AIR COIL WINDING CHART

Inductance	Number of Turns	Number of Turns	Number of Turns	Number of Turns	Number of Turns	
in Microhenries	Diameter = .100	Diameter = .125	er = .125 Diameter = .150 Diameter = .200		Diameter = .250	
	Length = .200	Length = .250	Length = .250	Length = .400	Length = .500	
0.01	3.1	2.8	2.6	2.2	2.0	
0.02	4.4	4.0	3.6	3.1	2.8	
0.03	5.4	4.8	4.4	3.8	3.4	
0.04	6.3	5.6	5.1	4.4	4.0	
0.05	7.0	6.3	5.7	4.9	4.4	
0.06	7.7	6.9	6.3	5.4	4.8	
0.07	8.3	7.4	6.8	5.9	5.2	
0.08	8.9	7.9	7.2	6.3	5.6	
0.09	9.4	8.4	7.7	6.6	5.9	
0.10	9.9	8.9	8.1	7.0	6.3	
0.15	12.1	10.8	9.9	8.6	7.7	
0.20	14.0	12.5	11.4	9.9	8.9	
0.25	15.7	14.0	12.8	11.1	9.9	
0.30	17.1	15.3	14.0	12.1	10.8	
0.35	18.5	16.6	15.1	13.1	11.7	
0.40	19.8	17.7	16.2	14.0	12.5	
0.45	21.0	18.8	17.1	14.8	13.3	
0.50	22.1	19.8	18.1	15.7	14.0	
0.55	23.2	20.8	19.0	16.4	14.7	
0.60	24.2	21.7	19.8	17.1	15.3	
0.65	25.2	22.6	20.6	17.8	16.0	
0.70	26.2	23.4	21.4	18.5	16.6	
0.75	27.1	24.2	22.1	19.2	17.1	
0.80	28.0	25.0	22.9	19.8	17.7	
0.85	28.9	25.8	23.6	20.4	18.3	
0.90	29.7	26.6	24.2	21.0	18.8	
0.95	30.5	27.3	24.9	21.6	19.3	
1.00	31.3	28.0	25.6	22.1	19.8	
1.50	38.3	34.3	31.3	27.1	24.2	
2.00	44.3	39.6	36.1	31.3	28.0	
2.50	49.5	44.3	40.4	35.0	31.3	
3.00	54.2	48.5	44.3	38.3	34.3	
3.50	58.6	52.4	4/.8	41.4	37.0	
4.00	62.6	56.0	51.1	44.3	39.6	
4.50	50.4	59.4	54.2	47.0	42.0	
5.00	70.0	62.6	57.2	49.5	44.3	
5.50	/ 3.4	65.7	59.9	51.9	40.4	
6.00	76.7	08.0	62.6	54.2	48.5	
	/ ୬.୪ ০০.০	71.4	67.6	50.4	50.5	
7.00	δ2.δ	/4.1	0/.0	0.00	52.4	
0.0	00./	/0./	/0.0	0.0 62.6	54.2	
0.00	01.0	13.2	74 5	02.0	0.00	
00.0	31.3 02.0	01.0	74.0	66.4	57.7	
9.00	30.9 06 5	04.U 86.2	70.7	68.2	61.0	
10.00	30.0	00.3	70.0	70.0	62.6	
10.00	39.0	00.0	δυ.δ	/0.0	02.0	

How to make Air coils with the inductance you wish.

Air Coils

This side will explain how to make coils with accurate inductance.

I have made coils with different number of turns and spacing and measured the inductance with a Wayne Kerr Precision component analyzer 6430A. All contribution to this page are most welcome!

Introduction :

How I did the measurement. I used a drill of 7.1mm for all my test coils. Look at figure at right to see the shape of the coil and its endwires.

How to understand the table below:

The first measurement is made when the coil is totally compact (no space between the turns). Then I started to space the end-wires of the coil in 0.1" (2.54mm) step.

Inductance

60nH

73nH

75nH

72nH

150nH

112nH

111nH

199nH

155nH

128nH

info

compact

_

compact

compact

Lets look at the measurement for 4 turns as an example.

Pad space

0.1 "

0.1 "

0.2 "

H 0.1 "

0.2 "

0.3 "

H 0.1 "

0.2 "

0.3 "

When I made 4 turns the coil was compact and the length between the end wires was almost 0.1".

Measurement of air coil 7.1mm diam, Wire = 0.5mm Cu

The inductance was 199nH.

n=turns

1

2

2

2

3

3

3

4

4

4

Then I spaced the coil so the end wires was 0.2" (5.12mm) apart. The inductance was 155nH.

Then I spaced the coil so the end wires was 0.3" (7.62mm) apart.

The inductance was 128nH...and so on.

	4	0.4 "	127nH	-	4011	
	5	H 0.1 "	275nH	compact	Sart counter	
		termally cleared	J Lim		normally classed	
file:///C /Documents and Settings/Papa/Desktop/How to make Air coils with the inductance you wish.htm (1 of 2) [06.01.2009 2:26:27]						

How	to make	Air co	ls with	the	inductance	vou	wish
110 10	to make		13 1010	i uic	inductance	you	W1311

	5	0.2 "	205nH	-	
	5	0.3 "	197nH	-	2nd222 NVLut
Í	5	0.4 "	174nH	-	LED
ĺ	6	H 0.15 "	328nH	compact	V. 1
ĺ	6	2 "	277nH	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ĺ	6	3 "	223nH	-	
ĺ	6	4 "	210nH	-	10, 10, 10, 10 i
ĺ	7	H 0.2 "	433nH	compact	normally classed
ĺ	7	3 "	311nH	-	- inner
Í	7	4 "	289nH	-	
	7	5 "	242nH	-	N'LA
ĺ	8	H 0.2 "	508nH	compact	
ĺ	8	3 "	399nH	-	×
ĺ	8	4 "	358nH	-	10 10 12 11 1 1 1 m
ĺ	8	5 "	326nH	-	
	9	H 0.2 "	590nH	compact	Sant counter
ĺ	9	3 "	512nH	-	normally closed
	9	4 "	442nH	-	18
	9	5 "	390nH	-	200222
	10	H 0.25 "	672nH	compact	NUM T
	10	3 "	603nH	-	
	10	4 "	514nH	-	1 T. 1
ĺ	10	5 "	461nH	-	
	10	6 "	409nH	-	4011
	1.878 200k	120k Start counter	7 1.674	2004 \$120k	Start counter

Back to main Page | Contact Me | Cheap components

Copyright © Last modified on 30th Sept 2003.

SINGLE LAYER AIR COIL WINDING FORMULA AND Q FACTOR

$$L = \frac{r^2 N^2}{9r + 10A}$$

$$L = inductance (in microhenries)
r = radius of coil (in inches)
N = number of turns
A = length of winding (in inches)$$

$$N = \sqrt{\frac{L (9r + 10A)}{r^2}}$$

In Metric Units: _____

$L = \frac{0.394 r^2 N^2}{9r + 10A}$ $L = inductance (in microhenries) r = radius of coil (in cm) N = number of turns A = length of winding (in cm)$	N = //	L (9r + 10A) 0.394 r ²
--	--------	--------------------------------------

This formula is most accurate when the coil length (A) is greater than 0.67r and the frequency is less than 10 MHz. As the frequency goes above 10MHz, the formula becomes less accurate, because parasitics dominate the circuit.

The chart on the following page shows data for single layer air coils with inductances of 0.01µh to 10.0µh. For each inductance value, the number of turns required is shown for coil diameters of 0.1 inch, 0.125 inch, 0.150 inch, 0.200 inch, and 0.250 inch. In all cases, the length (A) is 4 times the radius.

The Q or Quality Factor of an inductor is the ratio of its inductive reactance X_L to its series resistance R_S . The larger the ratio, the better the inductor.

$$\mathbf{Q} = \frac{\mathbf{X}_{\mathbf{L}}}{\mathbf{R}_{\mathbf{S}}} \qquad \begin{array}{l} X_{\mathsf{L}} = 2\pi f \,\mathsf{L} \\ \text{where:} \\ f = \text{Frequency (Hz)} \\ \mathsf{L} = \text{Inductance in Henries} \end{array}$$

 R_s is determined by multiplying the length of the wire used to wind the coil by the D.C. resistance per unit length for the wire gage used.

Q changes dramatically as a function of frequency. At lower frequencies, Q is very good because only the D.C. resistance of the windings (which is very low) has an effect. As frequency goes up, Q will increase up to about the point where the skin effect and the combined distributed capacitances begin to dominate. From then on, Q falls rapidly and becomes 0 at the self resonance frequency of the coil.

Methods of Increasing Q of Inductors

- 1. Decrease the series resistance of the windings by increasing the wire gage used. Larger wire has a lower resistance per unit length.
- 2. Spread the windings. Air gaps between the windings decrease the distributed capacitances.
- 3. Use a powdered iron or ferrite core to wind the coil on. This will increase the permeability of the space around the core.

