- c. Remove 2 screws (7) and 6 hexagonal nuts (8) in fig. 3 and then remove the equalizer circuit board (2).
- d. In this condition, you can exchange the control parts.

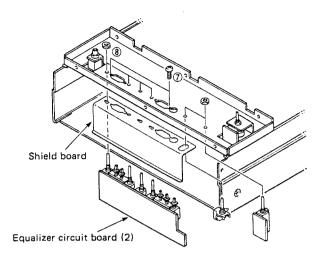
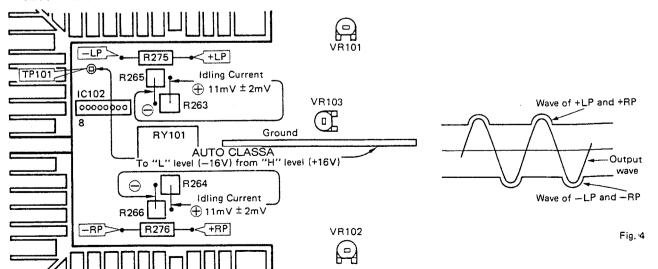


Fig. 3

ADJUSTMENTS

BEFORE COMMENCING

1. Make sure that primary supply voltage comes within *120V AC ± 10% (U, C models).


*G model 220V AC. A model 240V AC.

2. Proceed with the adjustments about 5 minutes after the power has been turned on to stabilize the operation of the amplifier.

Step	Adjustment item	Connection terminal	Instrument required	Measurement conditions	Adjustment locations	Rating or standard	Remarks
1	Idling Current	Across the terminals of R263 (Lch) and R264 (Rch).	DCVM		VR101 (Lch) VR102 (Rch)	11m∨ ± 2mV	AUTO, CLASS A SW → OFF No load No signal
2	AUTO CLASS A	INPUT SP OUT TP101 ~ GND	Low frequency ACVM DCVM	Apply a 1kHz sine wave signal to INPUT so that the output level to 30W (15.5V $^{+0V}_{-4.5V}$)	VR103 +16 -16	Pin 1 of IC102 do change to "L" level (-16V) from "H" level (+16V).	8Ω load AUTO CLASS A SW → ON *1
3	X AMP operation	INPUT SP OUT ±LP ~ GND ±RP ~ GND	Low frequency ACVM Osilloscope	Apply a 1kHz sine wave signal to INPUT so that the output level to $30V \pm 0.5V$.		Output wave obtained as listed in fig. 4.	No load

^{*1.} AUTO A circuit has a hysteresis response and holding time, so take notice that the changing point at the high level of signal differ from the one at the low level.

TEST POINT

