
Вот тест схемы Мауро нестабилизированное питание +/- 30 В от родного БП сетевого УМ.

Родной БП по 20000 мк в каждом плече:

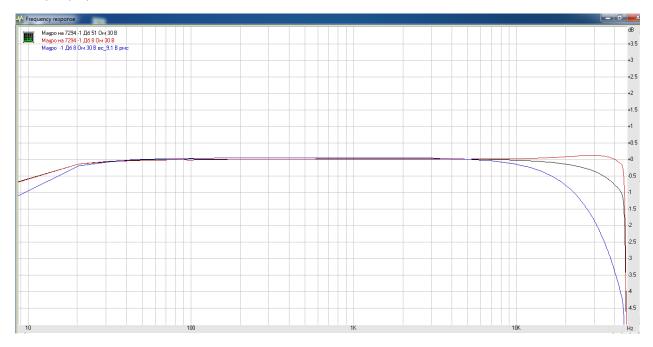
Сначала провёл тест на осцилле с геном. На входе, прямоугольный сигнал. Итак, частота 20 кГц, малая и большая амплитуды, жёлтый – вход, синий – выход:

Видно, как выведение движка переменника на максимум, корёжит входной сигнал. Стоит защитный конденсатор на входе. Режет ВЧ. Итак, амплитуда 17,5 В рмс/8 Ом= порядка 40 Вт, ток потребления 1,36 А. Спускаемся до 1 кГц, так же сначала малая амплитуда, затем большая:

На 1 кГц уже 19,5 В рмс, что порядка 48-49 Вт, ток 1,46 А. Ну и наконец 100 Гц:

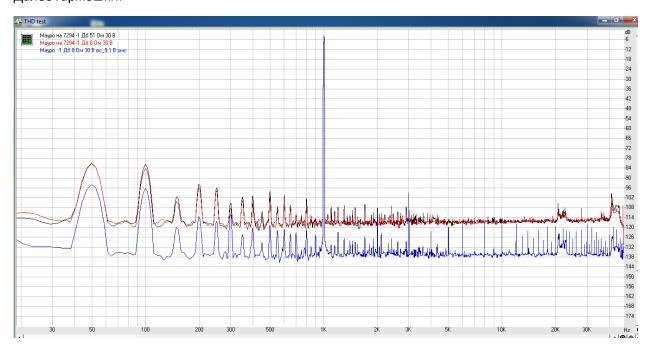
Мауро на 7294 и ОРА134 нестабилизированное питание.

Вот тут мы как раз наблюдаем работу конденсатора в качестве фильтра, срезается задний фронт, причём это достаточно большой конденсатор = 1 мк. Если поставить допустим 0,68 мк, то задний фронт срежется ещё больше и сигнал уже будет напоминать пилу. Если подключить в параллель допустим 10 мкф, то задняя полка выправиться, но тогда будут пропускаться инфранизкие частоты. Амплитуда уже почти 20 В/8 Ом, т. е. почти 50 Вт. Но уровень гармоник и искажений максимален. Ток потребления 1, 56 А.

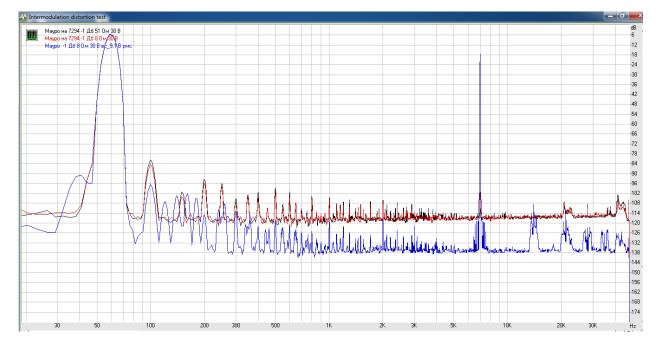

Ладно, неплохо. Идём дальше. Посмотрим на тест в РМАА:

Устройство:	-1 Дб 51 Ом 30 В	Мауро на 7294 -1 Дб 8 Ом 30 В	Ом 30 В вс_9,1 В рмс	Мауро -1 Дб 51 Ом 12 В аккум
Режим работы:	24-bit, 96 kHz	24-bit, 96 kHz	24-bit, 96 kHz	24-bit, 96 kHz
Частотный диапазон (мультитон), дБ	+0.01, -0.08	+0.04, -0.05	+0.05, -0.42	+0.01, -0.08
Уровень шума, дБА	-85.7	-85.9	-104.7	-85.8
Динамический диапазон, дБА	85.6	85.9	104.7	85.8
Гармонические искажения, %	0.00187	0.00185	0.00178	0.00200
Интермодуляционные искажения + шум, %	0.024	0.022	0.00780	0.023
Взаимное проникновение каналов, дБ	-38.6	-39.4	-47.3	-37.8
Интермодуляция (переменная частота), %	0.014	0.014	0.00760	0.014
Частотный диапазон (плавающий тон), дБ	+0.0, -0.0	+0.0, -0.0	+0.0, -0.3	+0.0, -0.0
Гармонические искажения (набор частот)	-67.69, -73.48	-70.58, -74.14	-71.44, -91.91	-70.61, -74.26
THD (swept freq.), %	+0.0, -0.1	+0.0, -0.1	+0.0, -0.3	+0.0, -0.1

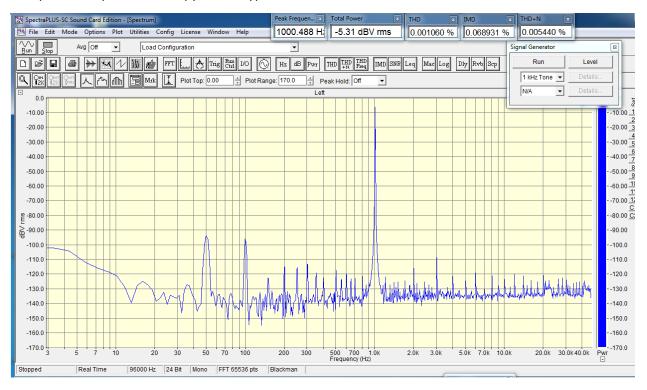
Поясню. Первые две колонки, тест слабого сигнала (порядка 540 мВ рмс) при нагрузке 51 и 8 Ом, далее идёт амплитуда сигнала до начала роста гармоник. И что интересно, в РМАА рост гармоник начинается после 9,1 В, а при тесте в Спектре, после 10,9 В! Это к вопросу что точнее, разброс почти в 2 В! И последняя колонка, ответ тем критикам (с Паяльника), которые говорили что плохое питание...


Запитка от аккумуляторов +/- 12 В. Других нет. И на удивление, особой разницы от питания нет, показания довольно близкие... Дальше по графикам будет ещё интереснее.

Теперь графики. Общий ЧХ:

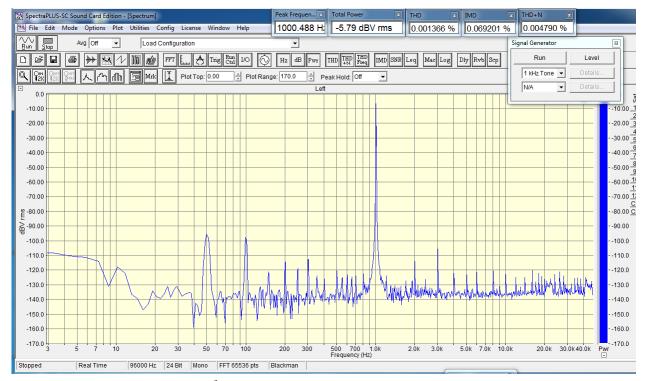

Здесь мы видим работу фильтра РМАА, который режет частоты ниже 20 Гц и спад обусловленный фильтром программы и входным конденсатором(чёрный и красный графики на НЧ. Далее, подключение нагрузки, почему-то делает подъём на ВЧ, скорее всего из-за ослабления ООС(красный на ВЧ). И последний синий график: из-за делителя, режутся ВЧ и немного НЧ и мы видим спад. Получается, при использовании делителя, мы получаем не вполне корректные показания... А иначе никак...

Далее гармошки:

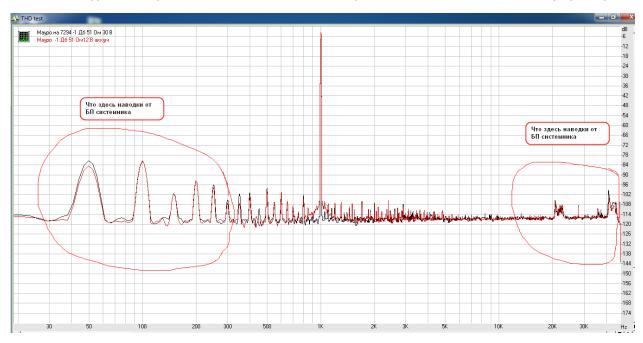


И интермоды:

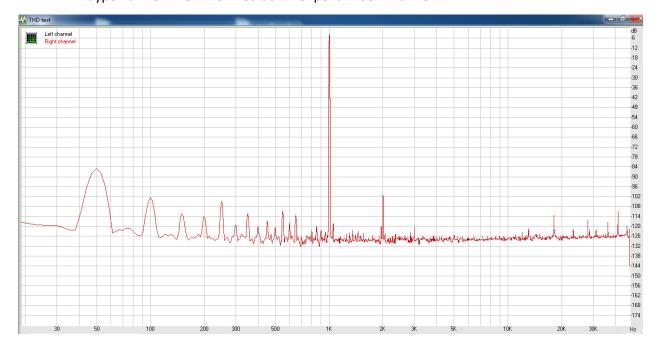
Мауро на 7294 и ОРА134 нестабилизированное питание.

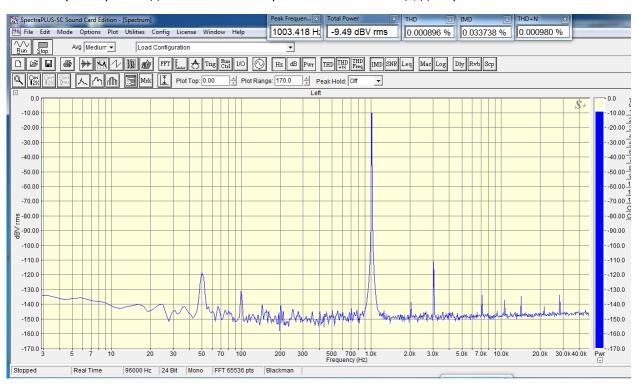


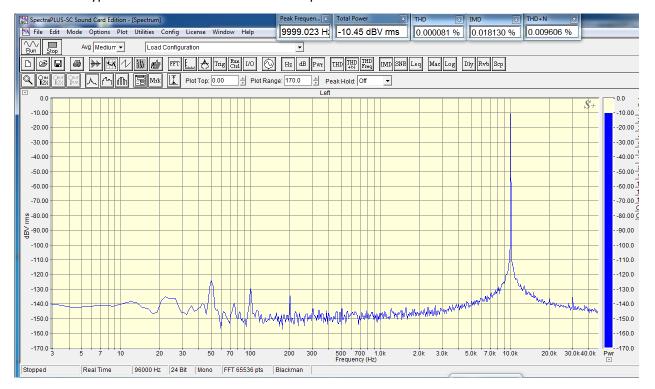
Красный и чёрные графики — слабый сигнал. Синий- сильный, через делитель, до начала роста искажений. Лучшая шумовая полка синего графика обусловлена делителем. Выходной сигнал =9,1 В рмс/8 Ом. А теперь посмотрим на Спектру, тот же уровень:



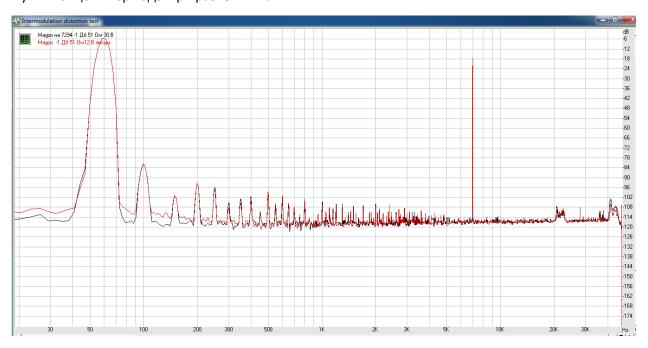
На Спектре искажения несколько ниже. И только подняв уровень выходного сигнала почти на 2 В, мы получаем похожую картинку:


Мауро на 7294 и ОРА134 нестабилизированное питание.


Но на РМАА уровень гармошек больше... И самое интересное, запитка от сети и от аккумулятора:


Как видим, особой разницы нет, как я и говорил выше и даже есть деградация сигнала УМ, из-за низкого питания(красный график). А теперь сравним ту же схему, но запитанную от стабилизированного БП +/- 15 В:

Забавно. Лучшая шумовая полка, это понятно, но сигнал стал значительно чище как в НЧ, так и на ВЧ! Похоже тут и карта неадекватно сигнал обрабатывает! И вот ещё, для сравнения:



Мауро на 7294 и ОРА134 нестабилизированное питание.

2 сигнала с генераторов со сверхнизким искажением 1 и 10 кГц. Артефактов почти нет! И это от того же стабилизированного БП! Что подтверждает мой вывод о неадекватной обработке сигналов картой и плюс наводки от сетевого БП системника. Но увы, это пока данность. Мои юсб карты накрылись, у них наводок было на порядок меньше...

Ну и в конце интермоды при разных питаниях:

И здесь тоже видно, что 12 В, маловато для питания.

Ну и вывод. Я считаю, что выигрыш в 12 Дб, стоит применения стабилизатора! Тем более меня интересовало именно качество УМ. А схема Мауро это даёт, в отличие от других вариантов. И кому нужна большая отдача, нужно делать стаб на большее напряжение. До 50 Вт с микры — весьма неплохо! Но правда качество при такой мощности будет...