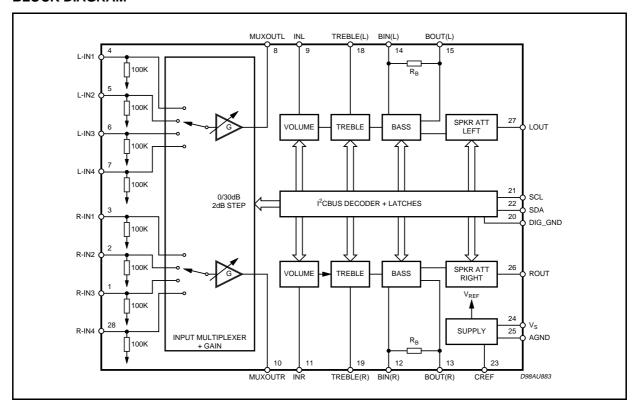


TDA7440D

TONE CONTROL DIGITALLY CONTROLLED AUDIO PROCESSOR

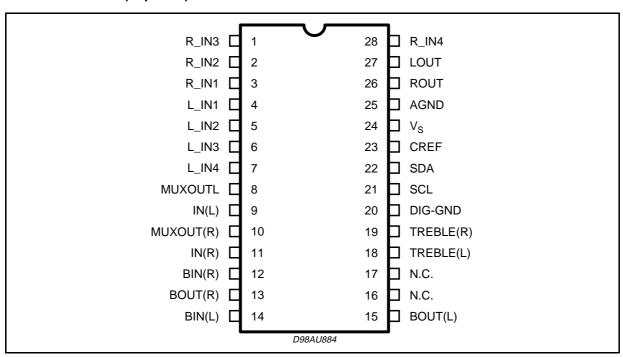
- INPUT MULTIPLEXER
 - 4 STEREO INPUTS
 - SELECTABLE INPUT GAIN FOR OPTIMAL ADAPTATION TO DIFFERENT SOURCES
- ONE STEREO OUTPUT
- TREBLE AND BASS CONTROL IN 2.0dB STEPS
- VOLUME CONTROL IN 1.0dB STEPS
- TWO SPEAKER ATTENUATORS:
 - TWO INDEPENDENT SPEAKER CONTROL IN 1.0dB STEPS FOR BALANCE FACILITY
 - INDEPENDENT MUTE FUNCTION
- ALL FUNCTION ARE PROGRAMMABLE VIA SERIAL BUS

The TDA7440D is a volume tone (bass and treble) balance (Left/Right) processor for quality audio applications in Hi-Fi systems.



Selectable input gain is provided. Control of all the functions is accomplished by serial bus.

The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers.


Thanks to the used BIPOLAR/CMOS Technology, Low Distortion, Low Noise and DC stepping are obtained

BLOCK DIAGRAM

April 1999 1/16

PIN CONNECTION (Top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.5	V
T _{amb}	Operating Ambient Temperature	-10 to 85	°C
T _{stg}	Storage Temperature Range	-55 to 150	°C

THERMAL DATA

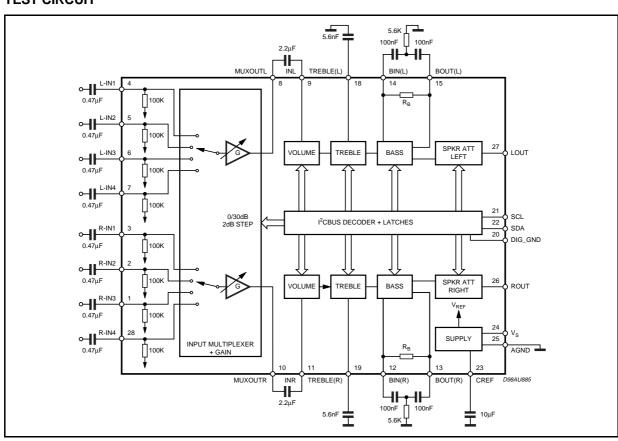
Symbol	Parameter	Value	Unit
R _{th j-pin}	Thermal Resistance Junction-pins	85	°C/W

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	6	9	10.2	V
V_{CL}	Max. input signal handling	2			Vrms
THD	Total Harmonic Distortion V = 1Vrms f = 1KHz		0.01	0.1	%
S/N	Signal to Noise Ratio V _{out} = 1Vrms (mode = OFF)		106		dB
S _C	Channel Separation f = 1KHz		90		dB
	Input Gain in (2dB step)	0		30	dB
	Volume Control (1dB step)	-47		0	dB
	Treble Control (2dB step)	-14		+14	dB
	Bass Control (2dB step)	-14		+14	dB
	Balance Control 1dB step	-79		0	dB
	Mute Attenuation		100		dB

ELECTRICAL CHARACTERISTICS (refer to the test circuit T_{amb} = 25°C, V_S = 9V, R_L = 10K Ω , R_G = 600 Ω , all controls flat (G = 0dB), unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY						
Vs	Supply Voltage		6	9	10.2	V
Is	Supply Current		4	7	10	mA
SVR	Ripple Rejection		60	90		dB
INPUT STA	AGE					
R _{IN}	Input Resistance		70	100	130	ΚΩ
V _{CL}	Clipping Level	THD = 0.3%	2	2.5		Vrms
S _{IN}	Input Separation	The selected input is grounded through a 2.2μ capacitor	80	100		dB
Ginmin	Minimum Input Gain		-1	0	1	dB
G _{inman}	Maximum Input Gain		29	30	31	dB
G _{step}	Step Resolution		1.5	2	2.5	dB
VOLUME (CONTROL					
R _i	Input Resistance		20	33	50	ΚΩ
C _{RANGE}	Control Range		45	47	49	dB
A _{VMAX}	Max. Attenuation		45	47	49	dB
A _{STEP}	Step Resolution		0.5	1	1.5	dB
EA	Attenuation Set Error	$A_V = 0$ to -24dB	-1.0	0	1.0	dB
		$A_V = -24 \text{ to } -47 \text{dB}$	-1.5	0	1.5	dB
E _T	Tracking Error	$A_V = 0$ to -24dB		0	1	dB
		$A_V = -24 \text{ to } -47 \text{dB}$		0	2	dB
V _{DC}	DC Step	adjacent attenuation steps from 0dB to A _V max		0 0.5	3	mV mV
A _{mute}	Mute Attenuation		80	100		dB
BASS CON	NTROL (1)					
Gb	Control Range	Max. Boost/cut	<u>+</u> 12.0	<u>+</u> 14.0	<u>+</u> 16.0	dB
B _{STEP}	Step Resolution		1	2	3	dB
R _B	Internal Feedback Resistance		33	44	55	KΩ
TREBLE C	ONTROL (1)					
Gt	Control Range	Max. Boost/cut	<u>+</u> 13.0	<u>+</u> 14.0	<u>+</u> 15.0	dB
T _{STEP}	Step Resolution		1	2	3	dB
SPEAKER	ATTENUATORS					
C _{RANGE}	Control Range		70	76	82	dB
S _{STEP}	Step Resolution		0.5	1	1.5	dB
EA	Attenuation Set Error	$A_V = 0$ to -20dB	-1.5	0	1.5	dB
		$A_V = -20 \text{ to } -56 \text{dB}$	-2	0	2	dB
V_{DC}	DC Step	adjacent attenuation steps		0	3	mV
A _{mute}	Mute Attenuation		80	100		dB


¹⁾ The device is functionally good at Vs = 5V. a step down, on Vs, to 4V does't reset the device.

2) BASS and TREBLE response: The center frequency and the response quality can be chosen by the external circuitry.

ELECTRICAL CHARACTERISTICS (continued.)

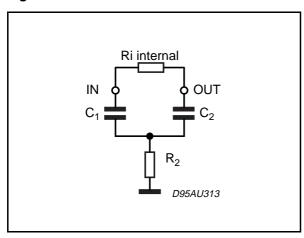
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
AUDIO OU	TPUTS					
VCLIP	Clipping Level	d = 0.3%	2.1	2.6		VRMS
R_L	Output Load Resistance		2			ΚΩ
Ro	Output Impedance		10	30	50	Ω
VDC	DC Voltage Level		3.5	3.8	4.1	V
GENERAL						
E _{NO}	Output Noise	All gains = 0dB; BW = 20Hz to 20KHz flat		5	15	μV
Et	Total Tracking Error	$A_V = 0$ to -24dB		0	1	dB
		$A_V = -24 \text{ to } -47 \text{dB}$		0	2	dB
S/N	Signal to Noise Ratio	All gains 0dB; Vo = 1VRMS;	95	106		dB
S _C	Channel Separation Left/Right		80	100		dB
d	Distortion	Av = 0; Vi = 1VRMS;		0.01	0.08	%
BUS INPU	Γ					
V _{IL}	Input Low Voltage				1	V
V _{IH}	Input High Voltage		3			V
lin	Input Current	V _{IN} = 0.4V	-5	0	5	μА
Vo	Output Voltage SDA Acknowledge	lo = 1.6mA		0.4	0.8	V

TEST CIRCUIT

4

APPLICATION SUGGESTIONS

The first and the last stages are volume control blocks. The control range is 0 to -47dB (mute) for the first one, 0 to -79dB (mute) for the last one. Both of them have 1dB step resolution.


The very high resolution allows the implementation of systems free from any noisy acoustical effect. The TDA7440D audioprocessor provides 3 bands tones control.

Bass Stage

Several filter types can be implemented, connecting external components to the Bass IN and OUT pins.

The fig.1 refers to basic <u>T Type Bandpass Filter</u> starting from the filter component values (R1 in-

Figure 1.

ternal and R2,C1,C2 external) the centre frequency Fc, the gain Av at max. boost and the filter Q factor are computed as follows:

$$F_{C} = \frac{1}{2 \cdot \pi \cdot \sqrt{R1 \cdot R2 \cdot C1 \cdot C2}}$$

$$A_{V} = \frac{R2 C2 + R2 C1 + Ri C1}{R2 C1 + R2 C2}$$

$$Q = \frac{\sqrt{R1 \cdot R2 \cdot C1 \cdot C2}}{R2 C1 + R2 C2}$$

Viceversa, once Fc, Av, and Ri internal value are fixed, the external components values will be:

$$C1 = \frac{A_V - 1}{2 \cdot \pi \cdot F_C \cdot R_i \cdot Q}$$

$$C2 = \frac{Q^2 \cdot C1}{A_V - 1 - Q^2}$$

$$R2 = \frac{A_V - 1 - Q^2}{2 \cdot \pi \cdot C1 \cdot F_C \cdot (A_V - 1) \cdot Q}$$

Treble Stage

The treble stage is a high pass filter whose time constant is fixed by an internal resistor (25K $\!\Omega$ typical) and an external capacitor connected between treble pins and ground

Typical responses are reported in Figg. 10 to 13.

CREF

The suggested $10\mu F$ reference capacitor (CREF) value can be reduced to $4.7\mu F$ if the application requires faster power ON.

Figure 2: THD vs. frequency

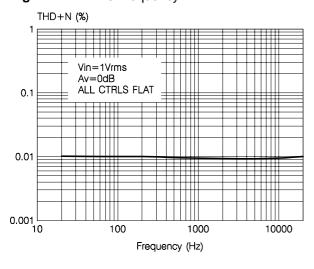


Figure 3: THD vs. RLOAD

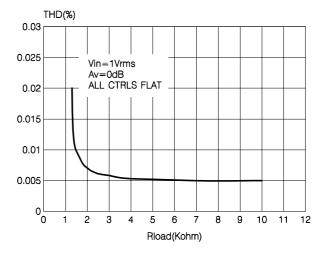


Figure 4: Channel separation vs. frequency

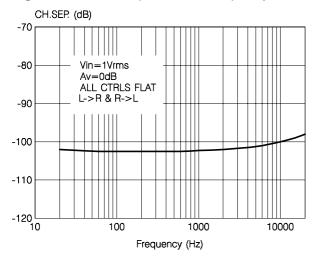


Figure 5: Bass response

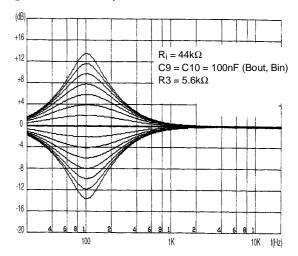
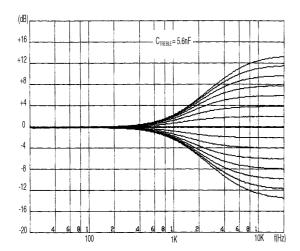



Figure 6: Treble response

1²C BUS INTERFACE

Data transmission from microprocessor to the TDA7440D and vice versa takes place through the 2 wires I²C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

Data Validity

As shown in fig. 7, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Start and Stop Conditions

As shown in fig.8 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

Byte Format

Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an ac-

Figure 7: Data Validity on the I²CBUS

knowledge bit. The MSB is transferred first.

Acknowledge

The master (μ P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 9). The peripheral (audio processor) that acknowledges has to pull-down (LOW) the SDA line during this clock pulse.

The audio processor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

Transmission without Acknowledge

Avoiding to detect the acknowledge of the audio processor, the μP can use a simpler transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data.

This approach of course is less protected from misworking.

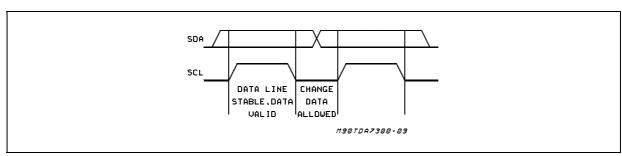


Figure 8: Timing Diagram of I²CBUS

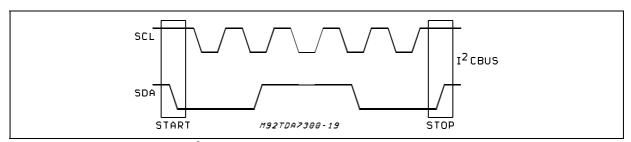
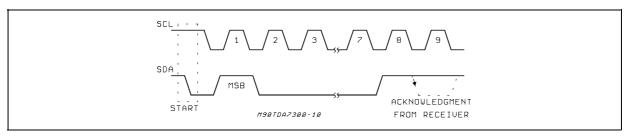
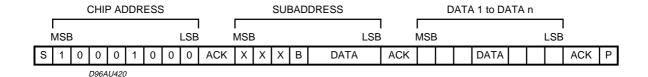



Figure 9: Acknowledge on the I²CBUS

SOFTWARE SPECIFICATION


Interface Protocol

The interface protocol comprises:

- A start condition (S)
- A chip address byte, containing the TDA7440D

address

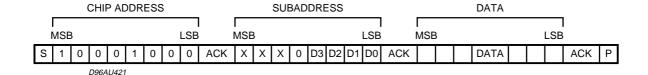
- A subaddress bytes
- A sequence of data (N byte + acknowledge)
- A stop condition (P)

ACK = Acknowledge

S = Start

P = Stop

A = Address

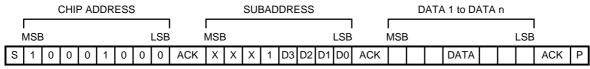

B = Auto Increment

EXAMPLES

No Incremental Bus

The TDA7440D receives a start condition, the

correct chip address, a subaddress with the B=0 (no incremental bus), N-data (all these data concern the subaddress selected), a stop condition.



Incremental Bus

The TDA7440D receive a start conditions, the correct chip address, a subaddress with the B=1 (incremental bus): now it is in a loop condition with an autoincrease of the subaddress whereas

SUBADDRESS from "XXX1000" to "XXX1111" of DATA are ignored.

The DATA 1 concern the subaddress sent, and the DATA 2 concern the subaddress sent plus one in the loop etc, and at the end it receivers the stop condition.

D96AU422

POWER ON RESET CONDITION

INPUT SELECTION	IN2
INPUT GAIN	28dB
VOLUME	MUTE
BASS	0dB
TREBLE	2dB
SPEAKER	MUTE

DATA BYTES

Address = 88 HEX (ADDR:OPEN).

FUNCTION SELECTION: First byte (subaddress)

MSB							LSB	SUBADDRESS
D7	D6	D5	D4	D3	D2	D1	D0	30BADDRE33
Х	X	Х	В	0	0	0	0	INPUT SELECT
X	X	X	В	0	0	0	1	INPUT GAIN
Х	X	Х	В	0	0	1	0	VOLUME
Х	X	Х	В	0	0	1	1	BASS
Х	X	Х	В	0	1	0	0	NOT USED
Х	Х	Х	В	0	1	0	1	TREBLE
Х	Х	Х	В	0	1	1	0	SPEAKER ATTENUATE "R"
Х	Х	Х	В	0	1	1	1	SPEAKER ATTENUATE "L"

B = 1: INCREMENTAL BUS ACTIVE

B = 0: NO INCREMENTAL BUS

X = DON'T CARE

In Incremental Bus Mode, the "not used" function must be addressed in any case. For example to refresh "Volume = 0dB" and Speaker_R = -40dB", the following bytes must be sent:

SUBADDRESS	XXX10010
VOLUME DATA	X0000000
BUS DATA	XXXX1111
NOT USED DATA	XXXX1111
TREBLE DATA	XXXX1111
SPEAKER_R DATA	X0000010

INPUT SELECTION

MSB							LSB	INPUT MULTIPLEXER	
D7	D6	D5	D4	D3	D2	D1	D0	INFOI MOLTIPLEXER	
Χ	Χ	Х	Χ	X	Х	0	0	IN4	
Χ	Χ	Х	Χ	X	Х	0	1	IN3	
Χ	Χ	Х	Χ	X	Х	1	0	IN2	
Х	Х	Х	Х	Х	X	1	1	IN1	

DATA BYTES (continued)

INPUT GAIN SELECTION

MSB							LSB	INPUT GAIN
D7	D6	D5	D4	D3	D2	D1	D0	2dB STEPS
				0	0	0	0	0dB
				0	0	0	1	2dB
				0	0	1	0	4dB
				0	0	1	1	6dB
				0	1	0	0	8dB
				0	1	0	1	10dB
				0	1	1	0	12dB
				0	1	1	1	14dB
				1	0	0	0	16dB
				1	0	0	1	18dB
				1	0	1	0	20dB
				1	0	1	1	22dB
				1	1	0	0	24dB
				1	1	0	1	26dB
				1	1	1	0	28dB
				1	1	1	1	30dB

GAIN = 0 to 30dB

VOLUME SELECTION

MSB							LSB	VOLUME
D7	D6	D5	D4	D3	D2	D1	D0	1dB STEPS
					0	0	0	0dB
					0	0	1	-1dB
					0	1	0	-2dB
					0	1	1	-3dB
					1	0	0	-4dB
					1	0	1	-5dB
					1	1	0	-6dB
					1	1	1	-7dB
	0	0	0	0				0dB
	0	0	0	1				-8dB
	0	0	1	0				-16dB
	0	0	1	1				-24dB
	0	1	0	0				-32dB
	0	1	0	1				-40dB
	Х	1	1	1	Х	Х	Х	MUTE

VOLUME = 0 to 47dB/MUTE

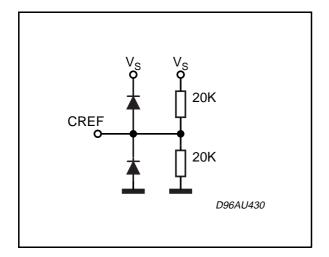
DATA BYTES (continued)

BASS SELECTION

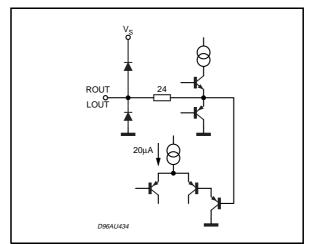
MSB							LSB	BASS
D7	D6	D5	D4	D3	D2	D1	D0	2dB STEPS
				0	0	0	0	-14dB
				0	0	0	1	-12dB
				0	0	1	0	-10dB
				0	0	1	1	-8dB
				0	1	0	0	-6dB
				0	1	0	1	-4dB
				0	1	1	0	-2dB
				0	1	1	1	0dB
				1	1	1	1	0dB
				1	1	1	0	2dB
				1	1	0	1	4dB
				1	1	0	0	6dB
				1	0	1	1	8dB
				1	0	1	0	10dB
				1	0	0	1	12dB
				1	0	0	0	14dB

TREBLE SELECTION

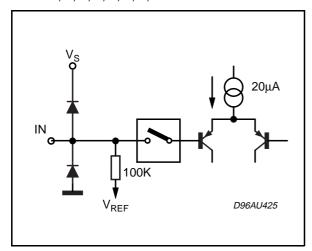
MSB							LSB	TREBLE	
D7	D6	D5	D4	D3	D2	D1	D0	2dB STEPS	
				0	0	0	0	-14dB	
				0	0	0	1	-12dB	
				0	0	1	0	-10dB	
				0	0	1	1	-8dB	
				0	1	0	0	-6dB	
				0	1	0	1	-4dB	
				0	1	1	0	-2dB	
				0	1	1	1	0dB	
				1	1	1	1	0dB	
				1	1	1	0	2dB	
				1	1	0	1	4dB	
				1	1	0	0	6dB	
				1	0	1	1	8dB	
				1	0	1	0	10dB	
				1	0	0	1	12dB	
				1	0	0	0	14dB	

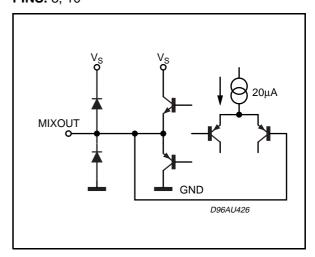

DATA BYTES (continued)

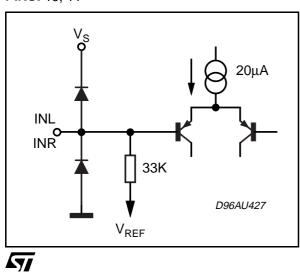
SPEAKER ATTENUATE SELECTION

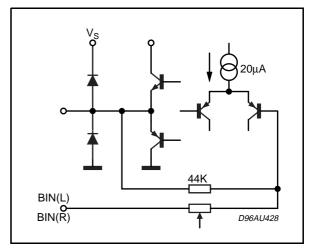

MSB							LSB	SPEAKER ATTENUATION	
D7	D6	D5	D4	D3	D2	D1	D0	1dB	
					0	0	0	0dB	
					0	0	1	-1dB	
					0	1	0	-2dB	
					0	1	1	-3dB	
					1	0	0	-4dB	
					1	0	1	-5dB	
					1	1	0	-6dB	
					1	1	1	-7dB	
	0	0	0	0				0dB	
	0	0	0	1				-8dB	
	0	0	1	0				-16dB	
	0	0	1	1				-24dB	
	0	1	0	0				-32dB	
	0	1	0	1				-40dB	
	0	1	1	0				-48dB	
	0	1	1	1				-56dB	
	1	0	0	0				-64dB	
	1	0	0	1				-72dB	
	1	1	1	1	Х	Х	Х	MUTE	

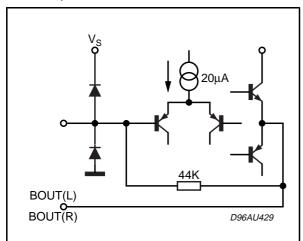
SPEAKER ATTENUATION = 0 to -79dB/MUTE

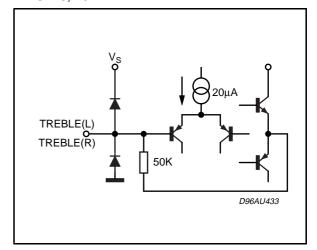

PINS: 23

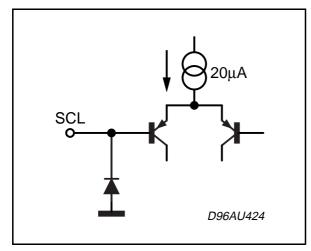

PINS: 26, 27

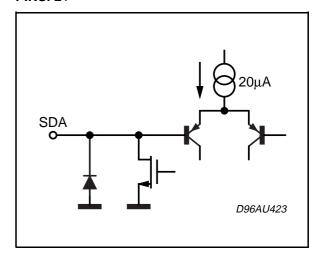

PINS: 1, 2, 3, 4, 5, 6, 7, 28


PINS: 8, 10

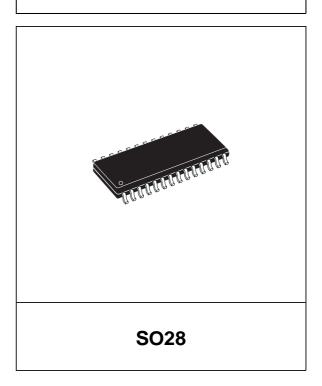

PINS: 19, 11

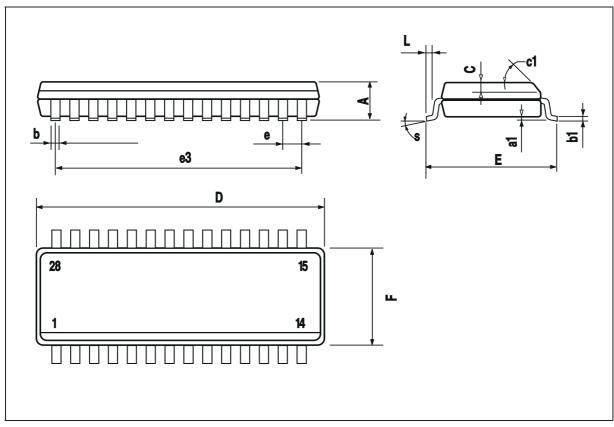

PINS: 12, 14


PINS: 13, 15


PINS: 18, 19

PINS: 20




PINS: 21

DIM.		mm		inch					
D	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
Α			2.65			0.104			
a1	0.1		0.3	0.004		0.012			
b	0.35		0.49	0.014		0.019			
b1	0.23		0.32	0.009		0.013			
С		0.5			0.020				
с1	45° (typ.)								
D	17.7		18.1	0.697		0.713			
Е	10		10.65	0.394		0.419			
е		1.27			0.050				
e3		16.51			0.65				
F	7.4		7.6	0.291		0.299			
L	0.4		1.27	0.016		0.050			
S	8 ° (max.)								

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.