
 AVR® Simulator
 AVR® Simulator

AVR® Simulator
The AVR® Simulator is a software simulator for Microchip AVR devices where the user can run and debug code
without using any hardware. It simulates the CPU, including all instructions, interrupts, and most of the on-chip I/O
modules.

The Simulator operates within the Microchip Studio application as a debug target. This enables the user to use the
normal debug commands such as Run, Break, Reset, Single-step, set breakpoints, and watch variables. The I/O,
memory, and register views are fully functional using the Simulator.

The simulator is based on software models of devices derived directly from the hardware designs, and are thus cycle-
accurate per the real devices.

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 1

Table of Contents

AVR® Simulator..1

1. Using Simulator in Microchip Studio... 3

1.1. Overview.. 3
1.2. Using Simulator in a Debugging Session...3
1.3. Using Simulator in the Programming Dialog.. 12
1.4. Key Differences Between Simulator and Hardware Tools..13
1.5. Key Differences from AVR® Studio 4 and AVR32 Studio...13

2. Known Issues in Simulator..15

2.1. General Issues... 15
2.2. Device and Family Specific Issues...15

3. Revision History.. 17

The Microchip Website...18

Product Change Notification Service..18

Customer Support.. 18

Microchip Devices Code Protection Feature.. 18

Legal Notice... 19

Trademarks.. 19

Quality Management System... 20

Worldwide Sales and Service...21

 AVR® Simulator

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 2

1. Using Simulator in Microchip Studio

1.1 Overview
The simulator is a debugging tool made to behave similarly to any other debugging tool. It can be selected on the
same list as the other tools, and it can be used immediately since it does not need any hardware connections. When
a debug session is started, the simulator loads a simulator model of the selected device.

The performance of the simulator model is slow compared to a real device, but because it is made of software it gives
the user some extra debugging possibilities that are not available with a real device.

1.2 Using Simulator in a Debugging Session
When a debugging session with the simulator is started, a simulator model of the selected device is loaded and
programmed with the user's application. After the application is loaded into the application memory, a Power-on
Reset (POR) is applied to the model. Hence, the simulator will start at the reset vector with the POR reset flag set. If
the user used “Start Debugging/Continue (F5)” to start the debug session, the simulator model would now be running
and start executing the application. If the user used “Start Debugging and Break (Alt+F5)”, the simulator would start
running until it reached the start of the main() function and then do a break.

The Reset button in Microchip Studio applies a POR to the simulator. The content of flash and EEPROM are not lost
during Power-on Reset (POR). When doing a reset in Microchip Studio, the execution will normally break at the start
of the main() function. By switching to the disassembly view before performing the reset, the execution will halt at the
reset vector. If Watchdog is programmed to generate a reset, it can be caught through setting a breakpoint at the
reset vector and let the simulator run.

There is no way to attach to a running simulator, or detach/disconnect from it and keep it running in the background.
Like in the programming dialog, the simulated device ceases to exist when the user stops debugging. This is a
restriction that may be lifted in future versions of Microchip Studio.

Because the simulator is a software model, it is not limited by the OCD system on the device, and has certain
capabilities that the hardware tools do not share:

• Unlimited numbers of breakpoints regardless of device and OCD system limitations
• Set and delete breakpoints while the target is running
• Can debug and supports trace on all devices, even those that lack an OCD system
• Access to locations that can not be reached by the OCD system
• Provide features that have no counterpart in hardware, for instance, a cycle counter
• Unlike real hardware, the simulator allows flash and EEPROM contents to be changed directly using the

Microchip Studio memory view
• Can simulate devices that do not exist yet (early support before samples are available)

1.2.1 Using the I/O View with Simulator
The I/O view generally works in the same manner as with other tools. However, due to the way I/O addresses are
mapped to internal signals in the simulator model, there are a few peculiarities. These occur with registers or bit fields
within registers that are read-only, write-only, read and write from different hardware registers, or have peculiar write
modes. In general, different bit fields within the same register may behave differently because they are mapped to
different hardware locations.

When a register is changed in the I/O view, the new value of the register is written to the target and then read back,
and the read-back value is shown in the I/O view. For this reason, the value shown may be different from the value
written for various reasons.

• In a regular register/bit field with read/write access, when changing its value, the new value is shown
immediately

• In some cases, read and write access go to different hardware locations. The effect of this may be that
attempting to change a register/bit field has no visible effect even if the register is written (like the USART UDR

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 3

register in many devices), or that the effect is delayed by one or more cycles (like registers with double
buffering).

• If a register/bit field is read-only, attempting to change it will have no effect
• If a register/bit feld is write-only, it will normally always read as zero
• Some registers/bit fields have special write modes like set, clear, or toggle. This means that writing a value of

one to a bit will perform one of these operations on the bit while writing zero has no effect (this to eliminate the
need for read-modify-write sequences to change single bits in a register). Often such registers are mirrored as a
regular register at a different address. In these cases, the simulator normally will allow a write to this regular
register even if it is documented as read-only. Using the regular register when making changes from the I/O view
is much easier.

• When possible, the simulator will often allow full read/write access to registers/bit fields even though they are
documented as read-only or write-only. One particularly important example of this is interrupt flags. These are
often intended to be read-only, but allowing to write them from the simulator allows triggering the interrupt if the
hardware is designed such that the interrupt flag is the cause of the interrupt, which is often the case. This
feature is important for stimuli generation, e.g., ADC interrupts can be stimulated through writing the converted
value to the ADC data register and then trigger the ADC interrupt through setting the ADC interrupt flag (both the
ADC data register and the ADC interrupt flag are typically described as read-only in data sheets).

• In some 32-bit models, some of the peripheral module I/O register accesses use the on-chip bus instead of
accessing internal signals directly. In these cases the, simulator will be subject to the same restrictions as the
OCD-based emulators. For example, read-only registers remain read-only, some registers require a protection
pattern to be written to a different register before the actual register can be written, some peripherals must have
their clock explicitly enabled before they can be accessed, etc. Per-device details can be found in 2.2 Device
and Family Specific Issues.

• Sometimes hardware design makes it impossible to map a bit field properly, with reasonable effort. This most
frequently affects the write access, but sometimes even read. Such deficiencies are documented in 2.2 Device
and Family Specific Issues.

• Finally, unresponsive or otherwise faulty registers in the I/O view can be caused by bugs in the I/O mapping in
the simulator model. This is the most common type of bug in the simulator.

Notes: 
Notes regarding the above:

1. Bugs or shortcomings in the simulator I/O mapping only affect the debugger view of the register, not the
function of the model. An application running on the target will not be affected by such bugs.

2. All that is said about the I/O view in this section is equally true when the memory view is used to access I/O
locations. The only difference between the two is the presentation.

3. The limitations listed for the I/O view will also affect stimuli described in 1.2.2 Simulator Stimuli.

1.2.2 Simulator Stimuli

1.2.2.1 Introduction
Simulator stimuli is a way to write simple script files that can read or write any register or memory location at a given
time during the simulation. The stimuli file can be started at any time during the simulation and will continue until the
end of the file or when the simulator session ends.

Note: 
Starting with Atmel Studio 6.1, the File Stimulator found in AVR® Studio 4 has been reintroduced. There were two
stimuli variants in AVR Studio 4. This is the most recent one used in Simulator 2. The older one is not supported.

Features of the File Stimulator:

• Timing is expressed in terms of delay instead of absolute cycle counter values
• Any I/O register can be assigned to (stimulated), not only port registers
• Individual bits in I/O registers can be stimulated using bitwise assignments
• Directives increase flexibility
• One stimuli file can open and execute another stimuli file

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 4

1.2.2.2 Use from Microchip Studio
The stimuli input file must be prepared in advance using a text editor like the Microchip Studio editor. It is
recommended to use the extension .stim for stimuli files. Before starting debugging, the stimuli file is selected in the
Tool tab in the project properties page. During a debug session, you can select a new stimfile by using the menu
selection Debug > Set Stimulifile.

The stimuli generator can be started from Microchip Studio using the menu selection Debug > Execute Stimulifile.
This option is only available during an active debug session. The time between this action and the stimuli input is
exhausted by the last stimuli file being closed is referred to as a stimuli session.

During a stimuli session, all normal debug features like breakpoints, single-step, etc. can be used. Stimuli are applied
as the application program is executed (free-running or single-stepped). If the debug session is continued after the
stimuli session is ended, it will continue without stimuli (unless a new stimuli session is started).

There is no way to explicitly abort an active stimuli session, apart from ending the debug session.

The output from the stimuli session will be routed to the Output pane in Atmel Studio. Select FileStimuliProvider
from the drop-down list Show output from. The FileStimuliProvider pane is created the first time a stimuli file is
executed and will remain in place until Microchip Studio is closed. The output is retained across debug sessions. If
this is undesired, it has to be cleared manually. See 1.2.2.2.1 The FileStimuliProvider Output Pane Format for an
explanation of the output pane format.

Logging can only be started using commands in stimuli files. There are presently no GUI facilities to set up or start
logging. Microchip Studio currently only supports logging to file, not to the output pane.

1.2.2.2.1 The FileStimuliProvider Output Pane Format
When a stimuli session is running, all output from the session is printed to the FileStimuliProvider pane. All output
lines start with a time stamp on the form #00000028. This is the value of the cycle counter in decimal. There are
three types of output printed to this pane, which is shown below.

Stimuli File Open or Close and end of Session
Whenever a stimuli file is opened or closed, it is logged in the output. The first line of the output will be the opening of
the initial stimuli file. It might look like this:
#000000000 Opened file 'C:\Project\Test\test.stim' as [0]
The number in square brackets is the file number assigned to the file, starting at 0. This number is used to refer to the
file in other messages. If another stimuli file is opened, it will get number 1, and so on.

When the file is closed, a similar message appears:
#000000028 Closed file 'C:\Project\Test\test.stim' [0]
When the last stimuli file has been closed, the stimuli session is ended, and no more stimuli will be produced. Notice
that the last closed file does not have to be the initial file. When the last file has been closed, the following message
is produced:
#000000036 All stimuli files closed
Command Echo
All text from the stimuli files is echoed at the time it is executed. The echoed text is preceded with the time stamp and
file number, and may look like this:
#000000016 [0] PINB ^= 0x03
#000000016 [0] #4
#000000020 [0] PINA = 0x01
In this example, the assignments to PINB and PINA are separated in time by four cycles, and all commands are read
from file 0.

Error and Warning Messages
Error/warning messages refer explicitly to the file name and line number where the error was detected and may look
like this:
#000000006 [0] log foo.bar
Error: L:\Project\Test\test.stim(6): Syntax error

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 5

1.2.2.3 Stimuli File Format
A stimuli file is a simple ASCII plain text file containing stimuli commands, one command per line. Apart from
comments, there are only three kinds of commands: delays, assignments, and directives.

1.2.2.3.1 Delays
A delay is specified by an # character followed by the duration of the delay in CPU clock cycles. #20 means a delay
of 20 clock cycles. Using delays is the only way of separating commands in time. Commands that are not separated
by delays will be executed simultaneously, i.e., within the same clock cycle. In the current implementation, stimuli are
only evaluated between CPU single-steps, meaning that the delay may be longer than specified if it would end in the
middle of a multi-cycle instruction.

1.2.2.3.2 Assignments
Assignments are used to assign a new value to an I/O register. The operators are listed in Table 1-1.

Table 1-1. Stimuli Assignments Operators

Statement Description

target = value Direct assignment; set target equal to value

target |= value Bitwise OR assignment; bits that are 1 in value will be set in target, remaining bits unchanged

target &= value Bitwise AND assignment; bits that are 0 in value will be cleared in target, remaining bits
unchanged

target ^= value Bitwise XOR assignment; bits that are 1 in value will be toggled (inverted) in target, remaining
bits unchanged

The target can be the numerical memory address of an I/O register in the I/O map. For simple devices with a flat I/O
structure such as tinyAVR® and megaAVR®, the register name, as found in the data sheet, can also be used.

For devices with complex I/O structure (XMEGA®, UC3, SAM), it is for now recommended to use addresses. The
easiest way to determine the address is to bring up the I/O view and select the desired register. The address can be
copied from the I/O view (select the desired register, right-click, and select “Copy Address”).

The value can be either a numerical constant specified in decimal, octal, or hex according to C syntax, or it can have
the form *source. When using this syntax source is the name or memory address of an I/O register. The current
interpreter does not support expressions.
GPIOR0 = *GPIOR1 // Allowed!
GPIOR0 = *GPIOR1 + 1 // Not allowed!

1.2.2.3.3 Directives
A directive is initiated by a $ character, followed by a command. Directives are used to control various aspects of
stimuli execution and logging.

The currently supported directives are listed in Table 1-2.

Table 1-2. Stimuli Directives

Directive Arguments1 Description

$stimulate filename Start reading of stimuli from a new file. The new file will
be read in parallel with the current file. This is currently
the only way of opening multiple stimuli files within a
stimuli session.

$quit Close the current stimuli file. The remainder of the file
will be discarded, and the file is closed. (The same as
reaching the end of the file.)

1 Multiple arguments are separated by space.

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 6

...........continued
Directive Arguments1 Description

$break Break program execution. Stimuli file(s) remain open,
and stimuli will be resumed when program execution is
resumed.

$repeat number Start a repeat loop, repeat number times until $endrep
directive

$endrep End of a repeat loop

$log IO-register mask Set up register logging. If mask is specified, the log will
only update when the bits in the mask change. The
mask will be OR'ed with any previous mask for the same
address. Logging will not start until $startlog directive
is executed.

$unlog IO-register mask Stop register logging. If mask is specified, only the bits in
the mask will stop being logged.

$startlog filename writemode Start logging to the named file. The writemode is
optional, the default mode is to append to the file.

Table 1-3. Log Writemodes

Type Description

a Append to file (default)

o Overwrite any existing file

$stoplog Stop logging

$fuse address value Set fuse byte at address to value. 2 Fuse addresses
generally start at 0.

$reset type Reset device. Possible reset types are listed below.

Table 1-4. Reset Types

Type Description

p Power on reset (POR)

e External reset (EXT)

b Brown-out detection (BOD)

s Spike (AVR XMEGA only, similar to external
reset)

1 Multiple arguments are separated by space.
2 After the fuse is changed, a power-on reset must be applied to make the change effective.
3 This command was introduced in Atmel Studio 6.1 SP2.

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 7

...........continued
Directive Arguments1 Description

$memload file segment nocheck Load the contents of file into the memory. On AVR
designs, you can specify segment to select where to
load the data. If you add nocheck to the end of the
command, any checksum errors in the file will be
ignored.

Table 1-5. Memory Segments

Segment Description

s Data memory (default)

f Flash

e EEPROM

i I/O

$memdump file adr size segment Dump the contents of the memory to file, starting at
adr and dumping size number of bytes. Optionally,
specify segment to select which memory to dump.

Table 1-6. Memory Segments

Segment Description

s Data memory (default)

f Flash

e EEPROM

i I/O

A log entry is generated whenever a logged I/O register changes the value for whatever reason. The log format is
compatible with the stimuli format, which means that log output can be used as stimuli input. The log file will consist
of delay statements and assignments.

Note: 
Relative paths are relative to the directory of the initial stimuli file.

1.2.2.3.4 Comments
Comments are initiated with // and last until the end of the line. Block comments (/* ... */) are not supported.

1.2.2.4 Known Issues
Stimuli Files

Note: 
The mapping between register names and addresses only works reliably for devices with a flat I/O structure with
unique register names. Dotted notation does not work. Use numeric addresses instead.

• Logging of some I/O registers on 32-bit devices may be unsupported. This will be documented on a per-device
basis.

• In assignments, the operator (=, etc) must be surrounded by spaces
• The stimuli interpreter will fail if the last line of the stimuli input file is not terminated by a newline
• On 8-bit devices, it is not possible to assign values to 16- or 32-bit register tuples, e.g., to assign to ADC, one

must assign to ADCL and ADCH separately. See the example in 1.2.2.5 Example Stimuli Session.

4 This command was introduced in Atmel Studio 6.2 SP1.
1 Multiple arguments are separated by space.

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 8

• Error reporting leaves a lot to be desired
• The timing of stimuli can be a cycle or two off compared to delay specification because stimuli files are

evaluated only between CPU single-steps in the current implementation
• Sharing violation if attempting to edit a stimuli file while open

1.2.2.5 Example Stimuli Session
Session 1; Simple AVR® Program

The following example should work with any ATtiny or ATmega device having at least two GPIO ports (PORTA and
PORTB). It should be run with the I/O view active and set up to show the PORTA and PORTB modules.

This program sets up PORTA as output and PORTB as input, and then loops, reading whatever is present on PINB,
increments it by one, and outputs it at PORTA.

reset:
 rjmp start
start:
 ldi r16, 0xff
 out DDRA, r16 // PORTA => output
 clr r0
 out DDRB, r0 // input <= PORTB
loop:
 in r0, PINB // Requires stimuli for any action
 inc r0
 out PORTA, r0
 rjmp loop

Without stimuli, this program will read 0 from PINB, and output 1 to PORTA, forever.

Now apply the following stimuli file:
// Example stimuli file, feeds any output on PINA back to PINB.
#10
$repeat 10
 PINB = *PINA
 #10
 $break
$endrep

PINB will now be driven by the output from PORTA every 10th cycle, and the effect will be directly visible in the I/O
view. Thanks to the $break directive inside the loop, the program will stop every 10 cycles without any breakpoint in
the program.

1 Multiple arguments are separated by space.

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 9

Figure 1-1. Screenshot of the Stimuli Session from the Example

Session 2; Simple AVR® Logging

The following example is made for ATmega328P but should work with most ATtiny or ATmega devices. This program
starts TIMER0 and then enters a loop, constantly adding 1 to the value in PIND and assigning the result to PORTD.

#include<avr/io.h>

int main(void)
{
 DDRD = 0xFF;
 TCCR0B = (1<<CS00);
 while(1)
 {
 PORTD = PIND + 1;
 }
}

When applying the following stimuli, it will create a log file that starts logging the value of PORTD and PIND. After 20
cycles, it changes to logging PIND and TCNT0, and after another 20 cycles, it continues to only log PIND for 60
cycles.
$log PORTD
$log PIND
$startlog mega328p_log_output.stim
#20
$unlog PORTD
$log TCNT0
#20
$unlog TCNT0
#60
$stoplog
$break

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 10

This will produce a file called mega328p_log_output.stim with the following content:

#6
PORTD = 0x01
#1
PIND = 0x01
#4
PORTD = 0x02
#1
PIND = 0x02
#4
PORTD = 0x03
#1
PIND = 0x03
#3
TCNT0 = 0x10
TCNT0 = 0x11
#1
TCNT0 = 0x12
#1
PIND = 0x04
TCNT0 = 0x13
#1
TCNT0 = 0x14
#1
TCNT0 = 0x15
#1
TCNT0 = 0x16
#1
TCNT0 = 0x17
#1
PIND = 0x05
TCNT0 = 0x18
#1
...

Session 3; Logging PWM Ouput

The following example is made for ATmega328P but should work with most ATtiny or ATmega devices. This program
starts TIMER0 in fast PWM mode. The output of the PWM signal on PD6 is controlled by PB0. 1 on PB0 enables
PWM output, 0 on PB0 disables it.

#include<avr/io.h>

int main(void)
{
 DDRB = 0x00;
 DDRD = 0xFF;
 PORTD = 0x00;
 OCR0A = 0x20;
 TCCR0A = (1<<COM0A0 | 1<<WGM01 | 1<<WGM00);
 TCCR0B |= (1<<CS00);
 while(1)
 {
 if(PINB & 0x01)
 TCCR0B |= (1<<WGM02);
 else
 TCCR0B &= ~(1<<WGM02);
 }
}

When applying the following stimuli, it will create a log file that starts logging the value of PINB and PIND. After 20
cycles, it also starts to log TCNT0. Five cycles later, it applies a 1 to PB0 to start the PWM output, and another five
cycles later, it turns off logging of TCNT0. For the next 200 cycles, the PWM output on PD6 will be logged before it is
turned off by setting PB0 to 0. Then it continues for another 200 cycles before it breaks.

$log PINB
$log PIND
$startlog mega328p_log_output.stim
#20
// Log TIMER0 counter
$log TCNT0
#5

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 11

// Set pin PB0 to '1', Start PWM output
PINB |= 0x01
#5
// Stop logging TIMER0 counter
$unlog TCNT0
#200
// Set pin PB0 to '0', Stop PWM output
PINB &= 0xFE
#200
$stoplog
$break

This will produce a file called mega328p_log_output.stim with the following content:
#20
TCNT0 = 0x09
TCNT0 = 0x0a
#1
TCNT0 = 0x0b
#1
TCNT0 = 0x0c
#1
TCNT0 = 0x0d
#1
TCNT0 = 0x0e
#1
TCNT0 = 0x0f
#1
PINB = 0x01
TCNT0 = 0x10
#1
TCNT0 = 0x11
#1
TCNT0 = 0x12
#1
TCNT0 = 0x13
#15
PIND = 0x40
#33
PIND = 0x00
#33
PIND = 0x40
#33
PIND = 0x00
#33
PIND = 0x40
#33
PIND = 0x00
#22
PINB = 0x00
#11
PIND = 0x40
#1
PIND = 0x00

1.3 Using Simulator in the Programming Dialog
Although it is possible, using the simulator in the programming dialog does not have that much practical use, due to
the volatileness of the simulator. However, it can be useful for new users to explore the programming dialog without
the risk of damaging any real hardware, or even without having invested in any hardware at all. It can also be used to
create a production file, which can include flash content, EEPROM content, user signatures, fuse settings, and lock
bits settings.

The simulator supports the following operations:

• Read device ID
• Erase device/memories

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 12

• Program, read, and verify memories
• Program, read, and verify fuses
• Program, read, and verify lockbits

When the programming dialog is opened, and a device is selected, the simulated device starts with default factory
settings and empty memories. Any data programmed into the simulator will be retained until a different device is
selected, or the programming dialog is closed.

1.4 Key Differences Between Simulator and Hardware Tools
In Microchip Studio, the simulator is handled basically like any other hardware tool. It can be selected for both
programming dialog and debug sessions. However, there are some key differences:

• The simulator is volatile, meaning it has no memory between sessions. Anything programmed into the simulator
non-volatile memories (like flash contents or fuses) in one session will be forgotten after the session is quit.
When a session is ended, the simulated device quite literally ceases to exist, and when a new session is started
a new simulated device is created from scratch, starting its existence in its initial state. Specifically, this means
you cannot program fuses in the programming dialog, and later start a debugging session with these fuse
settings intact. A new session always starts with default fuse settings. Fuses and other options for use in
debugging sessions with the simulator have to be set up using a simulator-specific property page active only
during a simulator debugging session. A feature allowing parts of or the entire simulator state to be saved
between sessions may be considered in the future.

• The simulator has no selectable programming or debugging interfaces. This because the simulated device is
implemented by a software model, and all access of internals within the model is done via a software API; no
physical interface is involved, and all access is completely non-intrusive since nothing needs to be clocked to
retrieve or write data.

• Presently, only a single instance of the simulator can be run at a time. Also, the simulator lacks serial numbers
like most of the hardware tools have.

• The simulator is not real-time. This means that the speed of the simulation (measured in simulated CPU cycles
per second) is significantly lower than on a real device. The simulator can only utilize a single CPU core in a
multi-core CPU, so upgrading your PC with more cores will not make it faster, but there are indications that a
larger CPU cache gives better performance.

• The simulator is not a complete model of the device. While digital logic is simulated cycle-accurately, all analog
periphery is presently lacking. Also, the modeling of NVM5 is incomplete. The degree of incompleteness varies
between devices, see 2. Known Issues in Simulator.

• Device support is not complete. The simulator depends on a software model of each device/family to be
simulated. Supported devices are shown in the device selector when the simulator is selected.

• The simulator runs in isolation, meaning the surroundings of the simulated device is not simulated. To run real-
life applications on the simulator, stimuli must be provided to the inputs of the simulated device. Stimuli can be
provided by simple stimuli files, as shown in 1.2.2 Simulator Stimuli.

• For the ATmega128 simulator model the ATmega103 compatibility fuse (M103C) is not programmed by default,
and SUT is set to the shortest possible value in some devices

• In most tinyAVR® devices, the SELFPRGEN fuse is unprogrammed by default, preventing SPM from working.
Set this fuse when working with SPM.

• Many tinyAVR devices have external reset as an alternative port function, and an RSTDISBL fuse to disable the
external reset pin. When unprogrammed (the default setting), the corresponding port pin will not work as
expected.

• The CKDIV8 fuse is normally unprogrammed to increase simulation speed

1.5 Key Differences from AVR® Studio 4 and AVR32 Studio
The model-based simulator uses the same technology used in AVR Studio 4, also known as “Simulator 2”. It has
been extended to support modeling of 32-bit UC3 and Arm® devices as well, but Arm models are not publicly
distributed.

5 Flash, EEPROM

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 13

The instruction set simulator from AVR32 Studio is presently not available in Microchip Studio. The model-based
simulator is used instead.

 AVR® Simulator
Using Simulator in Microchip Studio

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 14

2. Known Issues in Simulator
This section lists known bugs and shortcomings of the current simulator. Numbers shown in parentheses refer to bug
numbers in the bug tracking system.

2.1 General Issues
• The simulator settings dialog is not yet implemented (#13412)
• AVR XMEGA® B1, UC3 except for UC3A and UC3L series, and some tinyAVR® and megaAVR® devices are not

yet supported in Microchip Studio.
• AT90CAN*/ATmega*C*, AT90USB*/ATmega*U*, AT90PWM*, and ATtiny87/167 devices will never be supported

by simulator models
• External memory is not supported by the simulator (#7570, #9442)
• When writing to I/O PORT registers and the port is configured as an output, the change may show up

immediately in the PIN register, not one cycle delayed as on the real chip (#7188). This only affects the
Microchip Studio I/O view, not the execution of programs.

• The AVR32 Studio instruction set simulator still not implemented in Microchip Studio 7.0 (#11557)
• If the simulated device is put to sleep, single-stepping will not promote the program counter. Like a real device,

this state will remain until something wakes it up from sleep. The reason for this behavior is that the CPU is not
executing code when asleep. The alternative would be having the single-step hang until the device wakes up,
which would hang the entire Microchip Studio until that happens (maybe never).

• Setting fuses in the code of the simulated program may interfere with the operation of the simulator. Especially
the OCDEN fuse and the SUT fuse may cause the simulator to abort the session. This is caused by a time-out in
the simulator that counts the number of clock ticks it takes to get the chip out of reset. If this time-out is
exceeded, the simulator will fail the session.

2.2 Device and Family Specific Issues

2.2.1 tinyAVR® Devices
• ATtiny40 RAMDR register cannot be written from Microchip Studio's I/O view. Workaround: Write SRAM directly

via the memory view.
• Selecting ATtiny10 external clock in the simulator will cause Microchip Studio to hang (#9349)
• PRR register of ATtiny25/45/85 does not work (#5584, it works with the other devices having PRR)
• ATtiny25/45/85: Watchdog time-out too long (~64 times longer than it should be @1 MHz)
• System clock prescaler not included in simulator models. Writing CLKPR will not affect the system clock. (All

devices except ATtiny10/9/5/4, ATtiny20, and ATtiny40.)
• CLKPR is not updated when debugging if the CKDIV8 fuse is programmed (#10515)

2.2.2 megaAVR® and Smart Battery Devices
• ATmega16HVB stack pointer does not initialize correctly and must be initialized by the application. This is an

issue with the actual chip, and the simulator just reflects reality, see data sheet Errata section 38.1.1 (Rev. B).
• ATmega169PA/165PA/329P/325P/3250P/3290P/649P/645P/6490P/6450P watchdog timer does not work

(#9301)
• The system clock prescaler is not included in simulator models. Writing CLKPR will not affect system clock.
• External interrupt rising flank triggers on both flanks on some ATmega devices (#13434)
• CLKPR is not updated when debugging if the CKDIV8 fuse is programmed (#10515)

2.2.3 AVR® XMEGA® Devices
• Writing/erasing FLASH using SPM and EEPROM from an application is not yet implemented in ATxmega devices

(#7611)

 AVR® Simulator
Known Issues in Simulator

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 15

• Simulation is slow compared to other devices
• I/O view: Enabling the watchdog by setting ENABLE bits in WDT.CTRL register doesn't work
• Attempting to change CLK.CTRL register through I/O view will cause Studio to hang (mapped read-only in

XMEGA E5)
• XMEGA E5: TCCOM compare/capture register and TCxn_CTRLD read-only in I/O view
• XMEGA E5: FAULTn.CTRLG registers bit 5-7 read-only in I/O view
• XMEGA E5: SPI.DATA register read-only in I/O view
• XMEGA E5: CRC.DATAIN register read-only in I/O view

2.2.4 32-bit AVR® UC3 Devices
• The UC3A model I/O map is not yet completed. The following I/O modules will always show zero in the

Microchip Studio I/O view: SMC, HMATRIX, FLASHC, MACB, SMC, DRAMC, INTC, PM, and RTC.
• Simulation of UC3 devices is slow compared to other devices due to complexity and size of the UC3 designs

 AVR® Simulator
Known Issues in Simulator

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 16

3. Revision History
Doc. Rev. Date Comments

A 12/2020 Initial document release

 AVR® Simulator
Revision History

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 17

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

 AVR® Simulator

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 18

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC
Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-
Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6742-7

 AVR® Simulator

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 19

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 AVR® Simulator

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 20

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. User Guide DS50003042A-page 21

http://www.microchip.com/support
http://www.microchip.com

	AVR® Simulator
	Table of Contents
	1. Using Simulator in Microchip Studio
	1.1. Overview
	1.2. Using Simulator in a Debugging Session
	1.2.1. Using the I/O View with Simulator
	1.2.2. Simulator Stimuli
	1.2.2.1. Introduction
	1.2.2.2. Use from Microchip Studio
	1.2.2.2.1. The FileStimuliProvider Output Pane Format
	1.2.2.2.1.1. Stimuli File Open or Close and end of Session
	1.2.2.2.1.2. Command Echo
	1.2.2.2.1.3. Error and Warning Messages

	1.2.2.3. Stimuli File Format
	1.2.2.3.1. Delays
	1.2.2.3.2. Assignments
	1.2.2.3.3. Directives
	1.2.2.3.4. Comments

	1.2.2.4. Known Issues
	1.2.2.5. Example Stimuli Session

	1.3. Using Simulator in the Programming Dialog
	1.4. Key Differences Between Simulator and Hardware Tools
	1.5. Key Differences from AVR® Studio 4 and AVR32 Studio

	2. Known Issues in Simulator
	2.1. General Issues
	2.2. Device and Family Specific Issues
	2.2.1. tinyAVR® Devices
	2.2.2. megaAVR® and Smart Battery Devices
	2.2.3. AVR® XMEGA® Devices
	2.2.4. 32-bit AVR® UC3 Devices

	3. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

