TB2901H

Maximum Power 47 W BTL $\times 4$-ch Audio Power IC

The TB2901H is 4 -ch BTL audio amplifier for car audio applications.

This IC can generate higher power: Pout MAX = 47 W as it includes the pure complementary P-ch and N-ch DMOS output stage.

It is designed to yield low distortion ratio for $4-\mathrm{ch}$ BTL audio power amplifier, built-in standby function, muting function, and various kinds of protectors.

Additionally, high-side switch is built in.

Features

Weight: 7.7 g (typ.)

- High power output
: Pout MAX (1) = 47 W (typ.)
$\left(\mathrm{VCC}_{\mathrm{C}}=14.4 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}\right.$, JEITA max, $\left.\mathrm{R}_{\mathrm{L}}=4 \Omega\right)$
: Pout MAX (2) $=43 \mathrm{~W}$ (typ.)

$$
\left(\mathrm{VCC}=13.7 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \text { JEITA } \max , \mathrm{R}_{\mathrm{L}}=4 \Omega\right)
$$

: Pout MAX (3) $=80 \mathrm{~W}$ (typ.)
$\left(\mathrm{VCC}=14.4 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}\right.$, JEITA max, $\left.\mathrm{R}_{\mathrm{L}}=2 \Omega\right)$
: Pout (1) = 29 W (typ.)
$\left(\mathrm{V}_{\mathrm{CC}}=14.4 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=10 \%, \mathrm{R}_{\mathrm{L}}=4 \Omega\right)$
: Pout (2) $=25 \mathrm{~W}$ (typ.)
$\left(\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=10 \%, \mathrm{R}_{\mathrm{L}}=4 \Omega\right)$
: Pout (3) $=55 \mathrm{~W}$ (typ.)

$$
\left(\mathrm{V} C \mathrm{CC}=14.4 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=10 \%, \mathrm{R}_{\mathrm{L}}=2 \Omega\right)
$$

- Low distortion ratio: THD $=0.015 \%$ (typ.)

$$
\left(\mathrm{VCC}=13.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \text { Pout }=5 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=4 \Omega\right)
$$

- Low noise: VNO $=90 \mu \mathrm{Vrms}$ (typ.)

$$
\left(\mathrm{VCC}=13.2 \mathrm{~V}, \mathrm{Rg}=0 \Omega, \mathrm{BW}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega\right)
$$

- Built-in standby switch function (pin 4)
- Built-in muting function (pin 22)
- Built-in high-side switch function (pin 25)
- Built-in various protection circuits:

Thermal shut down, overvoltage, out to GND, out to $V_{C C}$, out to out short

- Operating supply voltage: $\operatorname{VCC}(\mathrm{opr})=9 \sim 18 \mathrm{~V}\left(\mathrm{R}_{\mathrm{L}}=4 \Omega\right)$

Note 1: Since this device's pins have a low withstanding voltage, please handle it with care.

Block Diagram

Caution and Application Method

(Description is made only on the single channel.)

1. Voltage Gain Adjustment

This IC has no NF (negative feedback) Pins. Therefore, the voltage gain can not be adjusted, but it makes the device a space and total costs saver.

Figure 1 Block Diagram

The voltage gain of amp. $1: \mathrm{GV} 1=0 \mathrm{~dB}$
The voltage gain of amp. $2 \mathrm{~A}, \mathrm{~B} \quad: \mathrm{GV} 2=20 \mathrm{~dB}$
The voltage gain of BTL connection: $\mathrm{GV}(\mathrm{BTL})=6 \mathrm{~dB}$
Therefore, the total voltage gain is decided by expression below.

$$
\mathrm{GV}=\mathrm{GV} 1+\mathrm{Gv} 2+\mathrm{GV}(\mathrm{BTL})=0+20+6=26 \mathrm{~dB}
$$

2. Standby SW Function (pin 4)

By means of controlling pin 4 (standby pin) to High and Low, the power supply can be set to ON and OFF. The threshold voltage of pin 4 is set at about $3 \mathrm{~V}_{\mathrm{BE}}$ (typ.), and the power supply current is about $2 \mu \mathrm{~A}$ (typ.) in the standby state.

Control Voltage of Pin 4: VSB

Standby	Power	$\mathrm{V}_{\mathrm{SB}}(\mathrm{V})$
ON	OFF	$0 \sim 1.5$
OFF	ON	$3.5 \sim 6 \mathrm{~V}$

Figure 2 With pin 4 set to High, Power is turned ON

When changing the time constant of pin 4 , check the pop noise.

Advantage of Standby SW

(1) Since VCC can directly be controlled to ON or OFF by the microcomputer, the switching relay can be omitted.
(2) Since the control current is microscopic, the switching relay of small current capacity is satisfactory for switching.

Figure 3

3. Muting Function (pin 22)

Audio muting function is enabled when pin 22 is Low. When the time constant of the muting function is determined by R_{1} and C_{4}, it should take into account the pop noise. The pop noise which is generated when the power or muting function is turned ON/OFF will vary according to the time constant. (Refer to Figure 4 and Figure 5.)
The pin 22 is designed to operate off 5 V .
Moreover, this terminal (pin 22) serves as the source switch of current of an internal mute circuit. And it is designed so that the discharge current of this terminal (pin 22) may serve as $200 \mu \mathrm{~A}$. The outside pull-up resistor R_{1} is determind on the basic of this value.
ex) When control voltage is changed in to 6 V from 5 V .

$$
6 \mathrm{~V} / 5 \mathrm{~V} \times 47 \mathrm{k}=56 \mathrm{k}
$$

To obtain enough mute attenuation, a series resistor, R_{1} at pin 22 should be $47 \mathrm{k} \Omega$ or more.

Figure 4 Muting Function

Figure 5 Mute Attenuation - $\mathrm{V}_{\text {mute }}$ (V)

4. High-Side Switch

Pin 25 of this device is used in concerned with $V_{C C}$ as a high-side switch which operates with the standby pin. Thus, both the power amp IC and the connected external unit (the hideaway unit) can be turned ON/OFF by using of the standby switch.

5. Pop Noise Suppression

Since the AC-GND pin (pin 16) is used as the NF pin for all amps, the ratio between the input capacitance (C1) and the AC-to-GND capacitance (C6) should be 1:4.

Also, if the power is turned OFF before the C 1 and C 6 batteries have been completely charged, pop noise will be generated because of the DC input umbalance.
To counteract the noise, it is recommended that a longer charging time be used for C 2 as well as for C 1 and C6. Note that the time which audio output takes to start will be longer, since the C 2 makes the muting time (the time from when the power is turned ON to when audio output starts) is fix.

The pop noise which is generated when the muting function is turned ON/OFF will vary according to the time constant of C 4 .
The greater the capacitance, the lower the pop noise. Note that the time from when the mute control signal is applied to C 4 to when the muting function is turned ON/OFF will be longer.

6. External Component Constants

Component Name	Recommended Value	Purpose		Effect	
		Lower than recommended value	Higher than recommended value	Notes	
C 1	$0.22 \mu \mathrm{~F}$	To eliminate DC	Cut-off frequency is increased	Cut-off frequency is reduced	Pop noise is generated when VCC is ON
C 2	$10 \mu \mathrm{~F}$	To reduce ripple	Powering ON/OFF is faster	Powering ON/OFF takes longer	
C 4	$0.1 \mu \mathrm{~F}$	To provide sufficient oscillation margin	Reduces noise and provides sufficient oscillation margin		
C 5	39 F	To reduce pop noise	High pop noise. Duration until muting function is turned ON/OFF is short	Low pop noise. Duration until muting function is turned ON/OFF is long	
C 6	$1 \mu \mathrm{~F}$	Ripple filter	Power supply ripple filtering		

Note: If recommended value is not used.

Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Peak supply voltage (0.2 s)	V_{CC} (surge)	50	V
DC supply voltage	$\mathrm{V}_{\mathrm{CC}}(\mathrm{DC})$	25	V
Operation supply voltage	V_{CC} (opr)	18	V
Output current (peak)	I_{O} (peak)	9	A
Power dissipation	$\mathrm{P}_{\mathrm{D}}($ Note 2$)$	125	W
Operation temperature	$\mathrm{T}_{\mathrm{opr}}$	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note 2: Package thermal resistance $\theta_{\mathrm{j}-\mathrm{T}}=1^{\circ} \mathrm{C} / \mathrm{W}$ (typ.) $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, with infinite heat sink)
Electrical Characteristics
(unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Quiescent current	ICCQ	-	$\mathrm{V}_{\text {IN }}=0$	-	200	400	mA
Output power	Pout MAX (1)	-	$\mathrm{V}_{\mathrm{CC}}=14.4 \mathrm{~V}$, max POWER	-	47	-	W
	Pout MAX (2)	-	$\mathrm{V}_{\mathrm{CC}}=13.7 \mathrm{~V}$, max POWER	-	43	-	
	Pout (1)	-	$\mathrm{V}_{\mathrm{CC}}=14.4 \mathrm{~V}, \mathrm{THD}=10 \%$	-	29	-	
	Pout (2)	-	THD $=10 \%$	23	25	-	
Output power ($\left.\mathrm{R}_{\mathrm{L}}=2 \Omega\right)$	Pout MAX (3)	-	$\mathrm{V}_{\mathrm{CC}}=14.4 \mathrm{~V}$, max POWER	-	80	-	W
	Pout MAX (4)	-	$\mathrm{V}_{\mathrm{CC}}=13.7 \mathrm{~V}$, max POWER	-	77	-	
	Pout (3)	-	$\mathrm{V}_{\mathrm{CC}}=14.4 \mathrm{~V}, \mathrm{THD}=10 \%$	-	55	-	
	Pout (4)	-	THD $=10 \%$	42	45	-	
Total harmonic distortion	THD	-	$\mathrm{P}_{\text {OUT }}=5 \mathrm{~W}$	-	0.015	0.15	\%
Voltage gain	Gv	-	$\mathrm{V}_{\text {OUT }}=0.775 \mathrm{Vrms}$	24	26	28	dB
Voltage gain ratio	$\Delta \mathrm{GV}$	-	$\mathrm{V}_{\text {OUT }}=0.775 \mathrm{Vrms}$	-1.0	0	1.0	dB
Output noise voltage	$\mathrm{V}_{\text {NO }}$ (1)	-	Rg $=0 \Omega$, DIN45405	-	100	-	$\mu \mathrm{Vrms}$
	$\mathrm{V}_{\mathrm{NO}}(2)$	-	$\mathrm{Rg}=0 \Omega$, $\mathrm{BW}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}$	-	90	200	
Ripple rejection ratio	R.R.	-	$\begin{aligned} & \mathrm{f}_{\text {rip }}=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{g}}=620 \Omega \\ & \mathrm{~V}_{\text {rip }}=0.775 \mathrm{Vrms} \end{aligned}$	50	60	-	dB
Cross talk	C.T.	-	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=620 \Omega \\ & \mathrm{~V}_{\mathrm{OUT}}=0.775 \mathrm{Vrms} \end{aligned}$	-	70	-	dB
Output offset voltage	VofFSET	-	-	-150	0	150	mV
Input resistance	$\mathrm{R}_{\text {IN }}$	-	-	-	90	-	$\mathrm{k} \Omega$
Standby current	ISB	-	Standby condition	-	2	10	$\mu \mathrm{A}$
Standby control voltage	$\mathrm{V}_{\text {SB }} \mathrm{H}$	-	POWER: ON	3.5	-	6.0	V
	$V_{\text {SB }} \mathrm{L}$	-	POWER: OFF	0	-	1.5	
Mute control voltage	$\mathrm{V}_{\mathrm{M}} \mathrm{H}$	-	MUTE: OFF	3.0	-	6.0	V
	$\mathrm{V}_{\mathrm{M}} \mathrm{L}$	-	MUTE: ON, $\mathrm{R}_{1}=47 \mathrm{k} \Omega$	0	-	0.5	
Mute attenuation	ATT M	-	MUTE: ON $\mathrm{V}_{\text {OUT }}=7.75 \mathrm{Vrms} \rightarrow$ Mute: OFF	80	90	-	dB

High-Side Switch

Output current	IO	-		400	-	-	mA
Difference voltage between V_{CC} and output	$\Delta \mathrm{V}_{\mathrm{O}}$	-	$\mathrm{I}_{\mathrm{O}}=400 \mathrm{~mA},+\mathrm{B}=9.6 \mathrm{~V}$	-	0.25	0.6	V

Test Circuit

THD - f

Package Dimensions

※ From center to parting line.

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- This product generates heat during normal operation. However, substandard performance or malfunction may cause the product and its peripherals to reach abnormally high temperatures.
The product is often the final stage (the external output stage) of a circuit. Substandard performance or malfunction of the destination device to which the circuit supplies output may cause damage to the circuit or to the product.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

