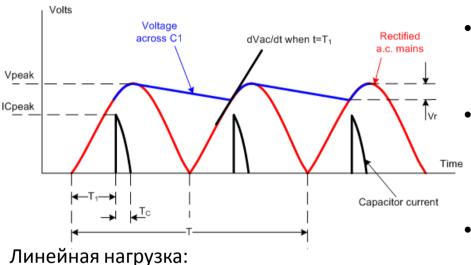
Практикум построения высокоэффективных ККМ на компонентах INFINEON

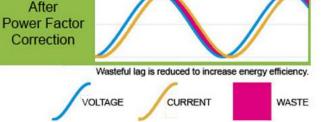
План вебинара

- 1 Типы активных ККМ. Их преимущества и недостатки
- 2 Демонстрационная плата Boost PFC 800W от Infineon
- 3 Особенности работы микросхемы ККМ контроллера ICE3PCS01G
- 4 Новые линейки MOSFET транзисторов серии С7 и Р7
- 5 Параметры SiC диодов Шоттки 5-ого поколения
- 6 Параметры драйвера управления транзисторами 2EDN7524F
- Практическое сравнение работы различных поколений транзисторов и диодов в схеме ККМ от Infineon
- 8 Подведение итогов тестирования

План вебинара


- 1 Типы активных ККМ. Их преимущества и недостатки
- 2 Демонстрационная плата Boost PFC 800W от Infineon
- 3 Особенности работы микросхемы ККМ контроллера ICE3PCS01G
- 4 Новые линейки MOSFET транзисторов серии С7 и Р7
- 5 Параметры SiC диодов Шоттки 5-ого поколения
- 6 Параметры драйвера управления транзисторами 2EDN7524F
- Практическое сравнение работы различных поколений транзисторов и диодов в схеме ККМ от Infineon
- 8 Подведение итогов тестирования

Коррекция коэффициента мощности (ККМ)



Как может выглядеть $\cos(\phi) < 1$:

Нелинейная нагрузка:

Before Power Factor Correction Lag between voltage & current creates waste.

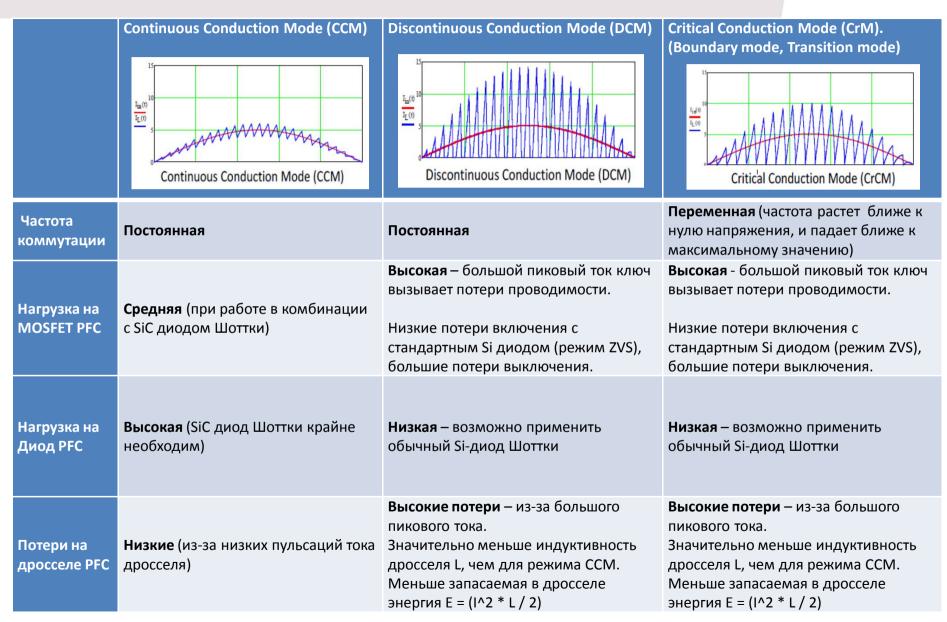
Чем так плох большой реактивный ток (или низкий коэффициент мощности):

- Реактивный ток не совершает полезной работы (поддерживает электро-магнитные взаимодействия схемы);
 - Реактивный ток течёт вместе с активным и занимает полезную площадь проводника. И, вместе с тем, участвует в нагреве проводов;
- Реактивный ток искажает синусоидальную форму напряжения при пиках потребления;

1.
$$\cos \varphi = \frac{P}{S}$$

2.
$$P = U imes I imes \cos arphi$$

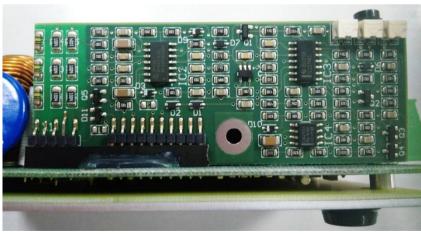
3.
$$Q=U imes I imes \sin arphi$$


4.
$$S=U imes I=\sqrt{P^2+Q^2}$$

Здесь P — активная мощность, S — полная мощность, Q — реактивная мощность.

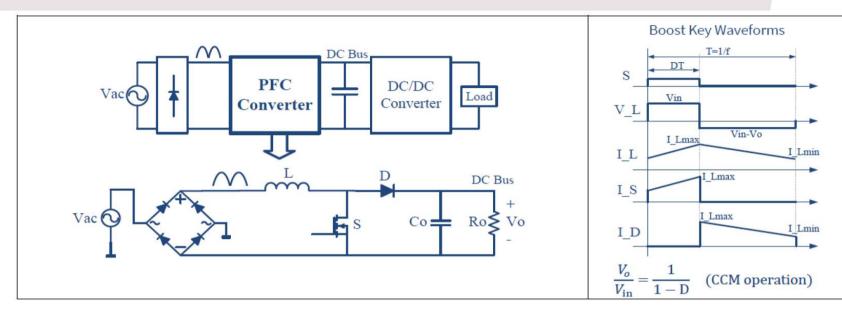
Режимы управления активных однофазных ККМ

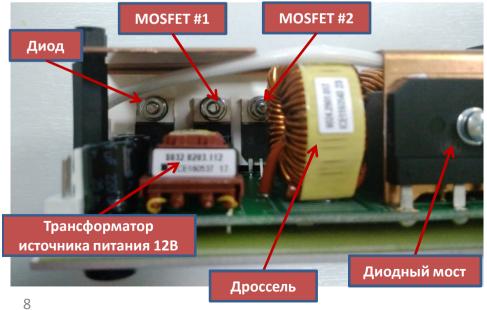
План вебинара


- 1 Типы активных ККМ. Их преимущества и недостатки
- Демонстрационная плата Boost PFC 800W от Infineon
- З Особенности работы микросхемы ККМ контроллера ICE3PCS01G
- 4 Новые линейки MOSFET транзисторов серии С7 и Р7
- 5 Параметры SiC диодов Шоттки 5-ого поколения
- 6 Параметры драйвера управления транзисторами 2EDN7524F
- Практическое сравнение работы различных поколений транзисторов и диодов в схеме ККМ от Infineon
- 8 Подведение итогов тестирования

Фотографии и параметры демо-платы PFC CCM 800W от Infineon

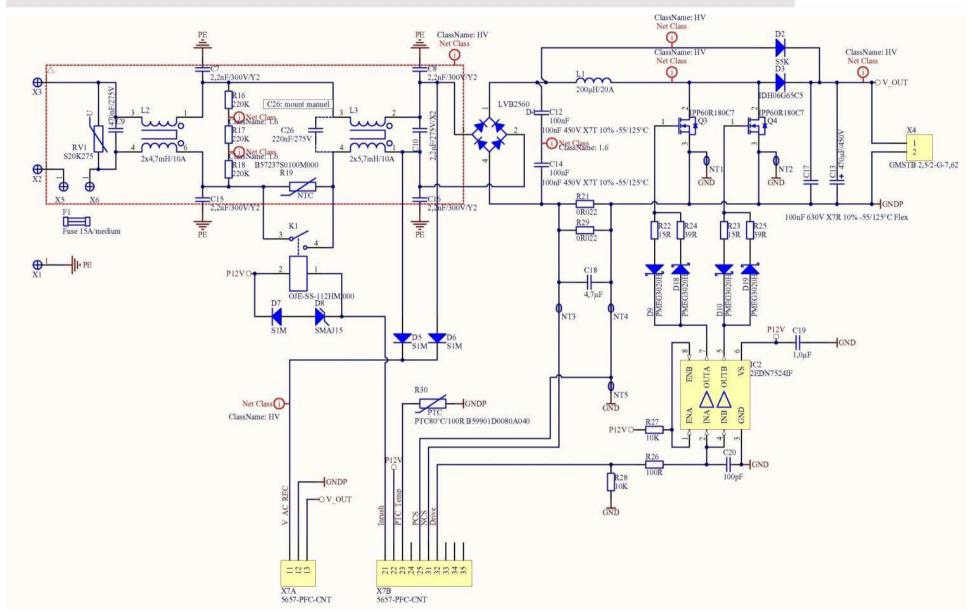
EVAL 800W PFC C7 V2



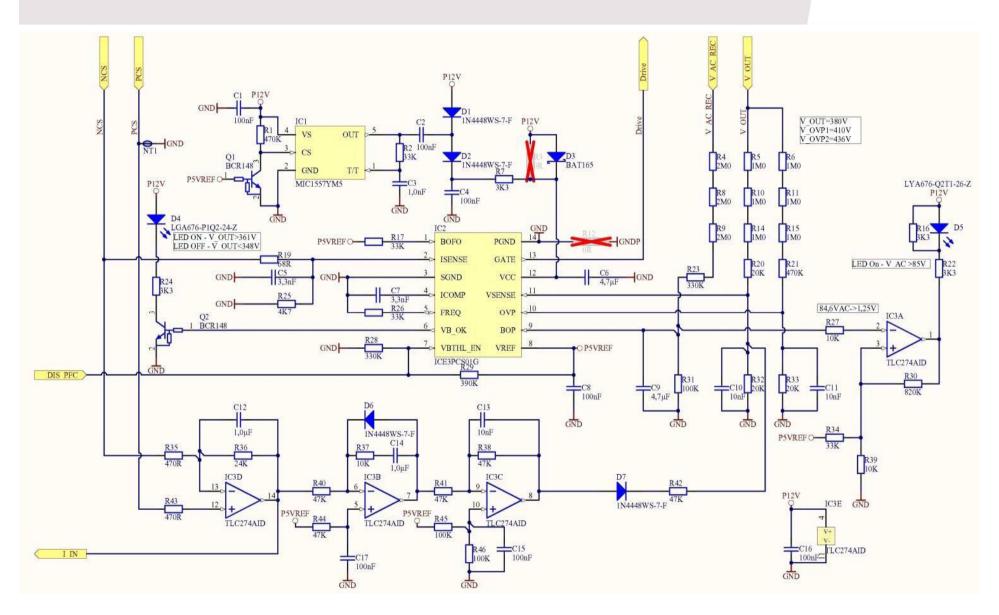

Design Guide for Boost Type CCM PFC with ICE3PCSxx

Параметр платы	Значение
Диапазон входных напряжения, Vin	90 – 265 VAC
Диапазон частот входного напряжения	47 – 64 Hz
Выходное напряжение, Vout	380 VDC
Выходная мощность, Pout	800 W
Максимальная выходная мощность, Pout_max	1000 W
Максимальный выходной ток, lout_max	2.1 A
Максимальный входной ток, lin_max	10 Arms @ Vin = 90 VAC, Pout = 800 W
Максимальная пульсация на выходе, Vout_pp	Max. 20 Vpp
Коэффициент мощности, PF	> 0,98 @ 20% выходной мощности
Коэффициент нелинейных искажений, THD	< 3.0% @ 50-100 % выходной мощности
Габариты демо-платы Д х Ш х В	127 х 86 х 42 мм
Масса демо-платы	~ 1300 г

Основные компоненты демо-платы PFC CCM 800W or Infineon



Компонент схемы	Наименование
MOSFET #1/#2	CoolMOS™ C7 / 2x IPP60R180C7
Диод	thinQ!™ SiC G5 / IDH06G65C5
Дроссель	CH270060 «High Flux» Ni-Fe alloy 200uH / 10A
PFC Контроллер	ICE3PCS01G / XMC1402
Драйвер управления	EiceDRIVER™ / 2EDN7524F
Служебный источник 12В	CoolSET™ QR / ICE2QR2280Z


Принципиальная схема силовой части

Принципиальная схема PFC-контроллера ICE3PCS01G

Таблица энергетических параметров схемы

P _{load} [%]	V _{in} [V]	I _{in} [A]	P _{in} [W]	V _{out} [V]	I _{out} [A]	P _{out} [W]	η[%]	PF	iTHD (%)
10	230,87	0,4057	80,2	380,03	0,1998	75,9	94,64	0,857	12,83
20	230,85	0,7345	162,3	380	0,4122	156,6	96,49	0,957	10,66
30	230,84	1,0822	244,7	380,01	0,625	237,5	97,06	0,979	6,85
40	230,83	1,4293	326,3	380	0,8373	318,1	97,49	0,989	3,21
50	230,81	1,7851	408,7	379,96	1,05	398,9	97,60	0,992	2,42
60	230,78	2,1398	490,8	379,96	1,2619	479,4	97,68	0,994	2,82
70	230,76	2,4935	572,7	379,95	1,4741	560	97,78	0,995	2,62
80	230,74	2,8249	649,3	379,95	1,6717	635,1	97,81	0,996	2,34
90	230,72	3,1799	731,2	379,94	1,8833	715,4	97,84	0,997	2,56
100	230,7	3,5366	813,3	379,93	2,0954	796	97,87	0,997	2,94

800 W 130 kHz PFC Board with ICE3PCS controller 98 97 Efficiency at 96 95 94 Vin=115Vac Efficiency at Vin=230Vac 93 50 60 Load (%) 20 30 70 80 90 100 11

План вебинара

- 1 Типы активных ККМ. Их преимущества и недостатки
- 2 Демонстрационная плата Boost PFC 800W от Infineon
- З Особенности работы микросхемы ККМ контроллера ICE3PCS01G
- 4 Новые линейки MOSFET транзисторов серии С7 и Р7
- 5 Параметры SiC диодов Шоттки 5-ого поколения
- 6 Параметры драйвера управления транзисторами 2EDN7524F
- Практическое сравнение работы различных поколений транзисторов и диодов в схеме ККМ от Infineon
- 8 Подведение итогов тестирования

Типовая схема применения PFC CCM контроллера ICE3PCS01G

3-е поколение CCM PFC контроллеров ICE3PCS0xG - Основные «фишки»

- > Несложное решение с небольшим количеством внешних компонентов;
- Управление по среднему току без прямого измерения синусоидальной формы входного напряжения;
- > Частота коммутации настраивается в пределах (20 kHz 250 kHz);
- > Синхронизация внешним сигналом для многофазных схем (20 kHz 150 kHz);
- > Настраиваемая защита от пониженного входного напряжения;
- > 2 уровня защита по перенапряжению на выходе (OVP2);
- > Защита от обрыва в цепи обратной связи по напряжению;
- > Внешняя компенсация в цепи обратной связи по току;
- > Сигнал PFC контроллера «Enable»;
- > Внутренний регулятор 5V с током 5-10mA;
- > Цифровое управление в цепи обратной связи по напряжению;
- Сигнал VB_OK типа «Power Good» для управления внешним реле или другим ШИМконтроллером;
- > Режим «Boost Follower» с настройкой выходного напряжения при пониженном входном напряжении;

Серия ССМ PFC контроллеров ICE2PCS0xG и ICE3PCS0xG

CCM PFC by Feature	ICE2PCS01G ICE2PCS05G	ICE2PCS02G ICE2PCS03G	ICE3PCS03G	ICE3PCS02G	ICE3PCS01G		
Digital control voltage loop	N.	A.	٧	٧	٧		
Variable frequency	٧	N.A.	٧	٧	٧		
Synchronous frequency	N.	A.	٧	٧	٧		
Open loop protection	٧	٧	٧	٧	٧		
Low peak current limit	-1	-1	-0,4	-0,4	-0,2		
Brown out protection	N.A.	٧	٧	N.A.	٧		
OVP	٧	٧	٧	٧	٧		
2nd OVP		N.A. √					
PFC enable function		N.A.					
Boost follower mode		N.A.					
5V regulator		N.	A.		٧		

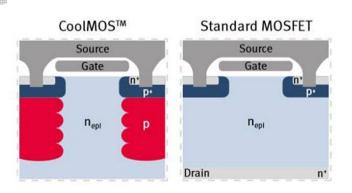
План вебинара

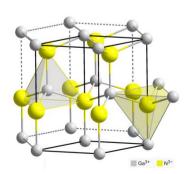
- 1 Типы активных ККМ. Их преимущества и недостатки
- 2 Демонстрационная плата Boost PFC 800W от Infineon
- З Особенности работы микросхемы ККМ контроллера ICE3PCS01G
- 4 Новые линейки MOSFET транзисторов серии С7 и Р7
- 5 Параметры SiC диодов Шоттки 5-ого поколения
- 6 Параметры драйвера управления транзисторами 2EDN7524F
- Практическое сравнение работы различных поколений транзисторов и диодов в схеме ККМ от Infineon
- 8 Подведение итогов тестирования

600 V CoolMOS™ C7 – еще один шаг навстречу GaN технологии

Frequency

GaN (future)

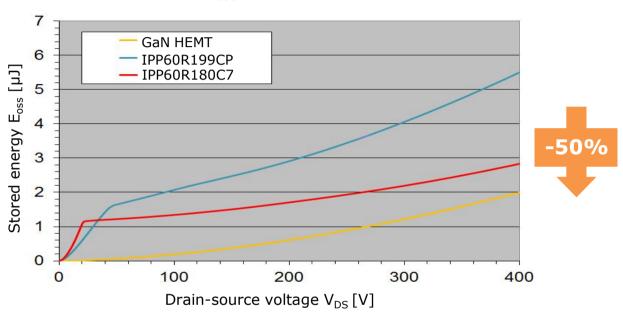

650/600 V CoolMOS™ G7 (Q2-Q4 2016)


- > Further 15% loss reduction
- Innovative package solution (TO-Leadless)

600 V CoolMOS™ C7 (May 2015)

- Hard- and soft switching applications
- Lowest Superjunction switching losses in the industry

650 V CoolMOS™ C7 (2013)



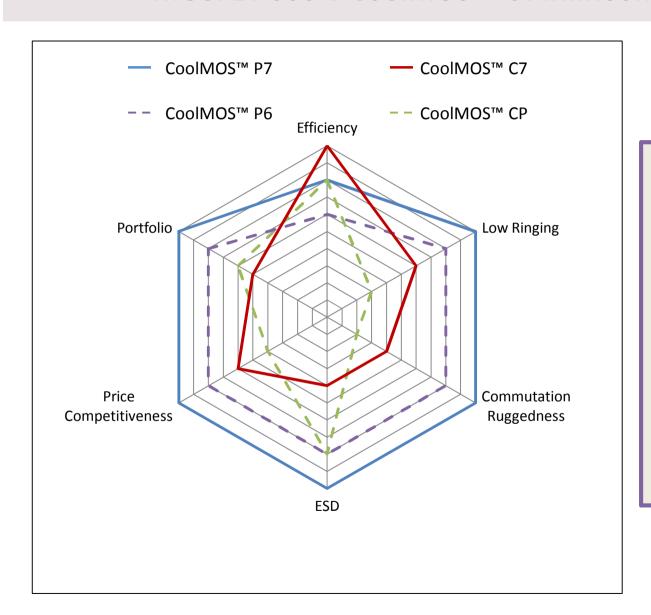
GaN-structure

600 V CoolMOS™ C7 – еще один шаг навстречу GaN технологии

- CoolMOS™ C7 and GaN with similar performance¹)
- > CoolMOS™ C7 comes with benefit of a well established manufacturing technology

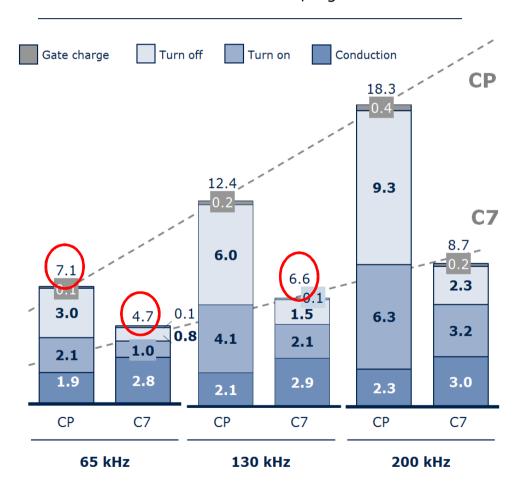
¹⁾ In hard switching topologies, e.g., PFC and TTF

Таблица основных параметров 600 V MOSFET CoolMOS™ С7 в сравнении с аналогами других производителей


Device Parameters	Competito r A	Competitor B	600 V CoolMOS™ C7 IPP60R180C 7	Comments
R _{DS(on)} max [mΩ]	190 mΩ	190 mΩ	180 mΩ	Similar R _{DS(on)} for real comparison
Gate Charge Q _G type [nC]	38 nC	29 nC	24 nC	Q _G , C _{oss} , E _{oss} , to show
C _{oss} [pF]	35 pr	55 pF	1 pF	advantages in switching kHz losses
F.O.M $R_{DS(on)} *Q_G$ [Ω .nC]	6§.βਖ਼zΩ*	1 Ω*nC	nC	Benefits over light load and full load

Similar losses at higher frequency leads to **cost reduction** of magnetic components with improved power density

Флагманские линейки MOSFET 600 V CoolMOSTM от Infineon


- Most rounded technology of all CoolMOS[™] families
- > Perfect combination of:
 - high efficiency
 - excellent ease-of-use
 - competitive price and
 - outstanding portfolio granularity

Потери 600 V CoolMOS™ C7 в схеме PFC CCM 2500W при разных частотах коммутации

Total simulated MOSFET losses [W]

IPW60R045CP vs IPZ60R060C7, highline 2.5 kW

- Smaller MOSFET losses for CoolMOS™ C7 @ 130 kHz than CoolMOS™ CP @ 65 kHz
- Increasing relative advantage of CoolMOS™ C7 with growing frequencies

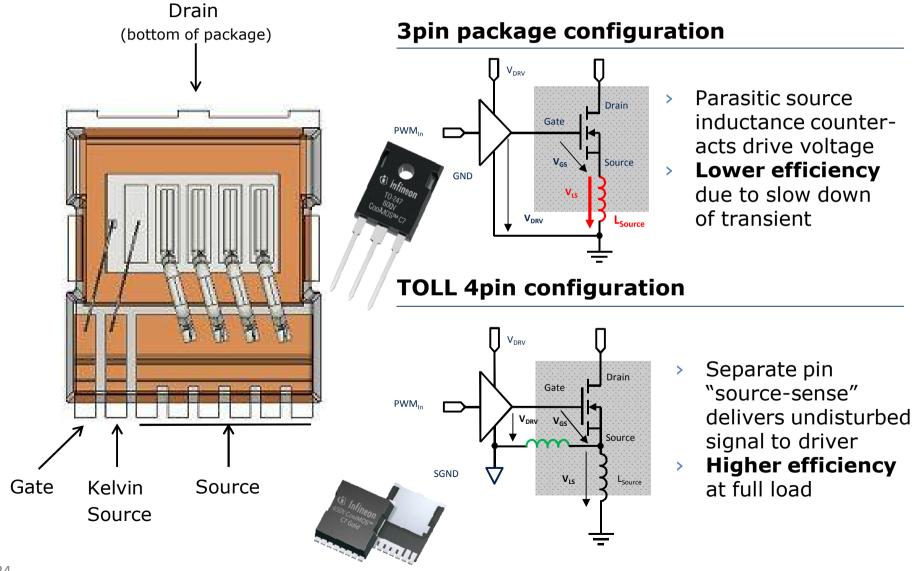
600 V CoolMOS™ C7 opens a path to higher frequencies in proven silicon technology

Портфолио транзисторов серии CoolMOS™ C7

	A	F					
R _{DS(on)} max [mΩ]	DPAK	D ² PAK	ThinPAK 8x8	TO-220	TO-220 FP	TO-247	TO-247 4pin
180/185	IPD60R180C7	IPB60R180C7	IPL60R185C7	<u>IPP60R180C7</u>	IPA60R180C7	IPW60R180C7	
120/125		IPB60R120C7	IPL60R125C7	IPP60R120C7	IPA60R120C7	IPW60R120C7	
99/104		IPB60R099C7	IPL60R104C7	IPP60R099C7	IPA60R099C7	IPW60R099C7	IPZ60R099C7
60/65		IPB60R060C7	IPL60R065C7	IPP60R0607	IPA60R060C7	IPW60R060C7	IPZ60R060C7
40		IPB60R040C7		IPP60R040C7		IPW60R040C7	IPZ60R040C7
17						IPW60R017C7	IPZ60R017C7

Образцы доступны со склада Компэл!

CoolMOS™ C7 Gold в новом корпусе TOLL - закрепление отличного результата


C7 Gold again improves performance in high efficiency applications such as server and telecom

Parameter	Competitor A	Competitor B	CoolMOS™ C7	CoolMOS™ C7 GOLD (G7)	Comparison
Package	D ² P	PAK	D ² PAK	TOLL	
Footprint	150 mm²		150 mm²	115mm²	Smaller footprint
Voltage (V)	650	650	650	650	
$R_{DS(on)\ max.}\ [m\Omega]$	110	95	95	105	Similar $R_{DS(on)}$ for comparison
Q _g typ [nC]	98	71	45	35	22% lower than C7
C _{oss} typ [pF]	110	74	33	26	21% lower than C7

C7 technology already bestin-class over competition C7 Gold increases again performance

MOSFET C7 в инновационном корпусе TO-Leadless

Портфолио транзисторов серии C7 Gold (G7) в TOLL корпусе

650 V

$R_{DS(on)}$ max. $[m\Omega]$	I _D @ 25°C [A]	TOLL G7 650V
195	14	IPT65R195G7
105	24	IPT65R105G7
33	69	IPT65R033G7
Product	Mass production	

600 V

$R_{DS(on)}$ max. [m Ω]	I _D @ 25°C [A]	TOLL G7 600V
150	45	IPT60R150G7
125	54	IPT60R125G7
102	66	IPT60R102G7
80	83	IPT60R080G7
50	135	IPT60R050G7
28	245	IPT60R028G7
Product release		Mass production

План вебинара

- 1 Типы активных ККМ. Их преимущества и недостатки
- 2 Демонстрационная плата Boost PFC 800W от Infineon
- З Особенности работы микросхемы ККМ контроллера ICE3PCS01G
- 4 Новые линейки MOSFET транзисторов серии С7 и Р7
- 5 Параметры SiC диодов Шоттки 5-ого поколения
- 6 Параметры драйвера управления транзисторами 2EDN7524F
- Практическое сравнение работы различных поколений транзисторов и диодов в схеме ККМ от Infineon
- 8 Подведение итогов тестирования

Линейка CoolSiCTM диодов Шоттки Основные преимущества Infineon

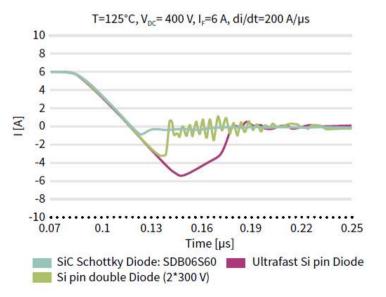
Value proposition

Optimum efficiency and surge current capability

- > vs. Rohm: efficiency on par, surge current much better
- vs. Cree and STMicro: efficiency better, surge current almost on par

- ✓ Competitive pricing at market price
- ✓ Supply security five different SiC wafer suppliers, no single-source
- ✓ Highest quality and reliability only 100 fails over 100 millions shipped parts

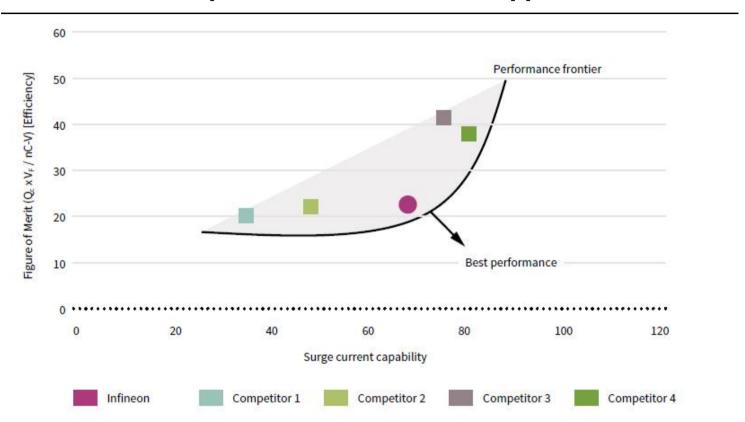
Главные преимущества технологии


> Key Features & Advantages

- Low switching losses due to negligible reverse recovery charge or stored charge
- Switching behavior independent from load current, switching speed and temperature
- High operation temperature (T_{i,max} 175°C)
- Reduction of CoolMOS[™] or IGBT turn-on loss

> Key Benefits

- Improved Efficiency
- Allows use of smaller MOSFET
- Cost / Size savings due to reduced cooling requirements
- Enabling higher frequency / increased power density
- Reduced EMI
- Increased system reliability due to lower operating temperature


Reverse recovery charge of SiC versus Silicon devices

Технология CoolSIC™ Gen 5 Позиционирование на рынке

8A SiC diode comparison from different suppliers

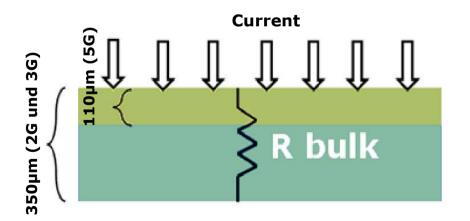
Infineon CoolSiCTM Gen 5 diode with optimum efficiency and surge current capability:

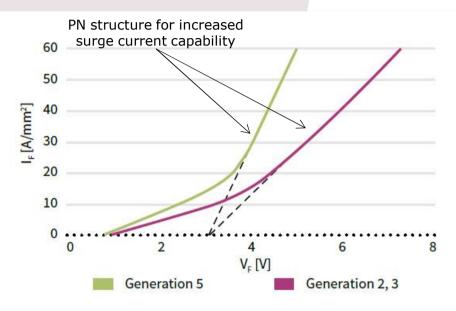
- Best-in-Class figure of merit $(Q_c \times V_F)$
- High surge current capability

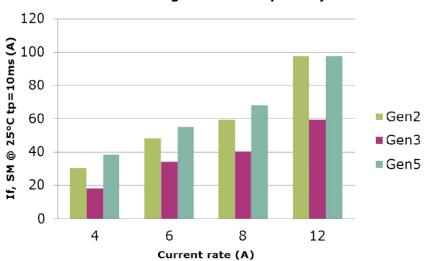
Технологические особенности CoolSiC™ 5-ого поколения

Wafer thickness reduced to 1/3 (110µm)

Consistent reduction of substrate resistance (main contributor above 20 A/mm²)




Lower Vf increase by high current spikes


Higher surge current capability

(per unit Area)

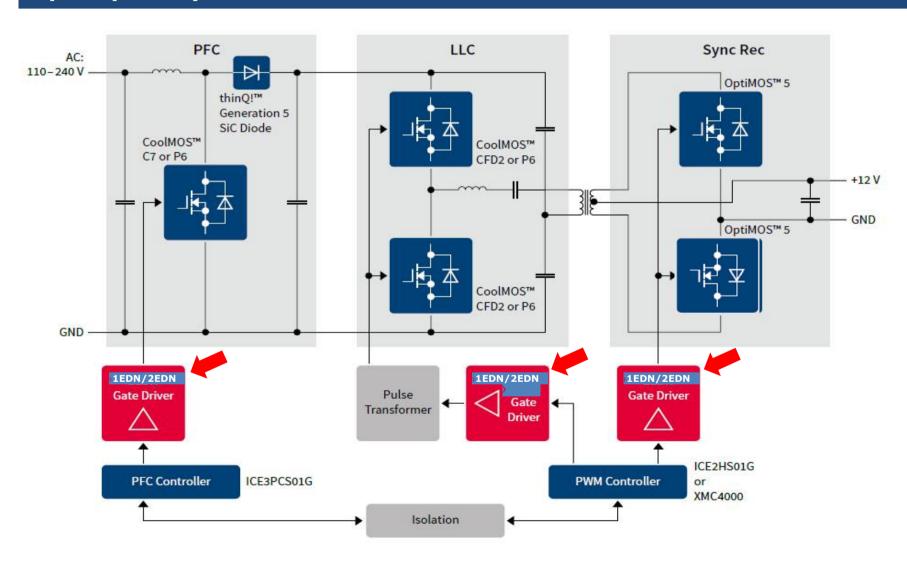
TO220 surge current capability

Оптимизированное портфолио SiC диодов Шоттки 650B Gen5

IF [A]	TO-220 R2L	TO-247	D ² PAK R2L	ThinPAK 8x8	TO-247 dual die
2A	IDH02G65C5		IDK02G65C5	IDL02G65C5	
3A	IDH03G65C5		IDK03G65C5		
4A	IDH04G65C5		IDK04G65C5	IDL04G65C5	
5A	IDH05G65C5		IDK05G65C5		
6A	IDH06G65C5		IDK06G65C5	IDL06G65C5	
8A	IDH08G65C5		IDK08G65C5	IDL08G65C5	
9A	IDH09G65C5		IDK09G65C5		
10A	IDH10G65C5	IDW10G65C5	IDK10G65C5	IDL10G65C5	
12A	IDH12G65C5	IDW12G65C5	IDK12G65C5	IDL12G65C5	
16A	IDH16G65C5	IDW16G65C5			
20A	IDH20G65C5	IDW20G65C5			IDW20G65C5B*
24A					IDW24G65C5B*
30/32A		IDW30G65C5			IDW32G65C5B*
40A		IDW40G65C5			IDW40G65C5B*

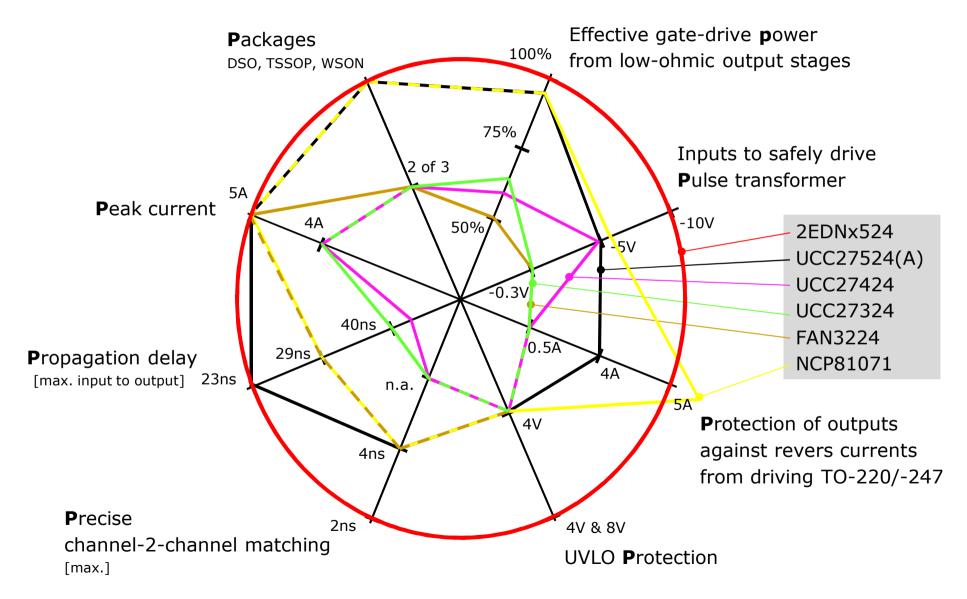
Fine granularity of I_F steps to match application needs with enough margin

PIN 3O-


План вебинара

- 1 Типы активных ККМ. Их преимущества и недостатки
- Демонстрационная плата Boost PFC 800W от Infineon
- З Особенности работы микросхемы ККМ контроллера ICE3PCS01G
- 4 Новые линейки MOSFET транзисторов серии С7 и Р7
- 5 Параметры SiC диодов Шоттки 5-ого поколения
- 6 Параметры драйвера управления транзисторами 2EDN7524F
- Практическое сравнение работы различных поколений транзисторов и диодов в схеме ККМ от Infineon
- 8 Подведение итогов тестирования

Где применяются одно/двухканальные драйверы управления ключами нижнего плеча?



Пример: импульсный источник питания на 12 В мощностью до 1000W

2EDNx52x MOSFET EiceDRIVER™ Позиционирование семейства

Портфолио драйверов управления семейства 2EDNx52x

Package	Typ. UVLO	Control Inputs	Sales Name	Orderable Part Number						
	4.1/	direct	2EDN7524F	2EDN7524FXTMA1						
DCO	4 V	inverted	2EDN7523F	2EDN7523FXTMA1						
DSO	0.17	direct	2EDN8524F	2EDN8524FXTMA1						
	8 V	inverted	2EDN8523F	2EDN8523FXTMA1						
	4 V	direct	2EDN7524R	2EDN7524RXUMA1						
TCCOD		inverted	2EDN7523R	2EDN7523RXUMA1						
TSSOP	0.17	direct	2EDN8524R	2EDN8524RXUMA1						
	8 V	8 V	8 V	8 V	8 V	8 V	8 V	inverted	2EDN8523R	2EDN8523RXUMA1
WCON	4 V	direct	2EDN7524G	2EDN7524GXTMA1						
WSON	4 V	inverted	2EDN7523G	2EDN7523GXTMA1						

Package identifier

Pitch

PCB area

F
8-pin DSO

1.27 mm
30 mm² (= 5 x 6)

R 8-pin TSSOP 0.65 mm 15 mm² (=5 x 3) G 8-pin WSON 0.65 mm 9 mm² (=3 x 3)

Infineon предлагает широкое портфолио микросхем

		infineon		On Semiconductor		Fairchild Semi.				
UVLO 2)	Pack	age	Control input config	Product	Min. control input voltage	Product	Min. control input voltage	Product	Min. control input voltage	
	DSO	d Infinen	direct	2EDN7524F	-10 V	NCP81071BDR2G	-6 V	FAN3224TMX	-0.3 V	
	DSO	DSO	3 3 3 3	inverted	2EDN7523F	-10 V	NCP81071ADR2G	-6 V	FAN3223TMX	-0.3 V
4.17	4 V TSSOP		direct	2EDN7524R	-10 V	NCP81071BZR2G	-6 V	Not offer	od	
4 V			inverted 2EDN7523R -10 V	NCP81071AZR2G	-6 V	Not offer	eu			
	WSON		direct	2EDN7524G	-10 V	NCP81071BMNTXG	-6 V	FAN3224TMPX	-0.3 V	
	VVSON	WSON ~ ~	inverted	2EDN7523G	-10 V	NCP81071AMNTXG	-6 V	FAN3223TMPX	-0.3 V	
	DSO	i Infineon	direct	2EDN8524F	-10 V	Not offered		Not offered		
8 V	D30	7 7 7 7	inverted	2EDN8523F	-10 V	Not offered				
O V	TSSOP		direct	2EDN8524R	-10 V	Not offered Not offered		ad		
	13307		inverted	2EDN8523R	-10 V			Not offered		
Output	Output resistance source / sink		0.65 Ω / 0.5	$5 \Omega^{3)}$	0.8Ω / 0.8Ω $^{4)}$		~1.5 Ω / ~1.5 Ω ³⁾			

Fairchild: Lacks popular TSSOP package

Fairchild: Poor -0.3 V input noise immunity

Fairchild: High 1.5 Ω outputs

→ Only 100% larger leaded package

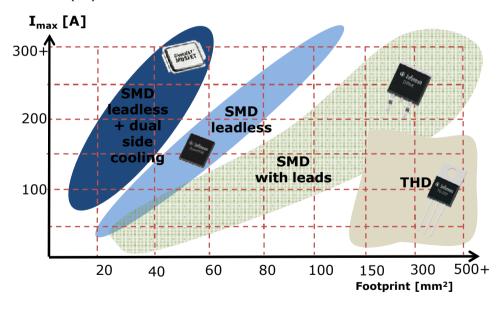
→ Risk of driver IC latch-up

→ 50% higher power dissipation

²⁾ Under-Voltage Lock-Out threshold

³⁾ measured

⁴⁾ data-sheet


1EDN & 2EDN

Отлично подходят для управления OptiMOS™

OptiMOS[™] is the Industry leading trench power MOSFETs for broad range of switchmode and linear applications.

Wide product portfolio 20 V – 300 V and $R_{DS(on)}$ in a broad variety of packages:

OptiMOS™ Family attributes

5th Generation OptiMOS[™] family > Comprehensive know how & secure supply with

- Ultra low R_{DS(on)}
- > Industry best figure-of-merit
- > Best-in-class and price/performance
- High Efficiency and power density
- Reduced switching and conduction losses

1EDN & 2EDN

Отлично подходят для управления CoolMOS™

SJ MOSFETs outperform standard MOS & IGBT in SMPS applications

- Small die sizes & capacitances result in lowest switching losses & enable best in class R_{DS(on)}
- Conduction losses are scalable via R_{DS(on)}

Portfolio Better efficiency Lower price Highest efficiency Fast switching **C7** P-Series Good price/ CP performance General purpose P6 (PFC/LLC) C6/E6 **CFD-Series** Fast body diode CFD2 (ZVS PS FB/ LLC) CFD Preferred parts 2016 Time Active parts 2016

Infineon CoolMOS™ offer

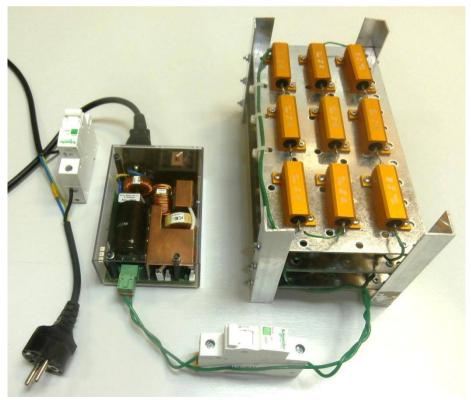
- Worlds largest portfolio of SJ devices
 - from highest performance to low-cost general purpose parts
- 2 Highest efficiency & power density, outperforming all SJ competitors in terms of
 - switching losses
 - $R_{DS(on)}$ in package
- **3** Unrivalled quality
 - 0,04 dpm 61 fails over 1,5 bn shipped parts
- 4 Highest **supply security** & delivery performance
- 5 World leading **track record** & attractive future roadmap

План вебинара

- 1 Типы активных ККМ. Их преимущества и недостатки
- Демонстрационная плата Boost PFC 800W от Infineon
- З Особенности работы микросхемы ККМ контроллера ICE3PCS01G
- 4 Новые линейки MOSFET транзисторов серии С7 и Р7
- 5 Параметры SiC диодов Шоттки 5-ого поколения
- 6 Параметры драйвера управления транзисторами 2EDN7524F
- Практическое сравнение работы различных поколений транзисторов и диодов в схеме ККМ от Infineon
- 8 Подведение итогов тестирования

Испытательный стенд и методика проведения испытания

Рабочая точка схемы при тестировании:


Выходное напряжение: 379 V

Сопротивление нагрузки: **270 Ohm**

Выходной ток: 1.404 А

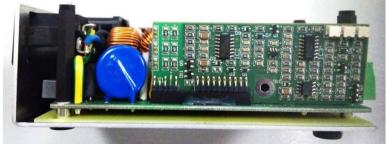
Выходная мощность: **532 W**

Отношение к ном. вых. мощности: 66.5 %

Описание работы системы охлаждения:

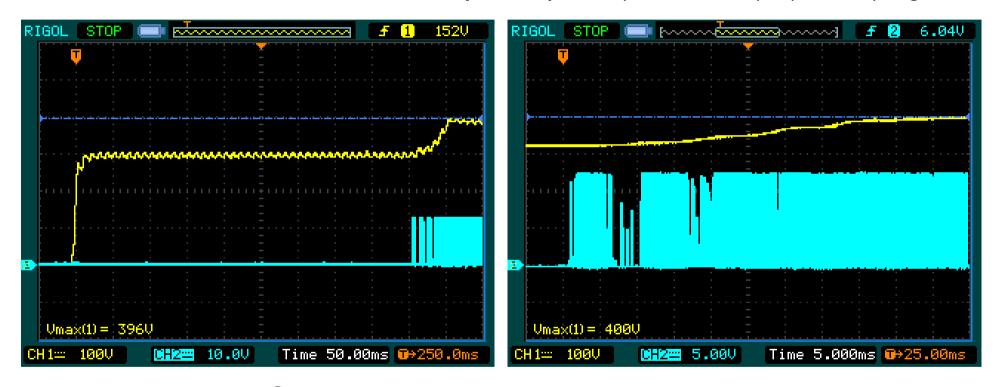
Охлаждение – естественное принудительное (с помощью вентилятора);

Вентилятор работает на 2-х скоростях – низкой и высокой.


При достижении на РТС элементе медного радиатора температуры 57°С запускается вентилятор с низкой скоростью.

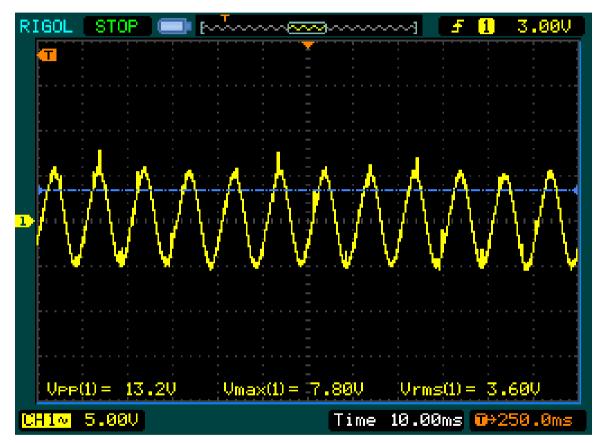
При достижении на РТС элементе медного радиатора температуры 79°С вентилятор переходит на высокую скорость.

Испытательный стенд и методика проведения тестирования



Список применяемого оборудования					
Осциллограф	Rigol DS1052				
Мультиметр	UNI-T UT50C				
Тепловизор	IDEAL 61-848EU				
Защитный автомат №1	Schneider Electric C6				
Защитный автомат №2	Schneider Electric C6				
Нагрузка	27 резисторов HSA50 R = 10 Ω				
Измерение сетевого тока	Резистор выводной 2 Вт R = 0.1 Ω				
Измерение тока диод в схеме PFC	Резистор SMD 1210 R = 0.1 Ω				

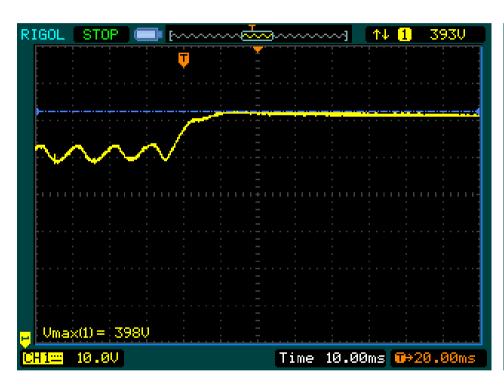
Общее тестирование схемы PFC CCM 800W Плавный запуск схемы


Желтая эпюра — выходное напряжение Vout **Голубая эпюра** — напряжение затвора транзистора Vgs

Осциллограммы плавного запуска схемы KKM 800W под нагрузкой Запуск за время 500 мс.

Общее тестирование схемы PFC CCM 800W Пульсации выходного напряжения

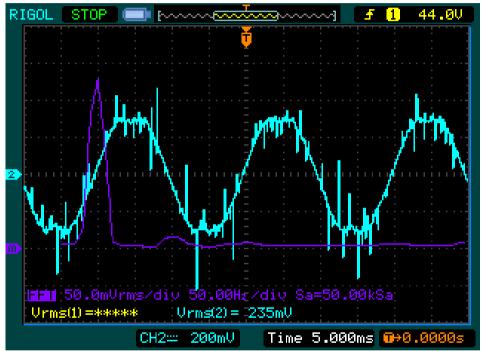
Осциллограмма пульсаций выходного напряжения схемы ККМ под нагрузкой ~1.4 A


Справочно: Cout = 470 uF, L = 220 uH

Желтая эпюра — выходное напряжение Vout Голубая эпюра — напряжение затвора транзистора Vgs

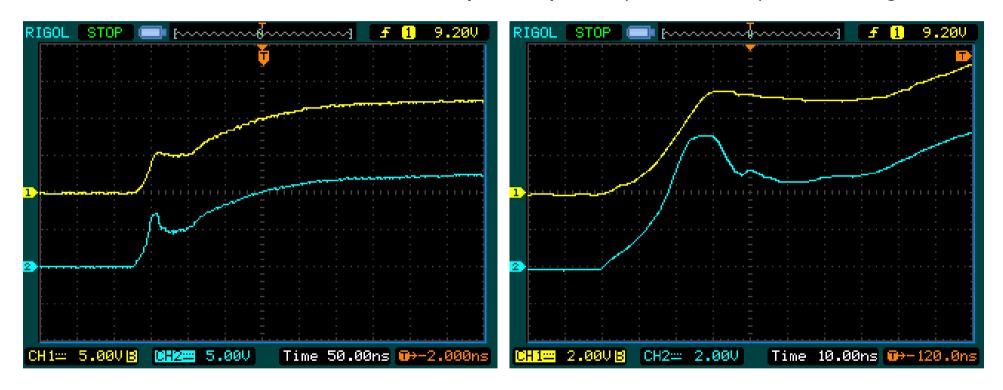
Общее тестирование схемы PFC CCM 800W Сброс и наброс нагрузки


Осциллограмма сброса нагрузки. Напряжение «подпрыгивает» до 398 В.


Осциллограмма наброса нагрузки. Напряжение проседает до 362 В.

Общее тестирование схемы PFC CCM 800W Форма потребляемого из сети тока и его гармоники

Желтая эпюра — входное напряжение Vin **Голубая эпюра** — напряжение на шунте 0.1 Ω входной цепи


Осциллограмма потребляемого из сети тока и сетевого напряжения. Ток измеряется на шунте R = 0.1 Ω

Осциллограмма потребляемого из сети тока с функцией быстрого преобразования Фурье - FFT

Общее тестирование схемы PFC CCM 800W Параллельная работа транзисторов MOSFET

Желтая эпюра — напряжение затвора mosfet #1 Vgs1 **Голубая эпюра** — напряжение затвора mosfet #2 Vgs2

Осциллограммы напряжения на затворе двух MOSFET IPP60R180C7 при параллельной работе с помощью двухканального драйвера **2EDN7524F Разбег напряжений не превышает 1-2 ns.**

Различные комбинации приборов (диод и mosfet) при проведении опытов

Номер комбинации	MOSFET	Комментарий	Диод	Комментарий
1	IPP60R180C7	CoolMOS Серия С7	IDH06G65C5	CoolSiC Gen5
2	IPP60R180C7	CoolMOS Серия С7	IDP08E65D1	Rapid diode Gen 1
3	IPP60R190P6	CoolMOS Серия Р6	IDH06G65C5	CoolSiC Gen5
4	SIHP15N60E	Vishay Siliconix	IDH06G65C5	CoolSiC Gen5
5	SPP20N60C3	CoolMOS Серия С3	IDP08E65D1	Rapid diode Gen 1

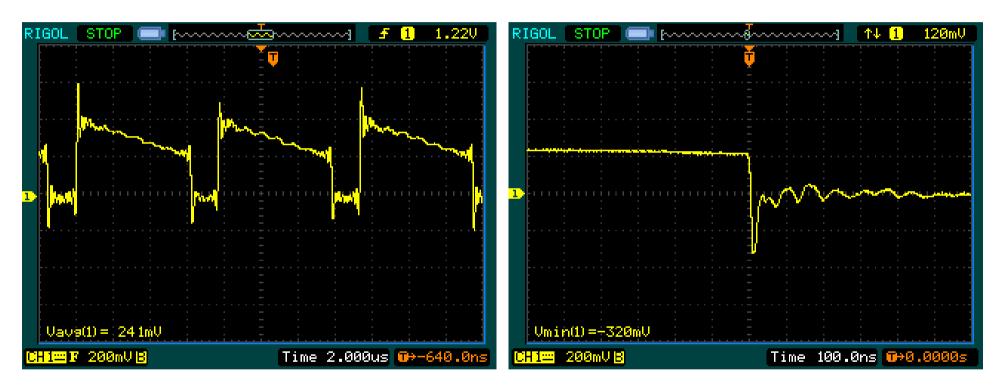
Таблица параметров тестируемых MOSFET в схеме KKM

Параметр из datasheet	IPP60R180C7	IPP60R190P6	SPP20N60C3	SIHP15N60E
Серия	CoolMOS C7	CoolMOS P6	CoolMOS C3	Vishay
Id @ 25°C	13 A	20.2 A	20.7 A	15 A
Vds	600 V	600 V	600 V	600 V
Rds(on) @ 25°C	180 mOhm	190 mOhm	190 mOhm	280 mOhm
Rds(on) @ 100°C	260 mOhm	290 mOhm	295 mOhm	500 mOhn
Qgate	24 nC	37 nC	87 nC	78 nC
FOM (Rds(on) x Qgate)	4,32	7,03	16,53	21,84
Ciss	1080 pF	1750 pF	2400 pF	1350 pF
Coss	18 pF	76 pF	780 pF	70 pF
Rth_jc	1,832 K/W	0.83 K/W	0.6 K/W	0.7 K/W
Отн. стоимость	1.00	0.87	1.13	1.37

Таблица параметров тестируемых диодов схемы ККМ

Параметр из datasheet	IDH06G65C5	IDP08E65D1
ld @ 125°C	6A	8 A
Vdc	650 V	650 V
Vf @ 25°C	1.5 V	1.35 V
Vf @ 150°C	1.8 V	1.28 V
Qrr	10 nC	200 nC
trr	-	51 ns
Cj	24 pF	-
Относительная стоимость	1.00	0.35

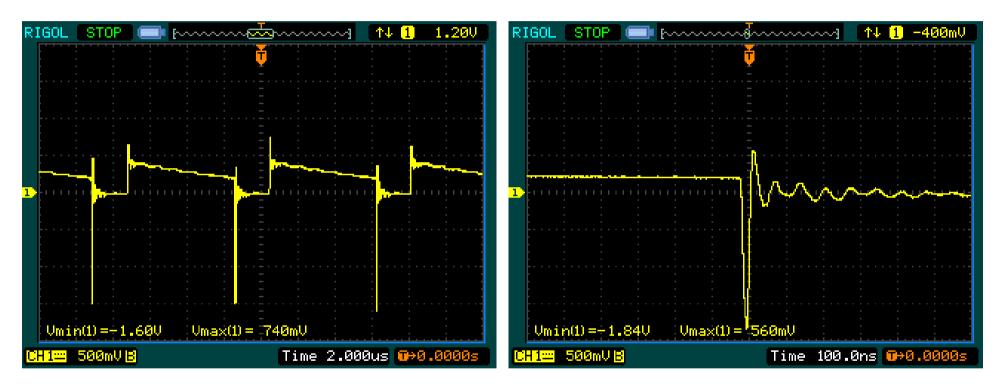
Тестирование различных комбинаций приборов при продолжительной работе на нагрузку



	Ko	омбинация 1	Комбинация 2		
Наименование приборов схемы	IPP60R180C7 IDH06G65C5			P60R180C7 DP08E65D1	
	5:18	Вкл. вент. скор.1	2:50	Вкл. вент. скор.1	
	7:43	Выкл. вент.	3:10	Вкл. вент. скор.2	
	10:56	Вкл. вент. скор.1	20:00	Работа на скор. 2	
Работа на нагрузку в	13:08	Выкл. вент.			
течение 20 минут	16:11	Вкл. вент. скор.1			
	18:47	Выкл. вент.			
	20:00	Вент. выключен			

Осциллограммы Комбинации 1. Ток SiC диода Шоттки

Желтая эпюра – напряжение на шунте в цепи диода схемы


Осциллограммы тока SiC диода Шоттки IDH06G65C5.

Измерение проводится на шунте $R=0.1~\Omega$

Осциллограммы Комбинации 2. Ток ultra-fast диода

Желтая эпюра — напряжение на шунте в цепи диода схемы

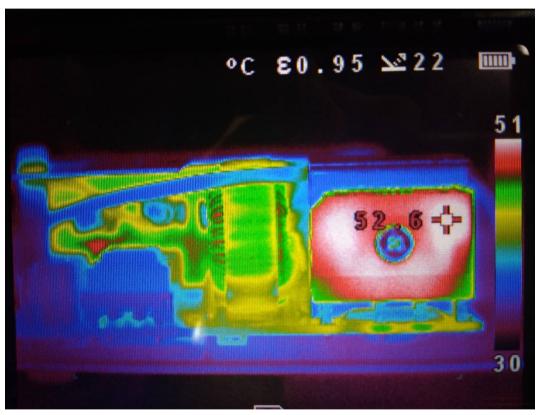
Осциллограммы тока диода типа ultra-fast IDP08E65D1.

Измерение проводится на шунте $R = 0.1 \Omega$

Осциллограммы Комбинации 2. Ток ultra-fast диода

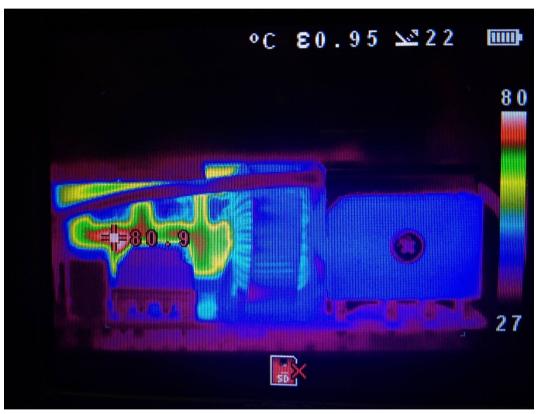
Желтая эпюра – напряжение на шунте в цепи диода схемы

Осциллограммы тока диода типа ultra-fast IDP08E65D1.


<u>Чем меньше значение тока в конце периода,</u> <u>тем меньше бросок обратного тока</u> Измерение проводится на шунте R = 0.1 Ω

Измерение температуры приборов для Комбинации 1

Температура на радиаторе вблизи силовых полупроводников составляет примерно 45-46 °C


Измерение температуры приборов для Комбинации 2

Температура на радиаторе вблизи ultra-fast диода составляет примерно 80-81 °C.

Очевидно, что потери на диоде заметно выше, чем на транзисторах.

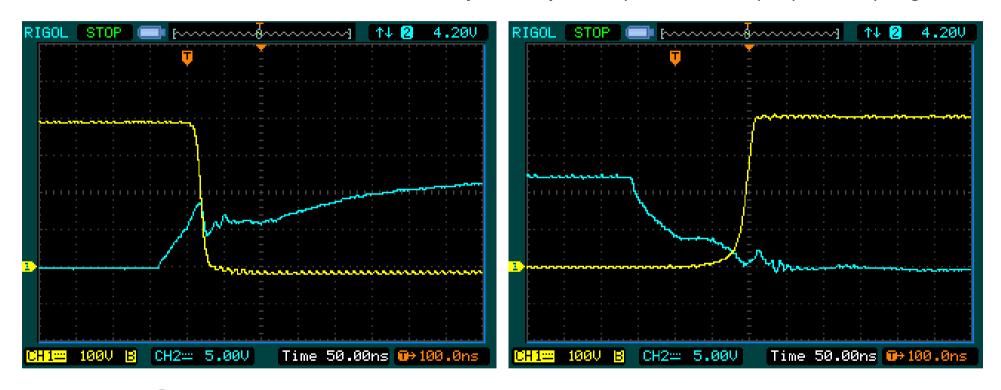
Тестирование различных комбинаций приборов при продолжительной работе на нагрузку



	Ko	омбинация 1	Комбинация 3		
Наименование приборов схемы	IPP60R180C7 IDH06G65C5		IPP60R190P6 IDH06G65C5		
	5:18	Вкл. вент. скор. 1	4:41	Вкл. вент. скор. 2	
	7:43	Выкл. вент.	6:25	Вкл. вент. скор. 2	
	10:56	Вкл. вент. скор. 1	20:00	Работа с скор. 2	
Работа на нагрузку в	13:08	Выкл. вент.			
течение 20 минут	16:11	Вкл. вент. скор. 1			
	18:47	Выкл. вент.			
	20:00	Вент. выключен			

Осциллограммы Комбинации 1. Процесс включения и выключения транзисторов

Желтая эпюра — Напряжение сток-исток транзистора Vds **Голубая эпюра** — напряжение затвора транзистора Vgs

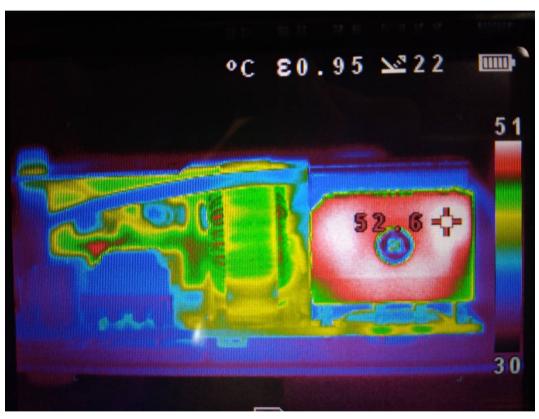


Осциллограммы процесса включение и выключения MOSFET IPP60R180C7.
Твкл = 200 ns, Твыкл = 150 ns.

Осциллограммы Комбинации 3. Процесс включения и выключения транзисторов

Желтая эпюра – Напряжение сток-исток транзистора Vds **Голубая эпюра** – напряжение затвора транзистора Vgs

Осциллограммы процесса включение и выключения MOSFET IPP60R190P6.


Твкл = 325ns, Твыкл = 200 ns

Измерение температуры приборов для Комбинации 1

Температура на радиаторе вблизи силовых полупроводников составляет примерно 45-46 °C

Измерение температуры приборов для Комбинации 3

Температура на радиаторе вблизи силовых полупроводников составляет примерно 63-64 °C

Тестирование различных комбинаций приборов при продолжительной работе на нагрузку



	К	омбинация 1	Комбинация 4		
Наименование приборов схемы	IPP60R180C7 IDH06G65C5			HP15N60E)H06G65C5	
	5:18 Вкл. вент. скор. 1		4:03	Вкл. вент. скор. 1	
	7:43	Выкл. вент.	5:24	Вкл. вент. скор. 2	
	10:56	Вкл. вент. скор. 1	20:00	Работа на скор. 2	
Работа на нагрузку в	13:08	Выкл. вент.			
течение 20 минут	16:11	Вкл. вент. скор. 1			
	18:47	Выкл. вент.			
	20:00	Вент. выключен			

Осциллограммы Комбинации 4. Процесс включения и выключения транзисторов

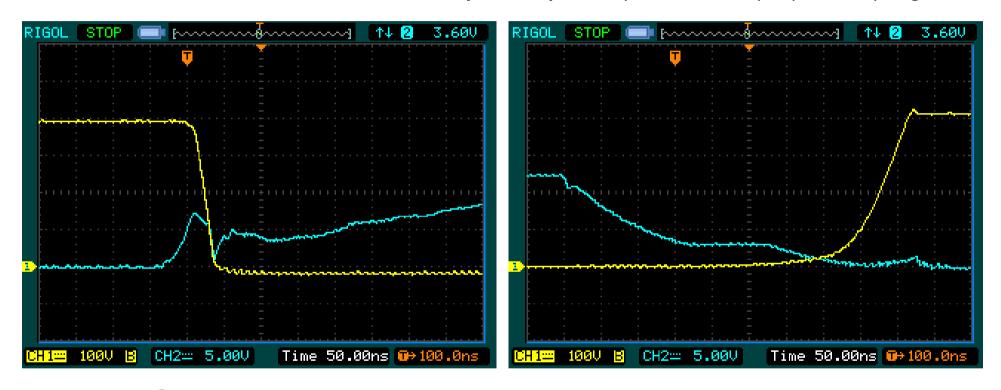
Желтая эпюра — Напряжение сток-исток транзистора Vds **Голубая эпюра** — напряжение затвора транзистора Vgs

Осциллограммы процесса включение и выключения MOSFET SIHP15N60E (Vishay Siliconix). Твкл = 275 ns, Твыкл = 200 ns.

Измерение температуры приборов для Комбинации 4

Температура на радиаторе вблизи силовых полупроводников составляет примерно 65-66 °C

Тестирование различных комбинаций приборов при продолжительной работе на нагрузку



	К	омбинация 2	Комбинация 5		
Наименование приборов схемы	IPP60R180C7 IDP08E65D1			SPP20N60C3 IDP08E65D1	
	2:50	Вкл. вент. скор. 1	1:35	Вкл. вент. скор. 1	
	3:10	Вкл. вент. скор. 2	2:56	Вкл. вент. скор. 2	
	10:00	Работа на скор. 2	10:00	Работа на скор. 2	
Работа на нагрузку в					
течение 10 минут					

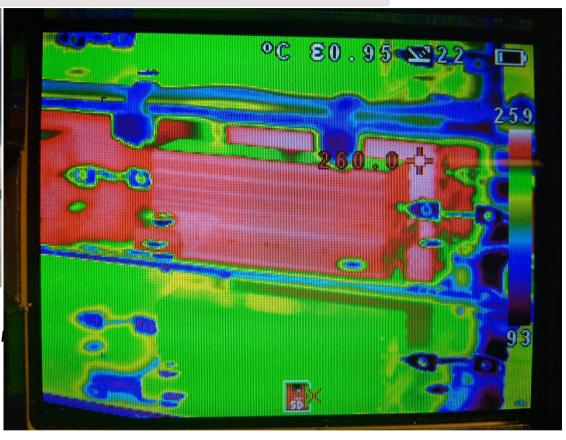
Осциллограммы Комбинации 5. Процесс включения и выключения транзисторов

Желтая эпюра — Напряжение сток-исток транзистора Vds **Голубая эпюра** — напряжение затвора транзистора Vgs

Осциллограммы процесса включение и выключения MOSFET SPP20N60C3.
Твкл > 450 ns, Твыкл = 450 ns.

Измерение температуры приборов для Комбинации 5

Температура на радиаторе вблизи силовых полупроводников составляет примерно 92.6 °C



Нагрев резисторов нагрузки во время испытаний

Была зафиксирована температура самого горячего резистора на средне уровне всей сборки – 260°C Серия резисторов HSA50.

План вебинара

- 1 Типы активных ККМ. Их преимущества и недостатки
- 2 Демонстрационная плата Boost PFC 800W от Infineon
- 3 Особенности работы микросхемы ККМ контроллера ICE3PCS01G
- 4 Новые линейки MOSFET транзисторов серии С7 и Р7
- 5 Параметры SiC диодов Шоттки 5-ого поколения
- 6 Параметры драйвера управления транзисторами 2EDN7524F
- Практическое сравнение работы различных поколений транзисторов и диодов в схеме ККМ от Infineon
- 8 Подведение итогов тестирования

Обобщение результатов тестирования

Номер комбинации	1	2	3	4	5
MOSFET	IPP60R180C7	IPP60R180C7	IPP60R190P6	SIHP15N60E	SPP20N60C3
Диод	IDH06G65C5	IDP08E65D1	IDH06G65C5	IDH06G65C5	IDP08E65D1
Время первого вкл.вентилятора	5:18	2:50	4:41	4:03	1:35
Температура радиатора в конце тестирования	46 °C	81 °C	53 °C	66 °C	94 °C
Относительная стоимость комбинации (диод + транзистор)*	2.28	1.46	2.15	2.65	1.59
Оценка эффективности работы системы охлаждения	Хорошо	Ниже среднего	Средне	Средне	Плохо

^{*} Все цены взяты относительно стоимости транзистора IPP60R180C7 (Стоимость IPP60R180C7 на 5000 шт. принята за 1)

Спасибо за внимание!

