VACUTRACE

Vacuum Tube Curve Tracer

Made in USA

Copyrights \& Trademarks

© Copyright Hagerman Audio Labs 2008. All rights reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent.

Disclaimer

The information contained in this document is subject to change without notice. Hagerman Audio Labs shall not be liable for errors contained herein or for consequential damages in connection with the furnishing, performance, or use of this material.

Warranty

Hagerman Audio Labs warrants this product free of defects in materials and workmanship for a period of 10 years (90 days on tubes). If you discover a defect, Hagerman Audio Labs will, at its option, repair or replace the product at no charge to you provided you return it during the warranty period, transportation charges prepaid to Hagerman Audio Labs. This warranty does not apply if the product has been damaged by negligence, accident, abuse or misuse or misapplication, has been damaged because it has been improperly connected to other equipment or has been modified without the express written permission of Hagerman Audio Labs. This warranty is limited to the replacement or repair of this product and not to damage to equipment of other manufacturers. Any applicable implied warranties, including warranty of merchantability, are limited in duration to a period of the express warranty as provided herein beginning with the original date of purchase and no warranties, whether express or implied shall apply to the product thereafter. Under no circumstances shall Hagerman Audio Labs be liable for any loss, direct, indirect, incidental, special, or consequential damage arising out of or in connection with the use of this product.

Hagerman Audio Labs

PO Box 26437
Honolulu, HI 96825
808-383-2704 (voice)
808-394-6076 (fax)
www.haglabs.com

Description

The VacuTrace is a unique piece of laboratory test equipment that converts your analog oscilloscope into a full-features vaccum tube curve tracer. This powerful and flexible combination accurately sweeps the characteristic curves of diodes, triode, tetrodes, and pentodes in real-time. A special A/B comparison mode allows perfect tube matching by overlapping both sets of curves. A digital readout displays plate and grid bias voltages, cathode current, transconductance gain, and output conductance (1/rp).

Package Contents

- VacuTrace
- Power cord
- Four Adapter card in case
- Three BNC cables

Specifications

Item	Specification
Plate Voltage	0V to 380V @ 200 mA
Cathode Current	0 mA to 100 mA (200 mA in 2A mode)
Grid Step Sizes	$0.5 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$ (8 steps) @ 5 mA
Plate Power	20W peak
Screen Voltage	100 V to 300V @ 25 mA
Transconductance	$0.1 \mathrm{~mA} / \mathrm{V}$ to $20.0 \mathrm{~mA} / \mathrm{V}$
Output Conductance	$0.001 \mathrm{~mA} / \mathrm{V}$ to $2.000 \mathrm{~mA} / \mathrm{V}$ (1000 k to 500 ohm)
Basic Accuracy	2\% voltage and current, 5\% conductance
Output Signal Gains	Plate/Screen: 10mA/V Grid: -50mV/V Cathode: $40 \mathrm{mV} / \mathrm{mA}$
Intensity Modulation	5 V TTL levels, low on, high off
Heater Supplies	$\begin{aligned} & 6.3 \mathrm{~V} @ 5 \mathrm{amp} \\ & 5.0 \mathrm{~V} @ 3 \mathrm{amp} \\ & \hline \end{aligned}$
Socket Adapter Cards	Dual Triodes: 8 and 9 pin Pentodes: 8 pin (A and B) Power: 5V Diodes and 2A3/300B Blank: (wire up you own socket)
Input Voltage	120 Vac or $240 \mathrm{Vac}, 50 \mathrm{~W}$
Fuse	$1 \mathrm{amp} 5 \times 20$ slo-blo

Socket Adapter Cards

Socket adapter cards are employed to accommodate various tube pinouts. These cards plug onto the connector at the top of VacuTrace and are held in place by four wing nuts. They are built to be rugged and quickly swapped with one another. A socket adapter card must be installed before a vacuum tube can be tested. Standard cards included with VacuTrace are:

- Dual 8 and 9 pin triodes (12AX7A/6DJ8, 6SN7)
- Octal pentode power tubes (6L6GC, KT88)
- Power triodes and diodes (2A3/300B, 5Y3)
- Blank (for customization, see Chapter 6)

Connections

Connecting a VacuTrace is simple. Use the BNC cables provided to connect the X, Y and Z outputs to your oscilloscope. Note, not all oscilloscopes have intensity modulation. This is ok, but makes it more difficult to determine which curve belongs to which tube in A/B comparison mode.

1. Connect X to channel 2 (horizontal) on your oscilloscope.
2. Connect Y to channel 1 (vertical).
3. Connect Z to the intensity modulation input, usually located on the rear.
4. Connect the ac power cord.

That's it, install a socket adapter card and you are ready to go. Be sure to set your oscilloscope to XY mode. Also, initially set both channel attenuators to 0.5 V /division.

Operation

Front Panel

The controls have been laid out and spaced for easy and intuitive operation. Be sure to select standby mode before changing tubes or socket adapter cards.

Control/ Indicator	Description
Tube Select	Sets the operating mode and chooses which tube to sweep. There are two tube circuits, A and B, which define the sections within a dual tube (or left and right sockets on the octal power pentode adapter). Stby mode shuts down all signals to the sockets, including heater supplies. Selecting A or B tests just that tube. A/B mode alternately tests both tubes resulting in overlapped curves and is ideal for matching tubes. 2A mode doubles current and power capability by shunting the cathode current sense resistors together.
Grid Steps	Selects the step size (gain) for the grid amplifiers. There are always eight steps starting at 0V.
Voltage	This is the main limit control and sets the maximum value of plate voltage for sweeping. When the limit is reached, the plate voltage ramps back down to 0V initiating another cycle.
Current	Sets the maximum value of cathode current for a sweep.

Power	Sets the maximum peak power dissipated by the tube's plate during a sweep.
Rate/Offset	This is a dual function control. While sweeping it acts as sort of a sweep rate adjustment. It offers a compromise between accuracy and visual flicker. In Hold mode this becomes an offset adjustment for the grid bias voltage.
Sweep/Hold	Sets the operating mode between sweeping curves and taking measurements. In Hold mode the 31/2 digit LED display is turned on and reads the value of the measurement selected by the Output control.
Output	Selects the measurement to be read in the display. Normally, tube curves are swept in the gp mode, but the gm mode can also provide useful information.
Triode/Pentode	Operates the tube as either a triode or pentode. The screen is tied directly to the plate in triode mode.
Screen	Adjusts the screen voltage when in pentode mode. StatusLED indicates the present operating mode or condition. When in standby it is red. During normal operation it is green. If flashing yellow, then VacuTrace is experiencing an overload condition.
Caution	LED lights up yellow when a voltage greater than 70V is present on the output connector.

Rear Panel

The rear panel holds the ac mains input/fuse holder connector, on/off power switch, and three output signal BNC connectors. The outputs are labeled X, Y and Z and connect to your oscilloscope by the BNC cables provided. See Chapter 1 for correct wiring.

Socket Adapter Cards

Some of the socket adapter cards contain switches. These are for heater voltage selection or, in the case of a diode, to choose which plate is operating (pin 4 or pin 6). The heaters of a $12 \mathrm{AX7}$ type tube are run in parallel at 6.3 V (set switch to 12.6 V). All heaters are ac. The wing nuts are connected to chassis ground. There are two tube circuits, A and B, which allows for tube matching. The output connector has the following pinout:

Pin \#	Signal	Description
1	PLATE	Plate (common to A and B)
2		
3	IKA	Cathode (A)
4	GRIDA	Grid (A)
5	+6 H	Switched 6.3V heater power
6	5 CT	5V heater center tap, connected to cathode
7	+5 H	Switched 5V heater power
8	SCREEN	Screen (can be switched to plate, common to A and B)
9		
10	IKB	Cathode (B)
11	GRIDB	Grid (B)
12	$-6 H$	6.3 H heater return
13	GND	
14	-5 H	5 heater return

On the Duals card, both sockets use A and B circuits (use only one tube at a time). On the Pentodes card, the left socket uses A, right B. Both sockets on the Power card use the A circuit.

Generating Curves

Setup

The most common use of VacuTrace is to sweep the characteristic curves of a vacuum tube. There are two ways to display curves, cathode current vs. grid voltage, and cathode current vs. plate voltage. Most users are familiar with published operating curves as shown below (which were actually generated using a VacuTrace).

While in standby mode, install your tube. Set the Voltage limit to minimum, the Sweep/Hold switch to sweep, and Output to gp. Adjust the Current and Power limits to appropriate levels. Set the attenuator controls on your oscilloscope to the desired gain levels as given in the following table.

Output	Oscilloscope	Actual
Plate/Screen	$1 \mathrm{~V} / \mathrm{div}$	$100 \mathrm{~V} / \mathrm{div}$
	$0.5 \mathrm{~V} / \mathrm{div}$	$50 \mathrm{~V} / \mathrm{div}$
Cathode	$0.5 \mathrm{~V} / \mathrm{div}$	$12.5 \mathrm{~mA} / \mathrm{div}$
	$0.2 \mathrm{~V} / \mathrm{div}$	$5 \mathrm{~mA} / \mathrm{div}$
	$0.1 \mathrm{~V} / \mathrm{div}$	$2.5 \mathrm{~mA} / \mathrm{div}$
Grid	$1 \mathrm{~V} / \mathrm{div}$	$20 \mathrm{~V} / \mathrm{div}$
	$0.5 \mathrm{~V} / \mathrm{div}$	$10 \mathrm{~V} / \mathrm{div}$
	$0.2 \mathrm{~V} / \mathrm{div}$	$4 \mathrm{~V} / \mathrm{div}$

Make sure the oscilloscope is set to XY mode and the spot is positioned in the lower left corner (you may need to use the horizontal position control instead of the channel 2 offset). This point is defined as OmA and OV. Now turn the Tube Select to A and wait 10 to 30 seconds for the heater to warm up. Slowly increase the Voltage limit and you will see curves starting to form. Adjust the Grid Steps and other
controls as necessary until you have a full set of curves and the tube is running safely within its ratings.

Limits

Three sweep limit controls are provided to prevent tube damage and allow you to adjust the way you want the curves presented. The triode curves shown above are power and voltage limited. The A/B mode curves shown below are both current and voltage limited. Sometimes you will want to combine all three.

Modes

Tube matching is accomplished using the A/B mode. VacuTrace automatically alternates sweeps between tube A and tube B displaying both sets of curves simultaneously. Differences in tubes are readily apparent and it becomes obvious that single point matching (such as current at a given bias) is insufficient. The Zaxis intensity control modulates the B tube so that its curves appear dotted.

Switching to 2 A mode connects both cathode sense resistors together thereby doubling the current capability to 200 mA . Note that while in A or 2A mode, the B tube is cutoff by applying -70 V to its grid. And, of course, vice versa.

Sweep rate is adjusted by the Rate/Offset control. Use this to reduce flicker in the display. Setting the Triode/Pentode control to pentode enables the Screen control. It is best to start at 100 V and work your way up.

You may switch modes at any time and set controls to any position in any combination without causing damage to VacuTrace.

Transfer Function

By switching the Output to gm the oscilloscope display changes to current vs. grid voltage. You will probably have to readjust the attenuator on the X -axis to get a better aspect ratio. This unusual set of curves defines the transfer function for a given plate voltage. However, you must insure that neither the Current nor Power limit controls are involved. Drawing imaginary lines connecting each peak yields the input-to-output transconductance transfer function. Linearity of the tube is demonstrated by the spacing from peak to peak.

Measurements

Hold Mode

Tube measurements are taken by switching to Hold mode. By doing so, the plate voltage goes to the Voltage limit setting and the grid voltage goes to the Grid Steps setting plus the offset from the Rate/Offset control. This determines the bias point to operate the tube. You will also notice the $3^{1 ⁄ 2}$ digit LED display is enabled.

Setting the Output control to Vs reads the present screen voltage, or if set to triode mode, plate voltage. Changing to Vg reads grid voltage. Use the combination of Grid Steps and Rate/Offset controls to obtain any grid voltage from -0.5 V to -70 V . Once the desired operating point is dialed in, switch Output to Ik to read the resulting cathode current in milliamps.

Ratios

VacuTrace provides dynamic ratio measurements of great value to circuit designers, namely transconductance gain and output conductance.

Transconductance (gm) mode measures the ratio of output Ik divided by input Vg given in mA / V. The modulation of signals and division is all accomplished with analog circuitry. You can see the modulation on the oscilloscope, centered about the chosen operating point.

Similarly, gp measures the output conductance ($1 / \mathrm{rp}$) of the tube. It is the ratio of output Ik divided by input Vp given in mA/V. Again, the modulation, or portion of the curve being measured is visible in the display. VacuTrace always provides a clear picture of what is being measured.

Other standard tube parameters are calculated by:
$r_{p}=\frac{1}{g_{p}}$
$\mu=\frac{g_{m}}{g_{p}}$

Technology

Generating Curves

VacuTrace sweeps the characteristic curves of a vacuum tube by applying plate, screen and grid bias voltages and measuring the resulting cathode current. A low value resistor shunts the cathode to ground converting the current into a voltage that is then amplified and sent to the Y channel of the oscilloscope. The plate voltage is ramped up and down and (an attenuated copy) is sent to the X channel, thereby "drawing" a curve on the oscilloscope's display. The update rate determines image flicker and if fast enough, the curves will appear continuous.

A set of curves is formed because the grid voltage changes to a new value every time the plate reaches 0 V . The grid is stepped to eight different levels starting at 0 V . The oscilloscope photo below shows the relationship between plate and grid voltages.

The peak plate voltage is determined by any of the three limit controls. When one of these limits is reached the ramp is reversed back towards $0 V$. Normally the voltage limit control sets the peak voltage. But often you may want to limit either peak current or peak plate power, both of which can occur prior to the voltage limit. This capability is to prevent tube damage.

The current sense resistor causes a bit of degeneration or negative feedback that introduces small errors in the swept curves. This is because the actual effective grid-to-cathode voltage changes as a function of cathode current. VacuTrace subtracts out this error internally for the Vg and gm measurements, but curves on the oscilloscope remain affected. The 20 ohm sense resistor causes a $1 V$ grid error at 50mA current.

Taking Measurements

Both static and dynamic measurements are done in Hold mode. Switching to Hold mode turns off the sweep and sets the plate voltage to the present limit setting (regardless of current and power limits).

Static voltages and current are measured using a standard analog-to-digital converter (DMM) IC.

In gm (transconductance) mode, a 625 Hz modulation is added to the grid output. The dynamic peak-to-peak grid voltage is used as the reference for the LED analog-to-digital converter and the resulting cathode current modulation (just the ac component) is used as the input. This creates an analog divider circuit to calculate $\partial l \mathrm{k} / \partial \mathrm{Vg}$, which is transconductance gain. Similarly, in gp mode, the plate voltage is modulated and dynamic cathode current measured to determine output conductance.

Miscellaneous

Tube Life

Always set the plate voltage limit to minimum before coming out of standby. Do not turn up the plate voltage until the heaters have warmed up, otherwise you could cause cathode-stripping damage.

Be careful not to exceed any of the tube's maximum operating specifications. VacuTrace can deliver a lot of voltage, current and power to a tube. Small signal types such as a 12AX7 are vulnerable to such overdrive.

It is not necessary to turn off VacuTrace when swapping tubes or socket adapter cards. That is what standby mode is for. All signals to the output connector are shut off in standby and it is safe to change tubes.

Accommodating Other Tubes

The socket adapter cards that come standard with VacuTrace only cover the most popular tubes in use today. There are thousands of tubes that do not plug into these sockets. However, all is not lost. Included is a blank socket adapter card (additional ones can be purchased separately). You can customize this card for virtually any tube. Sockets can be mounted on standoffs or, if octal or noval, soldered directly on the card. Just add wire.

Below is an example which connects an EL84 to the A circuit and an EF86 to the B circuit. This lets you run both tubes simultaneously. For power tubes it is best to use the A circuit as it can operate in 2 A mode for up to 200 mA of current. You could actually wire up all four sockets for different tubes, but make sure to operate only one at a time. It is preferable to run the wiring on the underside of the card, but is shown topside here for clarity.

Some tubes will be difficult, if not impossible to operate. For example, the SV-572 is a directly heated power triode - but runs at 6.3V. VacuTrace does not support directly heated cathodes except for the 5 V variety. It is possible to add an external heater supply transformer with the center tap connected to IKA, but these big tubes barely get turned on at 400 V so it is not worth the effort.

Pin \#	EL84/ 6BQ5	EF86/ 6267
1		SCRN
2	GRIDA	
3	IKA	IKB
4	+6 H	+6 H
5	-6 H	-6 H
6		PLATE
7	PLATE	
8		IKB
9	SCRN	GRIDB

Troubleshooting

Problem	Possible Causes/ Solutions
Does not turn on.	Power cord not plugged in or fuse blown. Power switch on rear panel must be turned on.
Tries to turn on but does not operate correctly.	AC input voltage selection on wrong setting.
LED display does not work.	VacuTrace must be in Hold mode.
Curves not generated.	Faulty tube. Oscilloscope not in XY mode or set up improperly. Heater not warmed up yet. VacuTrace in Stby or Hold modes.
Oscilloscope display is backwards.	XY cables are reversed.
Curves keep disappearing.	VacuTrace is in an overload condition, lower the plate or screen voltage or remove fault.

