Выходный трансформатор для двухтактника на 6П36С(ГУ50, 6С4С, 6П3С, Г807) из ТСШ-170

"Хорошая лампа 6П36С. Недорогая и хорошо звучащая.

Вот для двухтактника на 36-х трансформатор с Ra-a = 6,85 ком на нагрузке 16, 8 и 4 ома.

Каркас делим средней щекой. Мотаем половины в разные стороны.

На каждой половине:

Первичка - две секции по 560 витков (10 слоёв по 56 витков) провода ПЭВ-2 0,355 мм.

R акт первички – 98 ом.

Вторичка – между ними – 112 витков того же провода в два слоя, отводы от 56-го и 79-го витка для 4-х и 8-ми ом соответственно. 112 витков – для 16-ти ом.

Таких вторичек три в параллель на каждой половине.

R акт вторички – 0,88 ома. Приведённое – 352 ома.

Соединяем первичные обмотки перекрёстно-последовательно, вторичные – параллельно. Подробнее смотрите в монографии Г. Цыкина.

Итого на каркасе 2240 витков в первичной обмотке и 112 во вторичной.

Железо, естественно, собирается вперекрышку без зазора.

КПД – 93%.

Остаётся добавить, что такой выходник подойдёт для РР на ГУ50, 6С4С, 6П3С, Г807 и пр. лампах с внутренним сопротивлением 0,8 – 1,5 ком.

Данные из монографии Цыкина

Для того, чтобы трансформатор имел необходимую электрическую прочность, толщина гильзы и щёк каркаса, а также междуобмоточной изоляции, должна соответствовать рабочему напряжению. Наименьшая толщина гильзы, щёк и изоляции между обмотками, необходимая дли получения достаточной электрической прочности, приведена в табл. XV.1, составленной на основании практических данных. Если указанная в таблице величина не обеспечивает механической прочности каркаса, её увеличивают насколько нужно.

Таблица XV.1

	Tavanga Ar						
Аноднос напряжение, в	Испытательное наптя- жение между обмот- камч в действующих киловольтах при 50 гц	Толщина крайних щёк, жж	Толщина средних щёк, мм	Толщина изоляции между обмотками, <i>м.м</i>	Толщина гильзы кар- каса высокого напряжения, м.м	Зазор между каркасом высокого напряжения и обмоткой низкего напряжено напряжения, ж.ж.	Расстояние от край- ней щеки до края каркаса, жм
250	- 1	2 ' 3	1,5÷2	0,3÷0,5	_		_
500	2	3÷4	2÷2,5	0,5÷0,8	_	_	_
1000	4	4÷5	2,5÷3	1,01,5		-	
2000	7	5 ⊹ 6	3 : 4	2÷3		_	3÷5
3000	10	6 ÷ 8	4 ∴ 5	_	4 : 5		7÷10
5000	15	8÷10	4÷5	_	3 . 4	3÷4	10÷12
7000	21	8÷10	4 5		4-;-6	5÷6	15⊹18
10000	30	8 ÷ 10	4÷5		6-8	6÷8	20÷25

Данные из монографии Цыкина

Однако Тв выходных трансформаторах двухтактных ступеней небольшой мощности, работающих в режиме "А", такая конструкция обмоток даёт удовлетворительные результаты, и широко применяется в недорогих усилителях

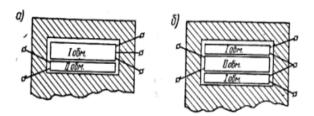


Рис. XV.10. Два простейших варианта расположения обмоток двухтактного выходного трансформатора, работающего в режиме "А". Вариант "б" имеет меньшую индуктивность рассеяния

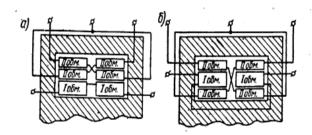
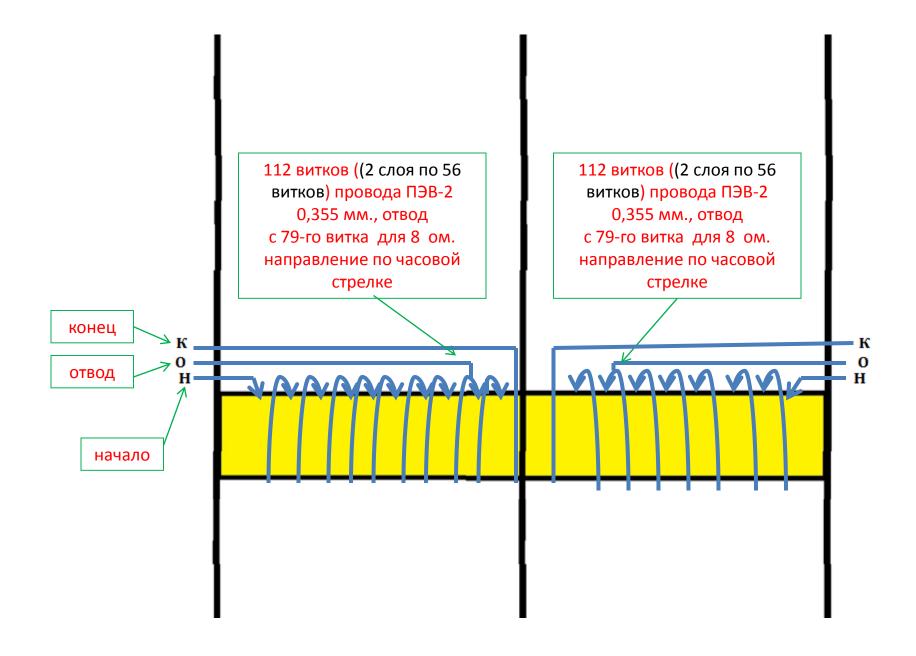
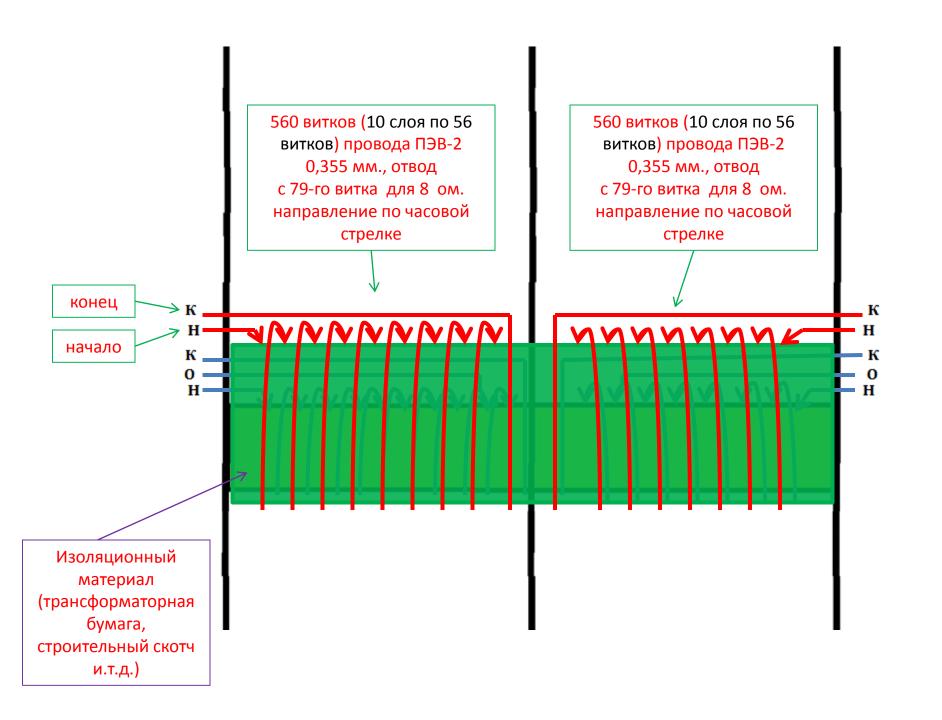
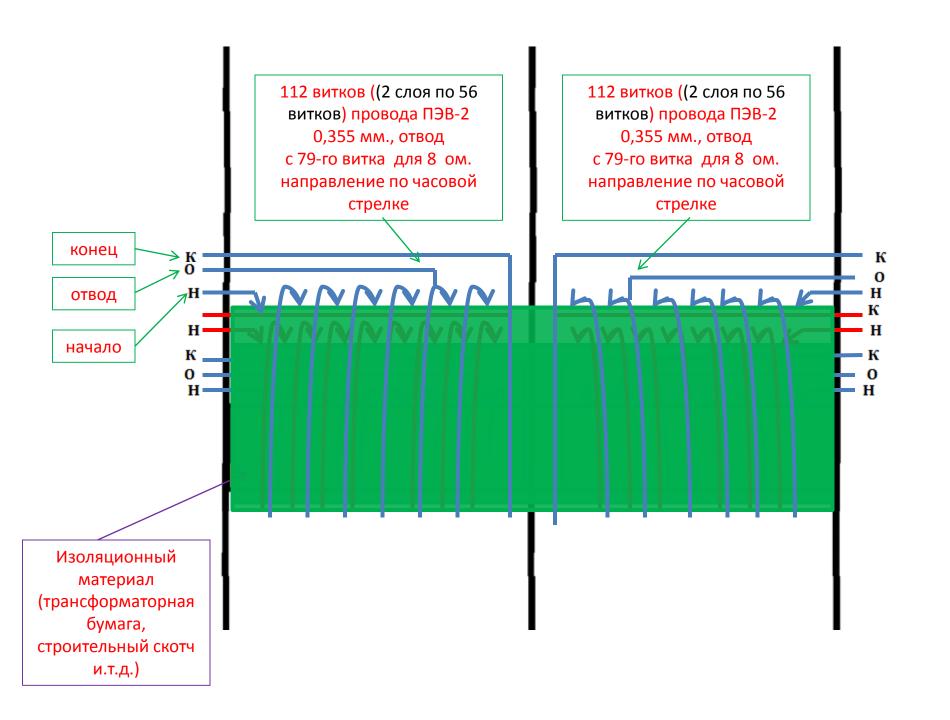
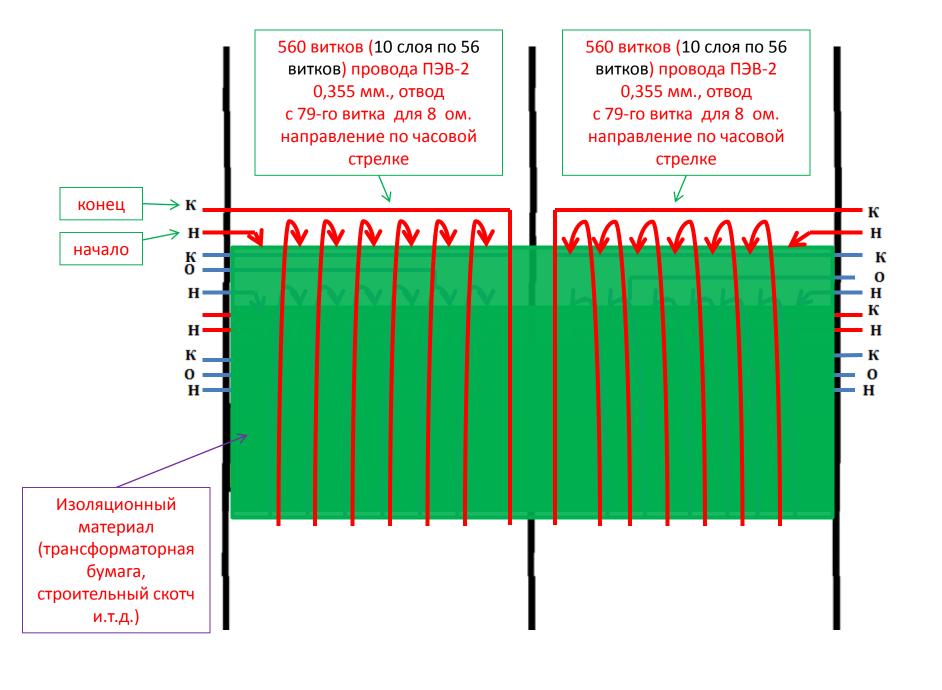
∎евысокого качества вследствие простоты и дешевизны в производстве.

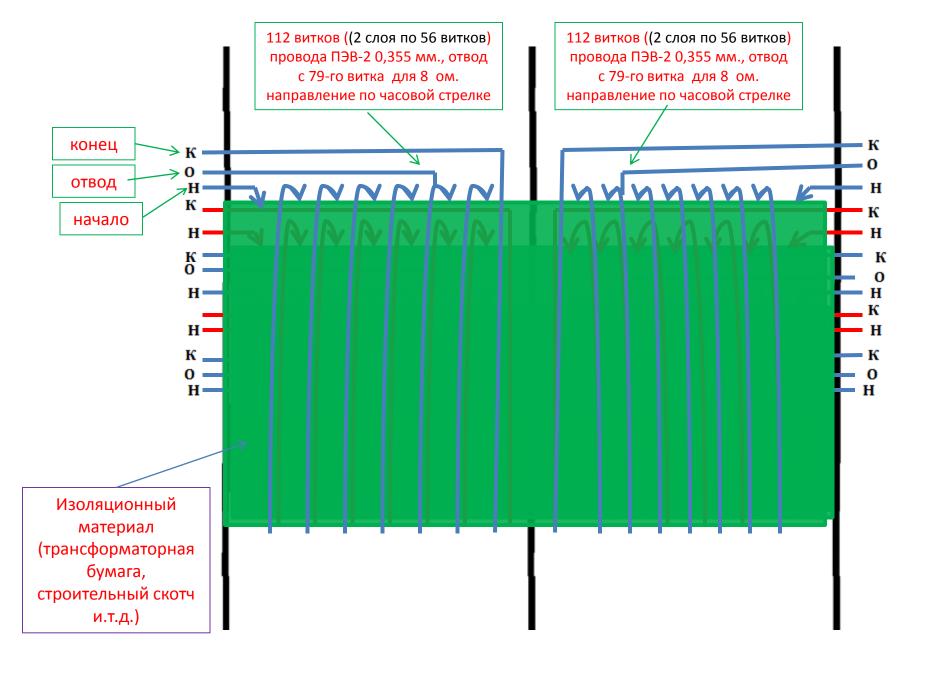
Несколько лучший вариант расположения обмоток двухтактного трансформатора броневого типа, с меньшей индуктивностью рассеяния, но также несимметричный по собственной ёмкости и активному сопротивлению половинок обмотки, приведён на рис. XV.106. В этом варианте, также нередко применяемом для выходных трансформаторов, обмотка, имеющая два вывода, наматывается между половинками обмотки, имеющей среднюю точку.

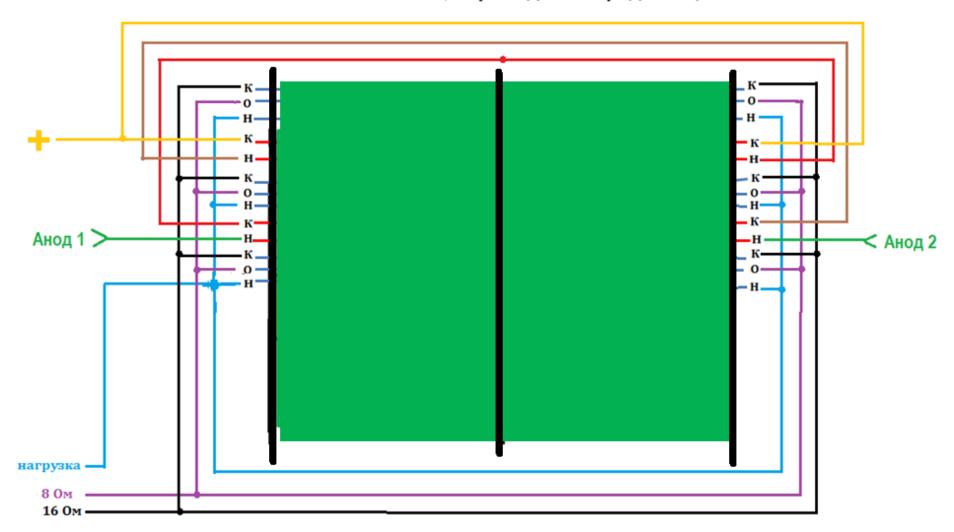
В Усилителях высокого качества, в которых двухтактная схема должна быть симметричной во всей полосе рабочих частог, для входных и выходных трансформаторов, рабо-

тающих в режиме "А" без сеточных токов, применяют симметричную конструкцию обмоток. Два варианта такой конструкции для входного трансформатора приведены на рис. XV.11; в случае выходного трансформатора не вторичная, а первичная обмотка имеет среднюю точку.

Переходные трансформаторы с двухтактной ступени на двухтактную выполняются с расположением обмоток, указанным на рис. XV.11, только первичная обмотка, так же как и вторичная, делится на две равные части и снабжается выводом от средней точки.


Рис. XV.12. Два варианта симметричной конструкции обмоток входного трансформатора для двухтактной ступени, работающей с токами сетки. Вариант "а" имеет меньшую индуктивность рассеяния между половинками вторичной обмотки, вариант "б" — меньшую индуктивность рассеяния между первичной и вторичной обмотками



Железо от ТСШ 170, Каркас делим средней щекой

