- c. Remove 2 screws (7) and 6 hexagonal nuts (8) in fig. 3 and then remove the equalizer circuit board (2). - d. In this condition, you can exchange the control parts. Fig. 3 ## **ADJUSTMENTS** ## **BEFORE COMMENCING** 1. Make sure that primary supply voltage comes within *120V AC ± 10% (U, C models). *G model 220V AC. A model 240V AC. 2. Proceed with the adjustments about 5 minutes after the power has been turned on to stabilize the operation of the amplifier. | Step | Adjustment item | Connection terminal | Instrument required | Measurement conditions | Adjustment locations | Rating or standard | Remarks | |------|--------------------|--|--------------------------------------|--|----------------------------|--|--| | 1 | Idling Current | Across the terminals of R263 (Lch) and R264 (Rch). | DCVM | | VR101 (Lch)
VR102 (Rch) | 11m∨ ± 2mV | AUTO,
CLASS A SW
→ OFF
No load
No signal | | 2 | AUTO CLASS A | INPUT
SP OUT
TP101 ~ GND | Low frequency
ACVM
DCVM | Apply a 1kHz sine wave signal to INPUT so that the output level to 30W (15.5V $^{+0V}_{-4.5V}$) | VR103
+16 -16 | Pin 1 of IC102
do change to
"L" level
(-16V) from
"H" level
(+16V). | 8Ω load
AUTO
CLASS A
SW → ON
*1 | | 3 | X AMP
operation | INPUT SP OUT ±LP ~ GND ±RP ~ GND | Low frequency
ACVM
Osilloscope | Apply a 1kHz sine wave signal to INPUT so that the output level to $30V \pm 0.5V$. | | Output wave obtained as listed in fig. 4. | No load | ^{*1.} AUTO A circuit has a hysteresis response and holding time, so take notice that the changing point at the high level of signal differ from the one at the low level. ## TEST POINT