INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC01 May 1992

HILIP

TDA7056

FEATURES

- No external components
- No switch-on/off clicks
- Good overall stability
- Low power consumption
- Short circuit proof
- ESD protected on all pins.

QUICK REFERENCE DATA

GENERAL DESCRIPTION

The TDA7056 is a mono output amplifier contained in a 9 pin medium power package. The device is designed for battery-fed portable mono recorders, radios and television.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage		3	11	18	V
Po	output power in 16 Ω	V _P = 11 V	2.5	3	-	W
G _V	internal voltage gain		39	40.5	42	dB
I _P	total quiescent current	V _P = 11 V;	-	5	7	mA
		R _L = ∞				
THD	total harmonic distortion	P _O = 0.5 W	-	0.25	1	%

ORDERING INFORMATION

EXTENDED	PACKAGE					
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE		
TDA7056	9	SIL	plastic	SOT110 ⁽¹⁾		

Note

1. SOT110-1; 1996 August 21.

TDA7056

PINNING

PIN	DESCRIPTION		
1	n.c.		
2	V _P		
3	input (+)		
4	signal ground		
5	n.c.		
6	output (+)		
7	power ground		
8	output (–)		
9	n.c.		

FUNCTIONAL DESCRIPTION

The TDA7056 is a mono output amplifier, designed for battery-fed portable radios and mains-fed equipment such as television. For space reasons there is a trend to decrease the number of external components. For portable applications there is also a trend to decrease the number of battery cells, but still a reasonable output power is required.

The TDA7056 fulfills both of these requirements. It needs no peripheral components, because it makes use of the Bridge-Tied-Load (BTL) principle. Consequently it has, at the same supply voltage, a higher output power compared to a conventional Single Ended output stage. It delivers an output power of 1 W into a loudspeaker load of 8 Ω with 6 V supply or 3 W into 16 Ω loudspeaker at 11 V without need of an external heatsink. The gain is internally fixed at 40 dB. Special attention is given to switch-on/off click suppression, and it has a good overall stability. The load can be short circuited at all input conditions.

TDA7056

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	supply voltage		_	18	V
I _{ORM}	Peak output current repetitive		_	1	A
I _{OSM}	Peak output current non-repetitive		_	1.5	A
T _{stg}	storage temperature range		-55	150	°C
Tj	junction temperature		_	150	°C
P _{tot}	total power dissipation	T _{case} < 60 °C	_	9	W
T _{sc}	short circuiting time	see note 1	_	1	hr

Note

1. The load can be short-circuited at all input conditions.

THERMAL RESISTANCE

SYMBOL	PARAMETER	NOM.	UNIT	
R _{th j-c}	from junction to case	10	K/W	
R _{th j-a}	from junction to ambient in free air	55	K/W	

POWER DISSIPATION

Assume: $V_P = 11 \text{ V}$; $R_L = 16 \Omega$.

The maximum sine-wave dissipation is 1.52 W. The R_{th j-a} of the package is 55 K/W. T_{amb} max = $150 - 55 \times 1.52 = 66.4$ °C.

TDA7056

CHARACTERISTICS

At T_{amb} = 25 °C; f = 1 kHz; V_P = 11 V; R_L = 16 Ω (see Fig.2).

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VP	operating supply voltage		3	11	18	V
I _{ORM}	repetitive peak output current		-	-	0.6	А
l _P	total quiescent current	note 1	-	5	7	mA
		$R_L = \infty$				
Po	output power	THD = 10%	2.5	3	-	W
THD	total harmonic distortion	P _O = 0.5 W	-	0.25	1	%
Gv	voltage gain		39	40.5	42	dB
V _{no}	noise output voltage	note 2	-	180	300	μV
V _{no}	noise output voltage	note 3	-	60	-	μV
	frequency response		-	20 to 20.000	-	Hz
RR	ripple rejection	note 4	36	50	-	dB
ΔV	DC-output offset voltage	note 5	-	-	200	mV
Z _i	input impedance		-	100	-	kΩ
li	input bias current		-	100	300	nA

Notes to the characteristics

 With a load connected to the outputs the quiescent current will increase, the maximum value of this increase being equal to the DC output offset voltage divided by R_L.

2. The noise output voltage (RMS value) is measured with $R_S = 5 k\Omega$ unweighted (20 Hz to 20 kHz).

3. The noise output voltage (RMS value) at f = 500 kHz is measured with $R_S = 0 \Omega$ and bandwidth = 5 kHz. With a practical load ($R_L = 16 \Omega$, $L_L = 200 \mu$ H) the noise output current is only 50 nA.

4. The ripple rejection is measured with R_S = 0 Ω and f = 100 Hz to 10 kHz.

The ripple voltage (200 mV) is applied to the positive supply rail.

5. $R_S = 5 k\Omega$.

TDA7056

PACKAGE OUTLINE

TDA7056