manifold pressure, temperatures at 
various points, and throttle-angle. Figure 1 illustrates the function of the 
EMS, which must essentially determine values for the Controlled 
Variables from a knowledge of the Measured Variables, in order to 
achieve the System Aims. 
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Figure 1.  Internal combustion engine control. 

The exact detail of the strategies which are used in commercial EMS 
products is a secret which is guarded closely by the manufacturers. One 
method which can be used for the selection of fuel pulse width and 
ignition timing values involves the use of maps which are look-up 
tables held in ROM. The EMS measures the engine speed using a 
sensor on the crankshaft and estimates the load, often indirectly from 
the inlet manifold (vacuum) pressure. These values are then used as 
indices for the look-up tables. Algorithmic and mathematical methods 
are also used. Research is taking place to develop improved engine 
control by incorporating neural networks and other intelligent-systems 
techniques into the EMS. 

It has been mandatory in the US for some time, and now is also 
required in Europe, that, in addition to engine control, the EMS is 
required to perform on-board diagnostic (OBD) functions. Future OBD 
systems will be required to warn the driver, by means of a malfunction 
indicator lamp (MIL), of faults in the emission-control system which 
could lead to emission levels that are greater than those permitted. 

The high level of accurate control necessary for engines to meet 
emissions standards requires that the EMS is supplied with 
comprehensive information about the operational parameters of the 
engine. Modern engines are equipped with a range of sensory devices 
which enables the measurement of quantities of interest. Speed, 
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manifold pressure, air mass flow rate, temperature at various points 
such as the air inlet are examples of quantities that are measured in 
many engines. In addition, parameters such as crank-angle and 
camshaft position are measured on more sophisticated power units. 
Accurate measurement of the ratio between the masses of injected 
petrol and air, known as the air-fuel ratio, is very valuable as an 
indicator of the point on its characteristics at which the engine is 
operating. Accurate air-fuel ratio measurement is difficult to achieve 
economically using conventional methods. 

3 Virtual Sensor Systems 

As engine control increases in sophistication the number of engine 
parameters which must be measured also increases. However, 
manufacturers are reluctant to install new sensors in the engine because 
of economic considerations. Engines are extremely price sensitive and 
additional sensors can only be economically justified if they provide 
very considerable improvements which could not be otherwise attained. 
Techniques which allow deductions to be made about quantities of 
interest without the installation of new sensors, by interpreting data 
from existing sensory devices in a new way, are especially valuable in 
this respect. The virtual-sensor technique allows an estimate to be made 
of a quantity of interest without the necessity for a sensor dedicated to 
the measurement. An example, which is described later in this chapter, 
is the Spark Voltage Characterization method of estimating the air-fuel 
ratio in the engine cylinder by analysis of the voltage signal at the spark 
plug. 

Virtual-sensor systems require abilities in the domains of pattern-
recognition, signal analysis and modeling. Neural networks have been 
shown to possess distinct strengths in these areas. For example, a neural 
network based virtual-sensor system is described in the literature that 
allows the prediction of emission levels from commonly measured 
quantities [3]. 
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4 Air-Fuel Ratio 

A parameter that is of considerable importance in determining the 
operating point of the engine, its output power and emission levels is 
the air-fuel ratio (AFR). The air-fuel ratio is often defined in terms of 
the excess air factor, or lambda ratio: 

lambda = AFR / AFRst (1) 

where AFR = the current air-fuel ratio 
and  AFRst = the stoichiometric air-fuel ratio 

Lambda is defined such that a lambda-ratio of unity corresponds to an 
air-fuel ratio of approximately 14.7:1 at normal temperature and 
pressure, when the fuel is petrol or gasoline. This is termed the 
stoichiometric ratio, and corresponds to the proportions of air and fuel 
which are required for complete combustion. A greater proportion of 
fuel gives a lambda-ratio of less than unity, termed a rich mixture, 
while a greater proportion of air gives a lambda-ratio of greater than 
unity, termed a weak or lean mixture. Maximum power is obtained 
when the lambda-ratio is approximately 0.9 and minimum fuel 
consumption occurs when the lambda-ratio is approximately 1.1. 

Current engines reduce emission levels to within legislative limits by 
converting the exhaust gases into less toxic products using three-way 
catalytic converters. For optimum effect, three-way catalytic converters 
require that the lambda-ratio is closely maintained at the stoichiometric 
ratio (unity). In modern engines, a lambda-sensor, mounted in the 
exhaust stream, determines whether the lambda is above or below unity 
from the amount of oxygen present. The EMS uses this to adjust the 
fuel pulse width to keep the lambda-ratio approximately at unity. Power 
units currently under development, for example the gasoline direct 
injection (GDI) engine, may involve operation in lean-of-stoichiometric 
regions of the characteristics of the engine. Precise control of the air-
fuel ratio is of considerable importance here also [4]. 

The lambda-sensor that is installed in most production vehicles has a 
voltage-lambda characteristic which effectively makes it a binary 
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device. It can be used to indicate whether the value of lambda is above 
or below unity, but it is unable to provide an accurate analogue 
measurement of air-fuel ratio. Accurate measurements can be made 
using what are referred to as wideband lambda-sensors, but they are 
very expensive, and in fact, even the currently used binary lambda-
sensor represents an undesirable cost penalty. 

The Spark Voltage Characterization method, described in detail later in 
this Chapter, allows the air-fuel ratio to be estimated from an analysis 
of the voltage signal at the spark plug, and so potentially offers the 
advantage that it permits the elimination of the lambda-sensor. 

5 Combustion Monitoring Using the 
Spark Plug 

Although it is not usually considered as a sensor, the spark plug is in 
direct contact with the combustion processes which are occurring in the 
cylinder. The use of the spark plug as a combustion sensor in spark 
ignition (SI) engines offers a number of advantages over other sensory 
methods. Many comparable techniques, such as pressure measurements 
or light emission recording by fiber-optics, require that the combustion 
chamber is modified; this can itself affect the combustion processes. 
Secondly, the price sensitivity of engines demands that the installation 
of a new sensor must result in very considerable improvements for it to 
be economically justifiable. The spark plug is already present in a spark 
ignition engine, eliminating the need to make any potentially 
detrimental modifications to the cylinder head, or combustion chamber, 
and avoiding additional costs which would result from the installation 
of new equipment. As the spark plug is in direct contact with the 
combustion, it is potentially an excellent observer of the combustion 
process. Analyzing the spark plug voltage (and possibly current) 
waveforms, therefore, potentially provides a robust and low-cost 
method for monitoring phenomena in the combustion chamber. 

A method of using the spark plug as a combustion sensor which has 
received attention in the literature is known as the Ionic-Current 
method. This has been investigated for measuring combustion pressure, 
AFR and for the detection of fault conditions such as misfire and 
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knocking combustion. In the ionic-current system, the spark plug is 
used as a sensor during the non-firing part of the cycle. This is done by 
connecting a small bias voltage of about 100 volts to the spark plug and 
measuring the current. This current is due to the reactive ions in the 
flame which conduct current across the gap when the voltage is applied. 
The ions are formed during and after combustion, and the type and 
quantity of ions present depend on the combustion characteristics. The 
ionization current is also dependent on the pressure, temperature, etc. 
and therefore is rich in information but very complex [5]. Much work 
has been done on the use of ionic-currents for monitoring combustion, 
mainly to estimate combustion pressure, and so the method can act as a 
replacement for combustion-pressure sensors. Ionic-current systems 
have also been proposed for AFR and ignition-timing estimation, and 
misfire and knocking detection [6], [7]. More recently, neural networks 
have been applied to the analysis of ionic-current data for spark-
advance control and AFR estimation [8], [9]. 

The ionic-current method appears attractive because only minor 
modifications are required to adapt the engine. However, high-voltage 
diodes or other switching methods are needed to isolate the ionic-
current circuitry from the ignition system, when the high voltage is 
generated to initiate combustion. These have been prone to failure in 
the past. The 100V power supply is also an additional component 
which is required at additional expense. 

A second spark plug based sensor technique, which is covered in depth 
in this chapter, is termed Spark Voltage Characterization (SVC). The 
SVC technique has a number of features in common with the ionic-
current method. The SVC method involves the analysis of the time-
varying voltage that appears across the spark plug, due to the ignition 
system, for monitoring combustion phenomena in the cylinder. This 
analysis can be carried out using a neural network. Using the spark plug 
as the combustion sensor, this technique has many of the advantages of 
the ionic-current method. However, as the SVC method involves 
analyzing the ignition voltage waveform itself, it eliminates the need 
for an additional bias power supply, and for the associated high-voltage 
switching circuitry. The use of SVC for estimating the in-cylinder air-
fuel ratio is described later in this chapter. 
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6 The Ignition System of a Spark-Ignition 
Engine 

Figure 2 shows the essential elements of an inductive-discharge 
ignition-system, as typically installed in a spark-ignition engine. The 
ignition-coil is essentially a high-voltage transformer, increasing the 
battery voltage (approximately 12V) to an extra high tension (EHT) 
pulse. This high voltage creates a spark between the contacts of the 
spark plug and initiates combustion. The contact-breaker was once a 
mechanical component in almost all engines, but in modern electronic 
ignition systems, it is replaced by a semiconductor switch such as an 
automotive specification transistor or thyristor. 

LT
Winding

HT
Winding

Contact
Breaker

Contact
Capacitor

To Distributor
/ Spark PlugIgnition

Coil

Battery

 
Figure 2.  The ignition system. 

The contact-breaker closes and current builds up in the low-tension 
(LT) winding of the coil resulting in the storage of energy; however, the 
speed at which this occurs is limited by the resistance of the coil. At an 
appropriate point in the engine-cycle, when an air-fuel mixture has been 
injected into the cylinder via the inlet-valve (in a port injection engine), 
and compressed so that the piston lies just before top-dead-center, the 
contact-breaker opens. The magnetic field in the coil collapses rapidly, 
with an equally rapid change in magnetic flux, and a high-voltage pulse 
is induced into the high-tension (HT) winding of the coil. A pulse of 
approximately 10kV appears across the spark plug terminals, igniting 
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the petrol-air mixture. The resulting combustion drives the power 
stroke of the engine. 

Each cylinder in a four-stroke engine experiences one power stroke for 
every two revolutions of the crankshaft. In a multi-cylinder engine a 
mechanical switch geared to the crankshaft and known as a distributor 
is often used to switch the ignition-pulse to the correct cylinder. 
Alternative systems make use of multiple coils instead of a distributor. 
In a dual-spark or wasted-spark system each cylinder receives a spark 
once every crankshaft revolution instead of every 720 degrees of 
rotation. This requires multiple coils, in a multi-cylinder engine, but 
enables the distributor to be eliminated, and is common practice. 
Single-cylinder engines also commonly use this principle, as it allows 
the ignition system to be triggered directly from the crankshaft. 

Figure 3 illustrates the spark-voltage waveform obtained from a typical 
ignition system. The spark plug voltage waveform has a number of 
predictable phases. As the EHT pulse is generated by the ignition-
system the potential difference across the gap rises to between 
approximately six and 22 kV, before breakdown occurs. Breakdown is 
accompanied by a fall in voltage, giving a characteristic voltage spike 
of approximately 10 µs in duration. This is followed by a glow-
discharge region of a few milliseconds duration, which appears as the 
tail of the waveform. 

5
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|| | |||
1 2 3 4 5 6 ms

Spark Plug
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Figure 3.  A typical spark voltage waveform. 
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Empirical observation of the spark plug voltage characteristic has 
shown that variations in engine parameters lead to changes in the shape 
of the voltage characteristic. It is predictable that the time-varying 
voltage exhibits certain major features, for example, a large peak early 
in the waveform. However, it is not easy to predict the detailed 
variations that occur as the engine parameters are varied. The signal-to-
noise ratio is poor and random variations occur between sparks even 
when the operating parameters of the engine are kept constant. 

The breakdown voltage across the electrode-gap of a spark plug in an 
operating IC engine is dependent on the interactions of many 
parameters, for example, the combustion chamber and electrode 
temperatures, the compression pressure, the electrode material and 
configuration, and the composition of the air-fuel gas mixture [10], 
[11]. All of these factors may be attributed to physical properties and 
processes; for example, the composition of the air-fuel mixture 
influences the breakdown voltage mainly through temperature and 
pressure changes. 

The spark plug cathode electrode temperature has a significant effect on 
breakdown voltage, due to increased electron emission at elevated 
temperatures. The maximum spark plug temperature, when keeping 
other parameters constant, is achieved when the lambda-ratio is equal to 
0.9, that is, the value for maximum power output. Under lean, and to a 
lesser extent, rich mixture conditions, the voltage rises; this is largely 
due to a reduction in the heat released by combustion. Given a constant 
set of engine operating conditions, an increase in lambda-ratio results in 
an increased pressure at ignition. This has been attributed to an increase 
in the ratio of specific heats (the gamma-ratio) of the air-fuel mixture; 
an increase in gas pressure results in a consequent rise in breakdown 
voltage [10]-[12]. 

Changes in lambda-ratio, and therefore in breakdown voltage, lead to 
subtle changes in the overall shape of the ignition spark waveform. 
Given a constant ignition system energy, an increase in breakdown 
voltage results in more energy being used within the breakdown phase. 
This leaves less energy available for following phases of the spark, i.e., 
the arc and glow discharge phases. The observed result is a reduction in 
the glow-discharge duration. 
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However, factors other than change in lambda are also likely to have an 
effect on the spark-voltage characteristic. For example, the temperature 
and pressure inside the cylinder, both of which are related to load, are 
relevant. In addition, the speed of the engine will determine the degree 
of in-cylinder turbulence which will also have an effect. Thus, if the 
voltage characteristic of the spark is to be used to determine the 
lambda-value, the effects of other parameters also must be 
accommodated. 

To summarize, changes in the value of the lambda-ratio would be 
expected to influence both the breakdown voltage and the time-varying 
voltage characteristic of the arc and glow discharge phases. A formal 
relationship between the value of lambda and the instantaneous voltage 
at any particular point on the spark-voltage characteristic is not easily 
discernible and may not exist. However, theoretical considerations 
indicate a possible correlation between the vector formed by periodic 
sampling of the voltage at the spark plug over the spark time, termed 
the spark-voltage vector, and the lambda-ratio. With suitable pre-
processing and training, a neural network is a suitable tool for 
associating the spark-voltage vector and lambda-ratio. This forms the 
basis of the Spark Voltage Characterization technique. 

7 Neural Networks for Use in Virtual 
Sensors 

Neural networks possess a number of specific qualities which make 
them invaluable in pattern-recognition applications and which are not 
easily achieved by other means. Some of the important qualities of 
neural networks can be summarized as follows: 

• They learn by example and can be conditioned to respond correctly 
to a stimulus. 

• They can automatically perform knowledge abstraction and statis-
tical analyses on data which is presented to them and this infor-
mation becomes encoded into the internal structure of the network. 
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• They can generalize so as to respond correctly even in the presence 
of noise or uncertainty making them suitable for use in poor signal-
to-noise environments. 

The use of neural networks for application to IC engine sensing [3], 
[13], [14], diagnostic monitoring [14]-[17] and control [18]-[20] is 
described in the literature, and new papers appear with increasing 
frequency. The contribution that neural networks can make in this area 
may be summarized as follows: 

• Neural networks can interpret sensory data which is already present, 
or available at low cost, so as to extract new information. 

• Neural networks can be used for the detection of specific signatures 
from new or existing sensors in OBD systems, in order to detect and 
identify fault conditions. 

• Neural networks, and the related technology, fuzzy systems, can be 
valuable in achieving the non-linear mappings necessary for 
efficient engine-modeling and the implementation of advanced 
control strategies. 

The SVC method makes use of the pattern-recognition abilities of the 
neural network for the interpretation of spark voltage vectors. The 
function of the neural network in this application was to categorize 
voltage vectors presented to it, differentiating between vectors 
corresponding to different values of lambda. Certain types of neural 
network are known to possess useful properties in this area, for 
example, the multi-layer perceptron (MLP). The MLP is essentially a 
static network, but it is routinely adapted to process dynamic data by 
the addition of a tapped delay-line. The delay-line is implemented 
algorithmically in software, forming the Time-Delay Neural Network 
[21]. It may be considered that the MLP projects n-element vectors, 
applied to it as inputs, into n-dimensional input space. Vectors 
belonging to different classes occupy different regions of this input-
space. During the back-propagation learning or training process, a 
training-file containing exemplar vectors is repeatedly presented to the 
MLP, and it iteratively places hyper-plane partitions in such positions 
as to separate the classes attributed to the vectors. During the recall or 
the operational phase, a vector to be classified is presented to the MLP, 
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which categorizes it by determining where the vector lies in n-
dimensional space in relation to the hyper-planes [22]. 

Feed-forward networks with sigmoidal non-linearities, such as the 
MLP, are very popular in the literature; however, networks which 
incorporate radially symmetric processing elements are more 
appropriate for certain classification applications. The Radial Basis 
Function (RBF) network is a neural classifier devised in its original 
form by Moody and Darken [23], but developed and enhanced by others 
[24]. Usually, the hidden layer consists of elements which perform 
Euclidean distance calculations, each being followed by a Gaussian 
activation function. A clustering algorithm is used to calculate the 
appropriate placings for the cluster centers; for example the k-means 
algorithm is widely used. In its most elementary form the output layer 
performs a linear summation of the non-linear outputs of the basis 
function elements. Alternatively, there can be advantages in the use of 
the basis neurons as a pre-processing layer for a conventional multi-
layer feed-forward neural network, for example an MLP. The non-
linear transformation effected by the basis neurons can be considered to 
move input-vectors into a space of a higher dimension. In some 
circumstances, the vectors are more easily separated in this higher-
dimension space, than in space of their intrinsic dimension. In cases 
where the topology of the input-space is amenable, the use of RBF 
networks can lead to improved classification ability; benefits can also 
accrue in terms of shortened convergence times [24]. 

The neural network architecture best suited to a particular application 
depends largely on the topology of the input space (and, of course, on 
the criteria chosen for the comparison). However, the two network 
paradigms can be briefly compared as follows: 

• The MLP achieves a concise division of the input space, with 
unbounded or open decision regions, using a comparatively small 
number of hidden neurons. The RBF network forms bounded or 
closed decision regions, using a much larger number of pattern 
(hidden) nodes, to provide a more detailed division of the input 
space. 

• The MLP generally attains a higher classification speed, in its 
operational or recall mode, than a functionally comparable RBF 
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network. This is due to the more compact representation, which 
requires fewer hidden neurons. 

8 AFR Estimation using Neural Network 
Spark Voltage Characterization 

Here, a Virtual Lambda Sensor for the estimation of in-cylinder air-fuel 
ratio is described. The system exhibited a similar level of functionality 
to the conventional lambda sensor, which determines whether the air-
fuel ratio is rich, correct or weak. However, the Virtual Lambda Sensor 
exhibited the advantage that no dedicated hardware sensor was 
required. 

8.1 The Spark Voltage Characterization Method 

The Virtual Lambda Sensor employed the spark voltage characteriz-
ation method. The correlation between the spark-voltage vector and the 
lambda-ratio, discussed in Section 6, was exploited by training a neural 
network to associate specific spark voltage vectors with lambda-values. 
After training, the neural network was able to determine whether the 
lambda was correct, rich or weak, when it was presented with a spark 
voltage vector obtained from the engine operating with that mixture 
strength. It is recognized that factors other than the lambda would also 
have an effect on the spark-voltage vector, for example, changes in 
speed, load, etc. However, initially, the effect of these other parameters 
was ignored, and experiments were conducted under conditions where 
only the lambda was varied and other parameters were held constant. 
Later phases of the work will be concerned with accommodating 
changes in these other engine parameters. 

Two stages in the investigation are presented. Firstly, experimental 
work using a multi-cylinder engine is described. A number of practical 
problems are identified, which lead to the second stage of the 
investigation, where a single-cylinder engine is used. 
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8.2 Neural Network Training Procedure 

Figure 4 shows the experimental arrangement that was used. The 
engine was equipped with a dynamometer which presented the engine 
with a “dummy” load that could be varied as desired. The resulting 
load-torque could be measured and the output power calculated. The 
throttle setting and air-fuel ratio could be manually adjusted. The air-
fuel ratio that resulted from this adjustment was measured by an 
exhaust gas analyzer. The ignition-system was modified by the addition 
of a high-voltage test-probe at the spark plug to enable the voltage to be 
measured and recorded. 

A current transformer was fitted to the high-tension line to permit the 
recording of current data. However, no benefit was obtained from the 
use of current data and so results are not described. 
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Figure 4.  Spark voltage waveform capture system. 

An MLP network, with a single hidden layer, and sigmoidal activation 
units, was used as a spark-voltage vector classifier. The architecture is 
illustrated in Figure 5. The backpropagation learning algorithm was 
applied to the MLP during training, which is a supervised training 
paradigm. This required that the training-file contain spark-voltage 
vectors, and desired-output vectors. The fuel pulse width and 
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dynamometer were adjusted to give an engine speed and a lambda-ratio 
of the desired values. Instantaneous spark-voltage vectors of the form 
Vn = (v1, v2,…,vn) were created by recording the voltage at the spark 
plug at measured intervals of time. Each spark-voltage vector was 
associated with a desired-output vector, Dr = (0,0,1), Dc = (0,1,0), and 
Dw = (1,0,0), depending on whether the lambda-value, measured by the 
exhaust gas analyzer, was rich, correct or weak, respectively. Three sets 
of spark-voltage vectors and their associated desired-output vectors 
were obtained, Sr, Sc and Sw, corresponding to rich, correct and weak 
lambda values. These vectors were combined into a single training-file, 
F = {Sr ∪ Sc ∪ Sw}. Similar files, having the same construction, but 
using data that was not used for training, were created for test purposes. 

Input Layer Hidden Layer Output Layer

Input Vector Output Vector

Learning

Algorithm

Weight
Changes

Desired Output
Values

 
Figure 5.  The architecture of the MLP neural network. 

The MLP neural network was trained using cumulative back-
propagation. The criterion used to determine when the training process 
should be terminated was based on ensuring that all neuron output 
values matched the corresponding desired-output value to within a 
selected convergence threshold Tc. For example, at the termination of 
the learning phase, the output of the jth output neuron is 

cj Ty −≥ 1 ∀ jn Sv ∈  and cj Ty ≤ ∀ im Sv ∈ ( )ri ,...1= ji ≠ . 
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8.3 The Multi-Cylinder Engine 

An engine test-bed was used that was based on a 1400cc four-cylinder 
petrol-fueled spark-ignition engine of the type used in many domestic 
motor-cars. The experiments were conducted at a fixed engine speed of 
1500 rpm, with an ignition-timing of 10 degrees before TDC and a 
wide-open throttle. Stoichiometric, lean and very lean air-fuel ratios 
were used which corresponded to lambda-ratios of 1.0, 1.2 and 1.4. 
These values of AFR produced output-torque values of 98.5, 85.0 and 
62.8 Nm respectively. 

8.3.1 Equal Sample Intervals 

Three sets of training-files were constructed. Voltage data were 
recorded over the full duration of the spark using a fixed sampling 
interval for each file. The sampling intervals which were used for the 
three files were 10 µs, 20 µs and 40 µs respectively. Similar files were 
constructed for testing, using data which was not used for training. An 
MLP neural network, which executed a custom C-language 
implementation of the cumulative back-propagation algorithm, was 
trained using this data. In recall, the test-files were applied to the 
trained MLP network, where the output of the neural network was 
modified by a layer which executed a winner-takes-all paradigm. Table 
1 shows the performance of the system under these conditions. 

Table 1.  Correct classification rate for various sampling intervals: 
single sampling interval. 

Sampling Interval 
(µs) 

40 20 10 

Correct Classification Rate 
(%) 

71 75 74 

 

8.3.2 Unequal Sample Intervals 

A second set of measurements was made with emphasis given to the 
peak region of the spark by using an increased sampling rate during the 
peak region compared to that used during tail times. The aim was to 
capture important transient variations in this region. Three training-files 
were constructed. Instantaneous voltage measurements were recorded 
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every 2 µs over the peak region for all three files, and then different 
sampling intervals of 10 µs, 20 µs and 40 µs were used for each file 
during the remainder of the spark duration. Table 2 shows the results. 

Table 2.  Correct classification rate for various sampling intervals; 
peak region emphasized. 

Sampling Interval 
(µs) 

40 20 10 

Correct Classification Rate 
(%) 

84 80 82 

 

8.3.3 Integration of Instantaneous Values 

In an attempt to reduce the effect of the random variations which were 
observed in successive spark waveforms, integration of instantaneous 
voltage values over a number of cycles was performed. Different 
sampling intervals were used during the peak and tail times, as 
described in Section 8.3.2, and different scale-factors were applied over 
the two regions. An MLP network was trained using training data 
which had been pre-processed in this way and a comparison was made 
using different sizes of training file. The network was trained using files 
containing 45, 60 and 75 training records, and tested in recall using 45 
training records which had not been used in training. Table 3 shows the 
results that were obtained. 

Table 3.  Correct classification rate for various numbers of training sets : 

data integration used and peak region emphasized. 

No Training Records 
 

45 60 75 

Correct Classification Rate 
(%) 

86 87 93 

 

8.3.4 Radial Basis Functions 

In order to investigate whether the use of RBF elements would enhance 
the classification rate, the data used in Section 8.3.3 were applied to an 
RBF pre-processing layer, the outputs of which fed an MLP network. 
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Figure 6.  Graph showing correct classification rate for various numbers of 
hidden/basis nodes: peak region emphasized. 

A version of the k-means clustering algorithm, which used semi-
supervised learning, was applied to the RBF layer during training. The 
results which were obtained during recall, when varying numbers of 
basis nodes were used, are illustrated in Figure 6. 

8.3.5 Discussion 

Table 1 shows that the neural network could differentiate between the 
different classes of lambda on the basis of the spark voltage vector with 
a correct classification rate of between approximately 71 and 75%. 
With peak region emphasis, an improvement was obtained, as 
illustrated in Table 2, which shows a correct classification rate of 
between 80 and 84%. One interpretation of these results is that there 
was increased information available in the peak region of the spark. As 
the sampling interval was varied between 10 µs and 40 µs, no 
significant corresponding variation in classification rate was observed. 
The results presented in Table 3 show two things: firstly, an 
improvement in classification rate was observed when integration of 
instantaneous values was implemented; secondly, further improvements 
were obtained as the size of the training file was increased. The best 
classification rate that was obtained under these circumstances was 
93%. The best classification rate obtainable using the RBF network was 
88%, which was worse than the best rate obtained using the MLP 
network. 

 . 
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Inspection of the spark waveforms showed that random variations in the 
shape of successive spark-voltage vectors occurred even when engine 
parameters were kept as close to constant as practicably possible. The 
effect could be reduced by the use of integration over successive 
engine-cycles, as shown by improved results in Table 3. However, this 
could be an obstacle to the use of this technique for cycle-by-cycle 
lambda measurement, which is what is ultimately desired. 

Observation of the output of the exhaust-gas analyzer showed that there 
were wide short-term variations in the lambda-ratio, even when the 
engine parameters were kept as constant as practically possible. These 
variations could be inherent to engine cyclic variations. A contributory 
factor could also be that the lambda value that was measured using the 
exhaust-gas analyzer was an average of the lambda in all four cylinders 
of the engine. The lambda-value in each cylinder was unlikely to be the 
same. The recorded spark-voltage vectors were those from only one of 
these four cylinders. The correlation between the spark-voltage vector 
obtained from one cylinder and the mean of the lambda-values in all 
four cylinders was likely to be poor. 

The results in Table 3 indicated that better classification was obtained 
as the size of the training-file increased. However, the inherent 
instability of the engine made it impossible to maintain constant 
conditions for the time necessary to collect the required amount of 
training data. 

8.4 The Single-Cylinder Engine 

A single-cylinder engine offered a number of advantages over a multi-
cylinder power unit. The correlation between the spark voltage vector, 
measured at the only spark plug of the single cylinder engine, and the 
lambda measured via the exhaust, was likely to be better than was 
obtainable in a multi-cylinder unit. The single-cylinder engine would 
also be likely to offer inherently increased lambda stability, allowing 
the capture of larger quantities of consistent data, which was required 
for improved classification. 

The experimental arrangement that was used was similar to that shown 
in Figure 4, the power unit being a single-cylinder four-stroke engine 
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that had a capacity of 98.2cc. The engine was modified to enable 
manual adjustment to be made to the air-fuel ratio. This was measured 
using the same exhaust gas composition analyzer as had been used 
before. The ignition timing was fixed at 24 degrees before top-dead-
center. A regenerative electric dynamometer was installed which 
allowed the load torque to be adjusted to a desired value. 

8.4.1 Single-Speed Test 

A fixed engine speed of 2800 rpm was selected. Rich, stoichiometric 
and lean air-fuel ratios were used which corresponded to lambda-ratios 
of 0.8, 1.0 and 1.2. These values were different to those selected for the 
multi-cylinder engine, because of the different characteristics of the two 
power units, but comparable for the purpose of this experiment. The 
experimental procedure that was described in Section 8.2 was followed. 
The MLP neural network was trained using a training-file composed of 
spark-voltage vectors and desired-output vectors. In recall, unseen 
training data were used. Experiments were conducted with a range of 
sample intervals. Under these circumstances the neural network virtual-
sensor was able to determine the correct lambda-value, 0.8, 1.0 or 1.2 
with a correct classification rate of approximately 100%. This 
performance was superior to that obtained with the multi-cylinder 
engine, where the best classification rate obtained was 93% (Table 3). 

8.4.2 Multi-Speed Tests 

A more comprehensive set of tests was carried out on the single-
cylinder engine using a more closely spaced range of lambda values, 
i.e., 0.9, 1.0 and 1.1. A range of speeds and training file sizes was also 
used. Spark-voltage vectors and desired-output vectors were recorded at 
speeds of 2800 rpm, 3500 rpm and 4200 rpm. These speed-values 
corresponded approximately to the lower, middle and upper regions of 
the working speed range of the engine. Integration over a number of 
successive cycles was used to reduce the effects of random variations. 
Three training-files were created, one for each speed. Three similar 
files, containing data that was not used during training, were 
constructed for test purposes. 

In order to investigate the effects of different numbers of training 
records, training-files of a number of different sizes were constructed. 
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The number of records (input-output vector pairs) in the training-file of 
an MLP network which leads to optimum classification has been the 
subject of much investigation; however, it has not proved amenable to 
formal analysis. Investigations described in the literature have indicated 
that a number of training-records comparable with, or exceeding, the 
number of weights in the network would lead to good classification 
ability over a representatively large body of test data. If an MLP 
network has P, Q and R neurons in the input, hidden and output layers, 
respectively, the number of weights in the network, Nw, equals (P + 1)Q 
+ (Q + 1)R. Letting the number of records in the training file be Nt, then 
Nt = 1Â1w where 1 is the normalized size of the training file, and 
1 < 1 < 10 for good classification performance. The optimum value of 1 
depends on the shape of the P-dimensional feature space, which is, in 
turn, determined by the problem domain. Generally, large values of 1 
lead to better classification and generalization; however, adoption of 
this criterion often leads to a large training-file size and an extended 
time requirement for network convergence. 
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Figure 7.  Correct classification rate against engine speed for various 
normalized training file sizes. 

Figure 7 shows the classification performance which was obtained at 
different speeds and for different values of 1. At 2800 rpm the neural 
network virtual-sensor could determine the lambda-ratio with a correct 
classification rate of approximately 100% when either of the largest two 
file sizes were used during training. Smaller training file sizes resulted 
in poorer classification rates. At higher speeds the classification rate 
was not as good. Increasing the size of the training file resulted in an 
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improvement in performance to an extent; however, only a small 
improvement was evident as the 1 is increased from 1.25 to 2.5. This 
suggested that the decrease in classification ability was due to some 
inherent change in input data as the speed was increased. 

No conclusive reason has been found for the decrease in classification 
rate with speed and this phenomenon requires further investigation. 
There are two suggested possible reasons: 

• Increased instability in the engine as the speed is increased could 
result in wider variations in the actual lambda-value about the 
nominal value. If this was so the signal-to-noise ratio of the data 
would effectively increase with the speed. This would impair the 
ability of the neural network to correctly categorize the spark 
voltage vectors. 

• The same sample rate was used for all speeds. At higher speeds 
fewer measurements were made per revolution. It is possible that 
the reduced classification rate at higher speeds was due to the 
worsening of the sampling resolution caused by this. 

9 Conclusions 

A Virtual Lambda Sensor, using the Spark Voltage Characterization 
technique, has been introduced here. The system implements neural 
network analysis of the spark-voltage vector, in order to provide an 
estimate of the in-cylinder air-fuel ratio. The experimental work shows 
that the virtual-sensor can provide analogous functionality to the 
conventional lambda-sensor, but without the need for the usual 
hardware sensor. The Virtual Lambda Sensor is capable of determining 
when the lambda-ratio is stoichiometric, or when it deviates from this 
value by approximately ±10% (lambda = 1.0 ± 0.1), with the engine 
operating under fixed speed and load conditions. 

A description has been given of the relatively early stages of the 
development of the technique. To be practicable as a replacement for 
the conventional lambda-sensor in a commercial engine, improvements 
to the Virtual Lambda Sensor are necessary in two respects: firstly, the 
accuracy of the estimation must be improved, 1% is an aim imposed by 
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the catalytic converter; and secondly, variations in speed, load, etc., 
must be accommodated. 

Improved accuracy demands that the neural network is trained with 
lambda data which is of higher consistency. Although quantitative 
measurements are not presented here, observation of the output voltage 
from the exhaust-gas analyzer using an oscilloscope showed that the 
lambda-value, under constant engine conditions, could vary from its 
nominal value by up to approximately 7%. The accuracy which has 
been achieved is probably close to the best achievable using the current 
methodology. However, initial results obtained using a more 
sophisticated experimental methodology have demonstrated improved 
accuracy. 

A mechanism for dealing with variations in speed, load, etc., is the 
creation of overlays to the neural network weight-matrix for different 
physical conditions. However, this is likely to impose a large training 
time penalty. Mathematical analysis of the dynamic physical system is 
also being implemented to provide guidance about the optimum pre-
processing of the data before it is used in the neural network training 
phase. 
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