Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 08/05/19 in Blog Entries

  1. 13 points
    Здесь я описывал простой тестер стабилитронов и светодиодов в виде приставки к блоку питания + мультиметру. Работает нормально, но в эксплуатации несколько неудобен из-за необходимости привязки к БП. А тут совпали два момента: первый - не пришла посылка из Китая на три 3-проводных вольтметра, я выкатил претензии продавцу и он послал товар повторно, но я успел перезаказать такие же вольтметры у другого продавца. И пришли обе посылки... Второй - самоизоляция, когда сидя дома подгоняю старые проекты. Полазил по сусекам, нашел заваренный трансформатор для питания электронных часов "Электроника" (перемотать не получится), корпус от китайского адаптера с сетевой вилкой заподлицо с корпусом (в евророзетку уже не вставить без переходника), поэтому вилка была тупо удалена ну, и остальные деталюшки... Схема, в общем-то, ничего особенного собой не представляет: Трехпроводной вольтметр реально может измерять до 99,9 В, если питать его от 3...4 В, что и было реализовано. Ток потребления от этого напряжения составляет 20 мА. Напряжение, подаваемое на стабилизатор тока, выпрямленное диодным мостом, составляет 50 В, а схемой удвоения - 100 В, чего более, чем достаточно для большинства стабилитронов, даже высоковольтных, ну, и для светодиодных линеек. Ток составляет 8 мА, что я тоже посчитал достаточным для поставленной задачи. Печатная плата, поскольку устройство изготовлялось в единичном экземпляре и "для себя", делалась методом рисования иглой от шприца лаком для ногтей. Для таких простых плат не вижу никакого смысла заморачиваться с ЛУТ, а тем более, с фоторезистом. Подчеркиваю в очередной раз: ПЛАТА ДЕЛАЕТСЯ ПОД КОРПУС!!! А не наоборот Монтаж в корпусе: Ну, и "изюминка на торте": стабилитрон на 11,6 В. К сожалению, вспышка забила индикацию. При настройке неожиданно столкнулся с неприятным эффектом. В исходном состоянии транзисторы VT1 и VT4 были типов КТ361Б/КТ315Б. Как только к контактам был подключен стабилитрон, пробились их базово-эмиттерные переходы, хотя в LED-тестере работают безукоризненно. Пробились также 50-вольтовые 2SA1015/2SC1815. Пришлось ставить 120-вольтовые, с которыми устройство и работает. Почему так произошло - буду выяснять. Собственно, как раз из-за этого наблюдения я и сделал данную запись, т.к. по другому она и на пост не сильно тянула.
  2. 8 points
    В этом году сайту паяльник исполняется 20 лет с момента его создания. Сайт был создан в далеком 1999 году и первое время ютился на бесплатных хостингах типа Narod.ru, h1 и только 2002 году нашлись деньги на доменное имя cxem.net, под которым он существует и по сей день. Много всего случилось за это время - редизайны, доменное имя угоняли один раз даже (вина mail.ru с их дырявой почтой тогдашней + регистратор немецкий joker.com), разные проекты в рамках сайта, успешные и не очень (железона, карта радиолюбителей, калькуляторы, приложение android и т.д.). Следуя модным тенденциям, не были забыты и социальные сети. У сайта есть Youtube канал (более 200 тыс. подписчиков) и группы в VK (более 100к участников), Facebook и Одноклассники. В общем все находится в движении, постоянно что-то делается, обновляется, дорабатывается, о мере возможностей и свободного времени. В связи с этим знаменательным событием, планируется провести конкурс. С спонсорами в этом году туго, поэтому основные призы будут приобретены по мере фин. возможностей и предварительно они такие: @admin - осциллограф Hantek 5102P (описание и цена на Ali) от jlcpcb.com сертификаты на изготовление плат 100$, 50$ и 25$ от сайта ПРОКОНТАКТ - Сертификат на 3000 руб. @admin - мультиметр UNI-T UT139 (описание и цена на Ali) @admin - мультиметр UNI-T UT39 (описание и цена на Ali) @mefi73 - плата Particle Photon Конкурс стартует 1 сентября и продлится 3 месяца. Более подробная информация будет выложена позже на следующей неделе. Если хотите поучаствовать в качестве спонсора, пишите на cxemnet@gmail.com вышлю всю информацию!
  3. 7 points
    Данная запись ни в коей мере не является рекламой каких-либо препаратов, "систем оздоровления" либо прочих эзотерических глупостей. В ней описан мой личный опыт борьбы с этой пакостью, который чётко совпал с выводами из результатов проведенного более 30 лет назад исследования дыхательной недостаточности (ДН) у детей и подростков со сколиозом, результаты которого оформлены в виде диссертации на соискание ученой степени кандидата медицинских наук (приаттачена). Правда, прочитать все 210 страниц (и это пока без приложений, занимающих еще почти 120 страниц!) неподготовленному человеку сложновато, но хоть пролистать и убедиться, что всё изложенное - не плод авторской фантазии - вполне возможно. Может возникнуть резонный вопрос: каким таким боком дыхательная недостаточность связана с гипертонической болезнью? Однако, оказывается, связь достаточно сильная, поскольку т.н. "гипертоническая болезнь" (по крайней мере, одна из ее форм, т.н. "эссенциальная ГБ") является не собственно болезнью, а компенсаторной реакцией организма на нарушение тканевого дыхания - последнего из этапов функции дыхания, которому предшествуют перенос газов кровью (кислотно-основное равновесие, КОР) и внешнее дыхание (газообмен в легких). Вот обоснованию высказанного парадоксального утверждения и посвящается данная запись. Начну с начала, а именно, "откуда ноги растут" у дыхательной недостаточности. Исторически, так сложилось, что проблема дыхательной недостаточности явилась чуть ли не монополией пульмонологов (специалистов по заболеваниям лёгких). Тем более, что методика исследования внешнего дыхания (спирография) несложна и вполне доступна в клинике. Однако, оценка получаемых данных столкнулась с "проклятым" вопросом: как соотнести их с тяжестью изменений в лёгких, если нет "реперной шкалы", т.е., относительно непрерывной последовательности этих изменений от нормы до крайне тяжелой патологии. В результате появилось множество классификаций как самой ДН, так и степеней её тяжести. Этот вопрос описан в приаттаченной статье (правда, на украинском и в публикацию она в своё время не пошла). Мне же просто повезло с патологией. Были изучены показатели функции дыхания при сколиозе у 208 больных с углами деформации позвоночника от 1 до 149°. Т.е., с почти непрерывной "реперной шкалой". Статистическая обработка методом вариационной статистики при группировке по общепринятым степеням тяжести сколиоза оказалась не информативной. Поэтому был применен метод корреляционно-регрессионного анализа. Причем, аппроксимация всей совокупности данных по возрастным группам единственной прямой линии регрессии тоже была неинформативной (либо вообще недостоверной, либо слабо достоверной). В то же время на графиках отмечались вполне закономерно выраженные экстремумы преобладания значений в определенных диапазонах углов деформации позвоночника. Поэтому был применен метод кусочно-линейной аппроксимации. Пока добавление новых точек к аппроксимируемому участку значений повышало достоверность расчета - добавлялась следующая точка. Как только достоверность начинала снижаться - принималось решение о конце этого участка. Расчеты выполнялись на супер-ЭВМ для того времени (начало-середина 80-х) "Электроника Д3-28" с ОЗУ аж 16 кБайт . Но что было - то было. В результате такой обработки были получены парадоксальные на первый взгляд данные. Приведу пример нескольких графиков из диссертации. Пунктирные линии - единственная линия регрессии, сплошные - ломаная. Жизненная ёмкость лёгких (ЖЕЛ) для возрастных групп 13-14 ("В") и 15-17 лет ("Г"): Вначале показатель закономерно снижается, но к 60-80° возрастает до практически нормы. Парадокс! Деформация увеличивается, а ёмкость лёгких восстанавливается!!! Аналогично ведет себя минутный объём дыхания в покое (МОДп): Не буду дальше углубляться в анализ - всё это подробно расписано в диссертации. Вывод из проведенного исследования был следующим: тяжесть ДН определяется не каким-либо из показателей внешнего дыхания (например, одышкой), зарегистрированная величина которого может относиться сразу к нескольким степеням деформации, а следовательно, тяжести заболевания, а степенью вовлечения в компенсацию патологических нарушений резервных возможностей как самого пораженного звена дыхательной цепи (I степень), так и соседних с ним (II степень) и ещё более отдалённых (III степень). В качестве примеров привожу полярограммы напряжения кислорода в мышечных тканях голени при функциональных пробах ишемизации (наложением жгута на бедро) - верхний трек и дыхании кислородом - нижний трек. Норма: III степень дыхательной недостаточности: Чётко видна парадоксальная реакция (синдром "кражи") при дыхании кислородом - уровень кислорода в тканях снижается. Реакция на ишемизацию тоже кране "вялая" - клетки перешли на анаэробный цикл дыхания, наличествует тканевое депо кислорода в миоглобине. Как результат - моя классификация ДН: Всё сказанное выше было только преамбулой, чтобы продемонстрировать обоснованность дальнейших выводов. Перейдем теперь к гипертонической болезни (ГБ). Правильная теория должна не только объяснять всю накопленную совокупность фактов по проблеме, но и прогнозировать их развитие. Что и произошло примерно через год после защиты. Привёл ко мне коллега на обследование больного. Разговорились. Он сказал, что писал диссертацию по ГБ и бросил, т.к. никто не смог объяснить результаты исследований. А именно: при начальных степенях ГБ напряжение кислорода в крови достоверно повышается. Вот тут у меня в мозгах и "щелкнул тумблер". Из институтского курса гистологии в памяти осталась фраза из учебника, что при ГБ в базальной мембране капилляров откладывается гиалиноид. Причем, трактовалось это явление, как вторичное, вследствие повышенного артериального давления (АД). А я подумал: А ЕСЛИ ЭТО - НЕ ВТОРИЧНЫЙ, А ПЕРВИЧНЫЙ ФАКТОР РАЗВИТИЯ ГБ? Тогда всё чётко укладывается в описанную выше теорию ДН. Поясняю рисунками. Слева - нормальные капилляры. Кислород из крови диффундирует через нормальную стенку капилляров в ткани, где и потребляется клетками по экспоненциальной зависимости отдаленности от капилляра. По центру - капилляр, стенка которого уплотнена отложением гиалиноида в базальной мембране. Диффузия кислорода через уплотненную стенку затруднена (удлиненный красный отрезок парциального давления кислорода). В тканях напряжение кислорода снижено, они находятся в состоянии кислородной недостаточности. Организму это состояние нужно как-то компенсировать. Как? У него ведь не так уж и много вариантов реакций. А компенсация - элементарна и основана на чисто физической зависимости: при повышении давления газа над жидкостью растворимость данного газа в жидкости повышается. Возьмите бутылку с газировкой. Пока пробка не вскрыта - газа в ней как бы и нет. Стоит только открыть пробку - он "откуда-то вдруг" появляется. Вот и организм повышает давление крови, чтобы повысить в ней растворимость кислорода. Правый рисунок - компенсированное состояние. При том же градиенте напряжения кислорода через стенку капилляра (красный отрезок) напряжение кислорода в тканях возвращается к норме. Компенсация-то компенсация, да не абсолютная. Повышенное АД ведёт к другим неприятностям - головным болям, слабости, а в конечном итоге - к инсультам и инфарктам. Что делает медицина? Сбивает это повышенное давление гипотензивными препаратами. Что делает организм? БОРЕТСЯ С ЛЕЧЕНИЕМ! Ему же дышать надо!!! А ему не дают... И возникают "качели": дали гипотензивное - давление сбили. Организм отреагировал кризом. Дали посильнее - еще раз отреагировал. Дали ещё более мощное - а организм сказал: "Пардон, больше бороться не могу, поднимаю лапки"... Небольшой вбоквелл. В кардиологии существует такой препарат, как "курантил". Он ни в коем случае не обладает гипотензивными свойствами. По механизму своего действия он реологик (снижает вязкость крови). Однако, в течение примерно 3-4 недель после начала его приема АД достоверно снижается. Очевидно, что через единицу объёма тела за то же время проходит больше менее вязкой крови, несущей дополнительное количество кислорода. Удерживать АД повышенным не требуется. Второй пример: лечебное голодание. Через 3 недели (стандартный курс) АД тоже снижается на 20-40 мм рт.ст. Объяснение: голодающий организм "сжирает" всё, что ему не является крайне необходимым. однако, через 2...3 месяца вновь навёрстывает "сожранное". Итак, какой же ввод из всего написанного? Гипертоническая "болезнь" ЯВЛЯЕТСЯ КОМПЕНСАТОРНОЙ РЕАКЦИЕЙ организма на уплотнение стенок капилляров, а не собственно болезнью, как таковой. Вообще-то, выделяется более двух десятков причин, ведущих к повышенному артериальному давлению. Это и почечная гипертония, и гормональная и застойная сердечно-сосудистая. Мы же рассматриваем т.н. "эссенциальную" гипертонию, когда очевидная причина так и не установлена. В том числе и атеросклеротического характера. А теперь подходим, наконец, к главному. Как же её всё-таки лечить? За последнее время появились препараты, реально растворяющие эти отложения. К их числу относятся статины (Розувастин (Роксера), и др. - производителей и, соответственно, названий множество). По крайней мере Роксеру по 15 мг назначила мне мой семейный врач. Принимать один раз в день вечером. 100 таблеток стОят всего $7,5. Правда, до сколь-нибудь заметного эффекта принимать надо долго - не менее 2...3 месяцев. А что вы хотели? Всякая гадость откладывалась в сосудах полжизни, а вывести хотите за неделю? Результат: год назад были "свечки" АД до 180...210 мм рт.ст. Сейчас уже заканчивается второй месяц, как стабильно 130...135/70..80 мм рт.ст. Правда, в сочетании в "мягким" гипотензивным "Нормопресом". Почти как у космонавта . Повторюсь: я ничего не рекламирую. Но попробовать никто не мешает. Проба будет стоит недорого. На форуме достаточно много пользователей старшего возраста. Если хоть у одного не случится инсульта - я буду полностью удовлетворен. Доброго вам здоровья! P.S. Исходя из изложенной концепции становится понятен патогенез метеозависимости гипертоников. При ухудшении погоды (циклон) атмосферное давление падает, соответственно, в воздухе снижается парциальное давление кислорода. Организм воспринимает это, как усугубление дыхательной недостаточности и пытается скомпенсировать ее повышением кровяного давления с соответствующими болезненными проявлениями. Дыхательная недостаточность при сколиозе.doc Проблема визначення та класифікації ДН.DOC
  4. 7 points
    Привычка изобретать велосипеды не отпускает... Стало мало мне множества доступных терминальных программ для общения по последовательному порту со всякими железочками. Когда что-то делаешь с GSM-модемом, или с GPS-модулем, да чего там - даже с MP3-модулем, приходится многократно посылать команды в эти устройства и заниматься разбором ответов, от них приходящих. И, хотя до сих пор эти вопросы как-то решались, меня не оставляло чувство неудовлетворенности: слишком как-то все не просто, не элегантно, кривовато и не удобно. Ну, вот и решил сделать прямо, элегантно и удобно. https://cloud.mail.ru/public/Audn%2F95Vd3Xz1j Вот по этой ссылке лежат файлы бета-версии моей терминальной программки. Скачивать надо или все сразу, или, если трафика жалко, только EXE-шник. В последнем случае интерфейс будет на английском. Чем моя программка лучше прочих? Ну, во-первых, она может практически все, что могут другие аналогичные программы. Во всяком случае всё то, что реально за долгие годы радиолюбительства мне было нужно делать. Во-вторых, она обладает рядом мелких приятностей, например, может отображать принятые и отправленные данные разным цветом. Мелочь, а во многих других терминалках приходится вникать, что есть мои, а что чужие данные, особенно если они не текстовые, а бинарные... Еще во время приема текста можно увидеть и невидимые символы, т.е. коды которых меньше кода пробела (табуляции там всякие и прочие переводы строк). Причем увидеть можно в разном представлении, по желанию. Например, вот так, как любят паскалисты (я из них): А еще мой терминал умеет находить все имеющиеся в системе последовательные порты без того, чтобы в них срать (прошу пардону за мой французский). Большинство известных мне терминалок либо требуют вручную указать имя порта, а потом в лучшем случае ругнутся, что он отсутствует на самом деле, либо перебирают варианты сами, пытаясь открывать все подряд. Такие переборы почти всегда сопровождаются тем, что в "лишние" порты могут уйти какие-то данные, изменятся уровни на сигнальных линиях порта и т.п. неприятные явления могут возникать. Вот когда-то я делал приспособу, которая использовала сигнал RTS для включения настольной лампы по таймеру, и если кто-то вздумал бы определять наличие COM-порта путем его открывания-закрывания, лампочка бы стала мигать из-за этого. Моя же программка может найти даже порты с именами, отличными от COM* (виртуальный нуль-модем com0com умеет такие создавать с легкостью), и при этом не гадит во все порты подряд. Кстати, работать с COM97 для моей программы так же просто, как и с COM1, а многие популярные терминалы вообще дальше COM4 не видят... И еще один нюансик: моя программка по умолчанию сразу открывает выбранный порт, не требуя всяких кнопок "Подключить" и т.п., чем грешат абсолютно все другие терминалы. Но ведь если вы собрались с портом работать, он должен быть открыт - зачем же еще кнопки добавлять? Но, случаи бывают разные, и закрыть порт вы всегда сможете. Чтобы повторить то, что уже было отправлено, не надо "программировать" какие-то макросы, настраивать кнопки или писать скрипты - всё, что вводится пользователем, попадает в историю и выглядит, как кнопка. Нажмешь на такую кнопку - и текст уйдет повторно. Часть данных на кнопке не видно, но что именно там "увнутре" (не неонка!), ясно по начальному кусочку (см. скриншот выше). Кстати, заметили, что окошки можно склеивать в одно окно? Было окно текста без истории, а на тут стало с историей... Так это еще и не все - можно понаприклеивать их сколько угодно и куда угодно, забубенив интерфейс по-своему желанию! Хотите, чтобы все-все-все возможности программы были видны в одном окне? Пожалуйста: На скриншоте вы видите 99% всех окошек, что существуют в программе, и все они склеены в одно большое "главное". Оставшийся процент - это окна плагинов, которые могут быть, а могут и не быть. Вам кажется, что такой интерфейс слишком перегружен? Можно расчистить его, свернув "лишнее": При этом стоит навести мышку на желтенькую полосочку - соответствующее окошко тут же развернется и позволит с собой поработать, а потом свернется и не будет мешать. А если вы сторонник минимализма - можете оставить только самое нужное вам, например, окно HEX-данных и главное меню: Если надо отправлять данные пакетами, то вводить их тоже можно предельно комфортно в таком оконце: Это не фиксированные поля ввода, а заданные вот такой строкой "формата": Преамбула:\t%2xSender:\t\t%1xReciever:\t\t%1xCommand:\t%1dCRC:\t\t%2xEnd:\t\t%2x Если изменить эту строку, например, так: Start:\t%2xSender:\t\t%1xReciever:\t\t%1xCommand:\t%1d, то и поля ввода данных тоже изменятся, соответственно, и пакет тоже будет другой: Внимательный читатель наверняка заметит закономерную связь между полями ввода в окне и строкой формата: %1x означает поле ввода 1 байта в шестнадцатеричном формате, а %1u позволит ввести тот же байт в виде десятичного uint8_t. Само собой, int16_t вводится в поле %2d, а uint32_t в поле %4u. Можно и в двоичном виде: %4b. И так далее. То есть в программе встроен редактор пакетов данных практически на все случаи жизни. Много ли известно альтернатив? А еще ведь есть система фильтров! Каждый байт, поступающий на вход, может быть подвергнут разным проверкам, и пройдет на выход, т.е. появится в окне принятых данных, только в том случае, если все требования фильтров будут соблюдены. Например, классический старт-стопный пакет фиксированной длины выделить очень просто, при этом можно видеть только пакеты, в которых то или иное поле имеет конкретное значение, и не видеть остальные. Можно выделить только строки, начинающиеся с определенной последовательности символов, и т.п. Без ложной скромности скажу, что благодаря фильтрам придумать формат презентации данных, который может потребоваться в работе, и который бы не смогла показать моя программка, будет сложновато. При помощи фильтра форматирования, работающего на том же принципе строки-формата, как уже было показано, поступающие на вход данные можно "смешивать" с текстовыми дополнениями, получая очень наглядную картину. Форматировать можно по 8, 16 и 32 бита и представлять это в десятичном (со знаком или без него), двоичном, восьмеричном или шестнадцатеричном виде. Формат строк для составления пакета на отправку и для просмотра принимаемого пакета, практически одинаков (разница в том, что в строке формата символ \n ведет себя по-разному). Вот пример того, как можно наблюдать приходящие байты в двоичном представлении: Заметили окошко фильтра c параметром Format? Вот я его меняю и - вуаля! - совсем иной коленкор: И все эти фильтры реализованы в виде плагинов, т.е. не нужны - можно удалить и сэкономить несколько сотен килобайт места на диске. Понадобятся - можно в любой момент скачать и добавить. Вот такой терминал моей мечты получается. Пока не без багов, но я близок к завершению. Помощников бы в поиске ошибок... Такие дела... P.S. скриншоты разные, потому что на разных компах делались, на одном еще Win7, на другом уже Win10. И -433 отфильтрованных байта не баг, а фича: форматирующий фильтр не режет, а дополняет данные, вот и выходит, что пришел 1 байт, а ушло 10, значит, отфильтровалось -9
  5. 6 points
    В марте, накануне перехода России в дистанционный формат жизни, я купил себе китайский микрофон BM-800. Вот такой: Микрофон как микрофон, звезд с неба не хватает. Но тут началась самоизоляция, у меня появилось N-ное количество времени и мысль - а не доработать ли мне это чудо китайской копировальной мысли? Разобрав его, увидел интересную плату, на которой был ОУ с несколькими резисторами вокруг, но что самое интересное - судя по дорожкам, этот участок схемы был ни к чему не подключен! Выпаяв его, естественно ничего не изменилось. У меня это ОУ 4558, а в интернете видел и вариант с полевиком Общая доработка Порыскав в интернете, нашел один вариант доработки: А так как я ленивый, то ограничился все лишь верхней схемой: Результат меня обрадовал: Оригинальная схема: test_orig.wav Доработанный вариант: test_mod.wav test_mod_close.wav Доработка АЧХ Можно было бы остановиться на этой схеме, но я обратил внимание, что в звуке присутствует неприятный коробочный призвук. Если задавить частоту 400-500 Гц, то он пропадает. Следовательно, надо добавить в микрофон простой режекторный фильтр на частоту 450 Гц. Посидев пару вечеров с симулятором, родил такую схему: Здесь C1-C2-R2-R3-C5 образуют фильтр. АЧХ такой схемы имеет следующий вид: Провал на частоте 450 Гц аж на 7 дБ - то есть именно то, что и было нужно. Внедряя этот фильтр, я попутно поднял питание схемы до 18В, заменив стабилитрон и привел фазоинверсный каскад в привычный вид, выкинув из него пару деталей. Результаты ниже: Без доработки АЧХ: mod.wav С фильтром и повышенным питанием: mod-notch-filter-and-18V.wav Можно отметить ощутимое изменение в звуке в лучшую сторону, коробочный призвук пропал. Глубину провала внедренного фильтра можно эффективно регулировать одновременным изменением номиналов резисторов R2-R3: А убрать завал на НЧ можно увеличением номинала С5 до 1 мкФ. Окончательный вариант схемы и платы А далее я захотел оформить все это на нормальной плате, ибо вот такое ну никуда не годится (слабонервные, зажмурьтесь) Найти NP0 керамику типоразмера 0603 на такие номиналы оказалось сложным, поэтому развел плату с возможностью установки конденсаторов в цепи звука как пленочных, так и SMD 0603. В самом дешевом варианте можно поставить X7R, но у нее от напряжения ощутимо меняется емкость. Питание по совету уважаемого @Falconist сделал с применением TL431, что гораздо лучше в плане шума, чем стабилитрон. Итоговая схема: Плату захотелось сделать белой Края на стороне, которая прилегает к корпусу, открыл от маски для лучшего контакта: Заказал в Китае все необходимые детали, в том числе и транзистор 2SK596S-B т.к. нужно было проверить повторяемость на других деталях. Приехали с другой маркировкой (см. рис, слева оригинальный). Эксперименты с ним показали, что он имеет меньшее усиление и сильнее шумит. На транзистор-тестере он (впрочем как и "родной") определяется как биполярный с диодом... шта?.. но можно было заметить, что у них относительно друг друга разный hFE - у оригинального он 106, у купленных - 60-70. Меняем транзистор Поэтому было принято решение ставить что-то другое. Одновременно со всеми деталями я заказывал на пробу 2SK170, а также в загашниках нашелся один захудалый КП303И. Эксперименты показали, что оба варианта имеют право на существование в рамках данной схемы, хоть оба и дают меньшее усиление и субъективно поменьше НЧ. Остановился на 2SK170, заменив R4 на 4,7 кОм и С5 на 1 мкФ. Также поставил навесом с затвора на "землю" высокоомный резистор 20 МОм (в транзистор 2SK596S такой уже встроен с диодом в параллель - кстати, может из-за этого он определяется как биполярный). Итоговый вид смонтированной платы: Результат Финальный вариант звука: fin_mod.wav На близком расстоянии: fin_mod_close.wav По итогу могу сказать, что проделанной работой я доволен. Из схемы можно выбросить и фазорасщепляющий каскад, тогда получится "улучшенная схема" с рисунка в начале статьи. Такой эксперимент я проводил. Но тогда некуда будет приткнуть режекторный фильтр. Либо придется ставить их два. UPD: В комментариях отметили, что выявленный резонанс можно попробовать убрать демпфированием корпуса микрофона. Поэтому при желании данный фильтр из схемы можно исключить, сделав АЧХ линейной - нужно вместо R7 поставить перемычку, а C6 C7 R8 убрать. Это, кстати, отмечено и на самой плате.
  6. 6 points
    Почему-то современные вещи не создают ощущение теплоты... а старые (не все, конечно) обладают какой-то притягательной элегантностью, вызывают необъяснимое желание их потрогать и даже заполучить в собственность. Что это - приближающаяся старость или неоспоримый факт? На полках магазинов появляются а-ля ретро поделки, этакий закос под винтаж Когда прохожу мимо - пробирает дрожь отвращения. А на фотографии "настоящих" древностей засматриваюсь... Стало модно в кафе и т.п. для интерьера расставлять подобные вещи - если попадаю в такое место, забываю есть и пить, глазею по сторонам. Все-таки, что-то в этом есть, теплое, ламповое... Не зря же, в конце-концов, тема часов на газоразрядных индикаторах не сходит с повестки дня уже много лет... Но не одними лампами подпитывается эта странная страсть к ретро... Например, не смог пройти мимо вот такого индикатора HPDL-2416 Не имею понятия, зачем они мне нужны, но заполучил-таки их себе, как ранее запасся другими HCMS-2913 Почему-то просто приятно от того факта, что они у меня есть... Жаль, нет идей, куда их можно реально применить. Под такие раритеты и поделки должны быть соответствующие, делать какой-нибудь "MP3-плейер" с подобными индикаторами кощунство какое-то... А мысль уже зажата в тиски современных тенденций... Душа просит тепла и ласки, а жизнь шершавит ее наждаком практичности и функциональности.
  7. 5 points
    Краткий рассказ об использовании китайского дисплея на контроллере SH1122. Особенности отображения, описание функций библиотеки, демонстрация работы. Ссылка на библиотеку-драйвер: https://github.com/mikhail-tsaryov/SH1122-STM32-HAL-Driver
  8. 5 points
    Добрый день. Понадобилась мне в моей мультиварке Vitek VT-4215 BW заменить батарейку на часы. Разобрал я ее, в надежде, что батарейка будет на плате БП, но производитель оказался хитрее и расположил ее в верхней крышке. К сожалению я так и не смог туда добраться, не хотелось нарушать герметичность ради часов. Подумав, раз разобрав уже ее, решил срисовать схему на БП. Довольна интересный оказался, на часть комплектующих я не смог найти документации, поэтому было в двойне интересно. Схема не имеет гальванической развязки с сетью. Понравилась трассировка платы. Плата покрыта лаком с стороны дорожек. На плате много контрольных точек, следовательно сборка платы происходит в Китае, а потом ее отправляют на сборочный цех, где с помощью "летающих" щупов проходит контроль узлов. Имеется шелкография с двух сторон, поэтому включен Поиск в Pdf. В схему перенесено только то, что было распаяно, но плата нарисована полностью. Экономии на комплектующих не заметил, кроме платы, толщина меди очень тонкая, скорее всего 0,18 мкм, паяльником прикоснешься и она испаряется. Пакет файлов: Схема *jpg 1000 Dpi, DipTrace, Pdf 720 Dpi (с возможностью поиска), Плата Lay6, список деталей Excel 2010, Сканы в PDF 800 Dpi (в следующем сообщении). Фото Vitek VT-4215 BW БП схема DipTrace.rar Vitek VT-4215 BW БП.lay6 БП Vitek VT-4215 BW.pdf Список деталей VT-4215 BW БП Excel 2010.rar
  9. 5 points
    Здесь я как-то высказал свою "хотелку": А Михайлик (на следующей странице) описал практически работоспособное решение: Порыскал у себя в загашниках, нашел несколько желтых светодиодов (как маломощных, так и типа "пиранья"), в Интернете накопал несколько схем усилителей фототока (приводить их не буду, ибо не понадобились). Замерил фототок, получаемый со светодиода в фотоамперометрическом режиме. Оказалось, всего порядка 0,3 мкА (!!!). Замеры делал автоматическим мультиметром UNI-T UT136C (на последнем фото). Напряжение, генерируемое ими, непосредственно поднесенными к U-образной люминесцентной лампе 11 Вт оказалось порядка 50 мВ. И тут под руки попалась старинная (почти что винтажная ) светодиодная лампа из самых-самых первых, еще на выводных светодиодах желтого цвета с конденсаторным балластом. Из 21 светодиода 7 сгорели и были тупо выпаяны а их посадочные места перемкнуты. Тыл сфотографирован уже после выпаивания всех компонентов драйвера. Так-то она после ремонта работала, но куда ее применить - HZ. В качестве ночника - слишком яркая, для подсветки чего-то - слишком тусклая, да и цвет некомфортный. Так и болталась, жаба не позволяла выбросить. И вот, пригодилась-таки!.. Подключил ее к мультиметру в режиме измерения постоянного напряжения (поскольку фототок соединенных последовательно светодиодов оказался таким же низким - около 0,3 мкА). Показания под светом той же U-образной энергосберегайки на 11 Вт, на расстоянии около 0,5 м от нее. Вышел на балкон. В 14 часов дня при небе, затянутом умеренной облачностью, этот датчик, направленный на небо, генерировал 1,6 В; направленный к земле - 0,45 В (3-й этаж). Фототок, генерируемый этим датчиком, действительно очень мал. Зашунтировал всю цепочку светодиодов керамическим SMD конденсатором на 7,5 мкФ (из распая) - показания плыли до более-менее устойчивых значений несколько минут. Заменил на 0,8 мкФ - уже быстрее, но всё равно несколько десятков секунд. Да и входное сопротивление мультиметра влияет. Если сначала его включить, то измеряемое напряжение медленно повышается. А если отключить и снова включить - то падает. Назвать этот фотометр "люксметром" и "измерительным прибором" рука, конечно, не поднимается. Но как "индикатор освещенности", да еще и "дифференциальный", т.е., позволяющий просто сравнить освещенность от двух ламп или в двух точках - вполне.
  10. 5 points
    Вопрос, давно "циркулирующий" по разным форумам: каким же должен быть БП для ремонта и предварительной настройки транзисторных УМЗЧ. Если с ремонтом более-менее понятно, то насчет "настройки", да еще и "предварительной" - поясню более подробно. Новоизготовленный УМЗЧ нередко обладает "косяками" (непропаи, пермычки дорожек припоем, перепутаны компоненты и т.п.), из-за чего включать его нужно осторожно и с ограничением тока, дабы не дожечь окончательно. Для ограничения тока рекомендуется использовать либо лампы накаливания на нужное напряжение, либо просто резисторы на несколько десятков Ом. Оба способа токоограничения, при своей простоте и дешевизне, обладают рядом существенных недостатков. Лампы накаливания имеют ограниченный ассортимент напряжений, хрупкую стеклянную колбу и малое сопротивление спирали в холодном состоянии, из-за чего начальный бросок тока может значительно превышать установившееся значение. Достоинство - по свечению нити накала сразу видно, что что-то идет "не так" (короткое замыкание в нагрузке). Резисторы более стабильны в отношении пропускаемого тока, дешевы, но вот никакой индикации аварийного состояния не обеспечивают. Нужны дополнительные вольтметры или амперметры. Что же касается собственно БП, то не устаю удивляться многообразию схем "лабораторных БП", изготавливаемых для этих целей. Если подумать, то регулируемый по напряжению и току ограничения "лабораторник" для данной задачи - "масло масляное маслянистое"! Реально не нужны ни плавная регулировка напряжения, ни тока. Нормальная схема УМЗЧ (подчеркиваю: НОРМАЛЬНАЯ, а не извращенная!) обязана работать при колебаниях питающего напряжения +100 / -50% от номинального значения. Естественно, либо на холостом ходу (Х.Х.), либо на нагрузку , составляющую порядка 10% номинальной. Окончательная настройка режимов (ток покоя, ноль на выходе при отсутствии сигнала и т.п.) должны производиться на ШТАТНОМ БП, с которым этот УМЗЧ будет работать в дальнейшем. Исходя из этих положений, необходимый и достаточный БП для ремонта/настройки УМЗЧ состоит всего-навсего из трансформатора, вторичная обмотка которого может быть вообще без отводов, либо иметь один-два отвода на напряжение порядка 18...24...30 В, выпрямительного мостика, конденсаторного фильтра и ограничителей тока по плюсовой и минусовой шинам. ВСЁ ОСТАЛЬНОЕ - НЕНУЖНОЕ ИЗВРАЩЕНИЕ!!! Ограничение выходного тока (по опыту) достаточно на уровне 0,5 А, чтобы не пожечь сохранившиеся транзисторы средней мощности драйверных каскадов. Транзисторы малой мощности (дифференциальный каскад, усилитель напряжения) обычно "обвязаны" резисторами, не пропускающими избыточные токи. При изготовлении такого БП я оттолкнулся от Двухполярного БП на трансформаторе без среднего отвода: Его схема: Поясняю еще раз и ме-е-е-дленно: Два трансформатора на напряжение первичной обмотки 110 В (сто десять! - севороамериканский стандарт) стоят исключительно потому, что в свое время я их получил по гуманитарке из Канады и они просто валялись в загашниках. И не более того! Первичные обмотки включены последовательно, вторичные - параллельно. Мощность каждого составляет 36 Вт (итого - 72 Вт, чего хватает "выше крыши"). На выходе получается двуполярное питание напряжением ±24 В. Вначале была мысль снабдить этот БП транзисторными ограничителями тока: с индикацией стрелочными гальванометрами от мафонов по падению напряжения на эмиттерном резисторе. Сдвоенный переключатель SA3 переключает выход либо через ограничители тока, либо почти напрямую (через резисторы R4 R7, всё-таки хоть чуть-чуть, но защищающие от полного К.З.). А когда уже подобрал детали - задумался. зачем же я ограничиваю сам себя применением дополнительного БП помимо штатного? По правде говоря, нередко такой дополнительный БП нужен. Скажем, ремонтируется эстрадный УМЗЧ массой под два пуда - сильно такой не покрутишь туда-сюда, даже на каком-то поворотном приспособлении. Приходится снимать плату и ставить ее на "стапель" отдельно от корпуса собственно УМЗЧ с его БП. И тогда выкристализовалось решение соорудить ограничитель тока в виде отдельного блочка, к которому можно было бы подключить любой БП, включая штатный. Сказано - сделано. Нашел в загашниках пару корпусов от разобранный свичей, радиаторы, снятые с компьютерных БП, два комплекта гальванометров М6250-1. Схема содержит два идентичных канала, никак не связанных один с другим. Каналы являются ДВУНАПРАВЛЕННЫМИ, т.е., если на левый по схеме вывод верхнего ограничителя подать плюс от БП, то с его правого вывода снимется плюс на нагрузку (усилитель). И наоборот, если не правый по схеме вывод нижнего ограничителя подать минус от БП (как это изображено для второго узла схемы - на рисунке ниже), то минус на нагрузку снимется с левого вывода. Причем, входы и выходы можно менять местами. Каждый из каналов можно включать как одновременно, каждый в свое плечо питания, так и любой из них по отдельности (скажем, при ремонте усилителя с однополярным питанием). Развел платы (одну - себе, вторую - хорошему приятелю, тоже занимающемуся ремонтом УМЗЧ). Вид сверху (в процессе изготовления): Вид снизу: Из-за простоты и нетиражности не стал ЛУТить, а применил старый добрый способ - рисованием лаком для ногтей через обрезок инъекционной иглы. Хочу еще раз подчеркнуть: ПЛАТА ИЗГОТАВЛИВАЕТСЯ ПОД КОРПУС!!! Ну, и вот что в итоге получилось (один из блочков): На фото показан режим К.З. в левом канале при питании от 12-вольтового аккумулятора. В таком режиме радиатор нагревается до температуры порядка 55...60° (рука еще терпит) примерно за 5 минут. Надо быть совершенно "тёмным" в ремонта, чтобы при наличии "металлического" К.З. в канале продолжать подавать на него питание. Если стрелка ушла вправо до упора - питание НЕМЕДЛЕННО отключается и ищется пробитый компонент. Так и только так! Оба канала настроены на максимальный ток 0,5 А, чему соответствует максимальное отклонение стрелки гальванометров. Они приклеены к корпусу снаружи двухсторонним скотчем. Шкалу не перекалибровывал, поскольку разборка этих гальванометров - квест из геморройных, причем, мало полезных - проще наклеить сверху переводную шкалу, по которой можно ориентироваться в токе потребления по имеющейся оцифровке. В режиме отсутствия ограничения тока падение на каждом из токоограничителей составляет 2,4 В. Светодиоды зеленого свечения (на 2,1 В + последовательно кремниевый диод) индицируют наличие полного К.З, когда это значение повышается более, чем на 2,7 В. Входные и выходные проводники подключаются к разъемам, выведенным на переднюю (бывшую заднюю) стенку. Если входные минус и плюс подключить к крайним контактам обоих разъемов, то выходы будут средними. И наоборот. Данную приставку можно подключать к любому БП, включая штатный для данного УМЗЧ, либо к показанному выше. Если с каналом усилителя всё в порядке и ток потребления соответствует току покоя, тогда и только тогда приставка отключается и питание подается на УМЗЧ непосредственно от БП. Настраиваются нужные параметры (ноль на выходе, коррекция и т.п.).
  11. 4 points
    Вот так жизнь течет себе, катится и вдруг в один прекрасный момент оказывается, что стал прадедом... Ну, подарки - это само собой, но в память о прадеде хочется подарить что-то уникальное, чего больше нигде нет (возможно, что и существует, но не в пределах легкой досягаемости). Среди предметов первой (ну, пускай второй) необходимости для маленького ребенка можно вспомнить ночник. Существующие, выпускаемые промышленно, ночники, к сожалению, не имеют опции регулировки яркости. Испытано на полуторагодовалой внучке. Для спокойного сна ребенка их яркость явно избыточна, а для ухода за ним ночью - недостаточна. Описанная ранее подсветка для микшерного пульта требует сетевого БП, что явно является "стрельбой из пушек по воробьям". А в простейшем ночнике на балластном конденсаторе яркость не регулируется по определению, поскольку балластный конденсатор является источником стабильного тока. Этот конфликт между действительным и желаемым удалось разрешить, применив запараллеливание двух потребителей от одного источника стабильного тока, причем, ток через один из потребителей ("поглотитель тока") - регулируемый. Схема приведена ниже: В нижнем положении движка R4 транзистор VT1 заперт и весь ток, поступающий в нагрузку, протекает через светодиоды HL1HL2, светящиеся с полной яркостью, а в верхнем - наоборот, почти весь ток течет через "поглотитель". Остаточный ток через светодиоды порядка нескольких десятков мкА недостаточен для их заметного свечения, да и не важен для данного устройства - всё равно ночник должен светиться, хоть и очень слабо. А вынуть его из розетки - дело одного движения. Конечно, можно выдвинуть упрек, что устройство потребляет от сети ток независимо от яркости свечения. Но знаете, при мощности 3,5 Вт для ради спокойного сна ребенка с таким "кошмарным" расходом энергии можно и смириться. В Мультисиме данная схема работает, как задумывалось (файл симуляции для желающих "поиграться", приаттачен) Дабы не тратить время на поиски и изготовление корпуса, заказал из Поднебесной вот такие ночники с датчиками внешнего освещения (которые и нафиг не нужны, поскольку живут "своей собственной жизнью"): https://aliexpress.ru/item/4000628703644.html?spm=a2g0o.productlist.0.0.257efbdahFuKTY&algo_pvid=39dfc000-e960-45b8-a153-28b92f663c8f&algo_expid=39dfc000-e960-45b8-a153-28b92f663c8f-59&btsid=0b0a3f8115957658745248064ef065&ws_ab_test=searchweb0_0,searchweb201602_,searchweb201603_ Буду их дорабатывать, выбросив встроенную схему с фоторезистором и заменив её описанной выше. О результатах отпишусь, как сделаю. LED Night Lihgt.ms14
  12. 4 points
    Надоело ломать свёрла, сверля вручную. Нужен станочек, решил я. Посмотрел множество конструкций и решил, что из микроскопа будет самое то, что нужно. Дело в том, что мне нравится сверлить центровочными сверлами из твердого сплава, но для них нужна очень точная подача, чтобы не зенковать контактные площадки. Дальше получилось забавно. Самое дешевое предложение на Авито было 1000 рублей за микроскоп ЛОМО "Биолам" в разборе без гарантий. Я купил и пару дней был занят его сборкой, так как отсутствовали разные винтики М2.5 и М2, и как бы даже не М1.5. Самый заподлянский нашелся в коробоче от винтиков, оставшихся от разборки жестких дисков. В результате получился... микроскоп! Хороший, исправный микроскоп, есть окуляр и 4 объектива, столик с микроподачами... Такая клёвая штука! Из него уже никак нельзя было делать сверлильный станок. Пришлось снова пойти на Авито и в полтора раза дороже купить штатив от аналогичного микроскопа - без оптики и столика. Вот из него уже и получилась сверлилка на картинке. Головку пришлось снять и обработать на станке, чтобы в неё можно было ставить разные переходные кольца. На картинке в таком кольце из полиацеталя движок от принтера. Чтобы кольца надёжно фиксировались нужно будет сделать второй винтовой фиксатор напротив штатного. Моторчик тяговитый и не быстрый - не совсем то, что нужно. Пока поживу с ним, но буду искать моторчик пошустрее. Столик из куска ламината - хотел из текстолита, но не нашёл. Подача в нём - шестерня+рейка, косозубые. На ручке подачи есть фрикцион, так что вся эта довольно массивная система с мотором сама вниз не съезжает. Теперь нужно как-то присобачить туда подсветку, буду думать.
  13. 4 points
    На одной из работ (концерт ансамбля "Украиночка") На другой работе (кафедра менеджмента организаций здравоохранения ЕУ) "Бывших" звукорежиссеров не бывает. Нашли, отряхнули от пыли, усадили за пульт. Вот, снова работаю... Начну со ссылок на наиболее "горячие" темы. 1) "Методика ремонта транзисторного УМЗЧ" На "Казусе". На "Радиокоте". На "Радиолоцмане". Статья растиражирована еще на десятке сайтов, но искать их лениво. 2) "Импульсная зарядка для автоаккумуляторов (Новодел)". На "Казусе"..На "Радиокоте". Еще одна тема на "Казусе". Менее "горячие" темы: 3) "Цоколевка трансформаторов компьютерных БП". На "Казусе". На "Радиокоте". 4) "Регулируемый источник тока на компараторе" На "Казусе". 5) "Особенности построения трансформаторного БП для УМЗЧ". На "Казусе". 6) "Чисто Аналоговый Бытовой Терморегулятор ( Термостабилизатор )" 7) "Миф О Тотальной Замене Конденсаторов При Ремонтах" 8) "Отмывать Или Не Отмывать Платы От Канифоли?" 9) "Сценические Осветители" 10) "Мерцающая Работа Иип" 11) "Плавное Зажигание И Гашение Светодиодов" 12) "Расcчет LED-драйвера на HV9910" 13) "Первая черная полоса в маркировке резистора" 14) "Простой высококачественный мощный УМЗЧ" 15) "Low Dropout линейный стабилизатор на TL431" 16) "Регулятор Оборотов Пылесоса Miele S-711" 17) "Нихромовый нагреватель, как датчик температуры?" 18) "Светодиодные лампы - хорошие и плохие" 19) "Двухполярный БП на трансформаторе без среднего отвода" 20) "Из ОУ "широкого применения" - в R2R по выходу" 21) "Улучшение распознаваемости цветов маркировки радиокомпонентов" 22) "Разброс прямого падения напряжения на диодах" Статьи: 1) "Операционный усилитель? Это очень просто!" 2) "Бетник для измерения коэффициента усиления мощных транзисторов". Обсуждение на "Казусе". 3) "Плавное переключение яркости свечения светодиодов (лент)". + http://kazus.ru/shemes/showpage/0/1493/1.html 4) "Vademecum (лат. - Следуй за мной)" 5) "Усилитель для электретного микрофона с АРУ" 6) "Простое бюджетное зарядное устройство для гелевых кислотных аккумуляторов малой и средней емкости" 7) "Экономичные бюджетные светодиодные драйверы" 8) "Светодиодный драйвер для автомобильного светового оборудования" 9) "Балансный предусилитель электретного микрофона" 10) "Генероттор" 11) "Поворотник - бегущий огонь на тиристорах" Переводы: "Сайт DIY проектов Рода Эллиотта "The Audio Pages"" Отдельные посты, которые мне представляются полезными: 1) "Регулятор мощности паяльника" (схема, печатка, фото). Печатка под другой корпус. 2) "Звуковой пробник ("пищалка")". 3) "Предусилитель для пьезоэлектрического звукоснимателя". Обсуждение принципа работы на "Казусе" 4) "Предусилитель для динамического микрофона" (схема, печатка). Ещё. 5) "Высоковольтный стабилизатор напряжения (фантомное питание для конденсаторного микрофона)". 6) "Разводка общей (нулевой) шины в аудиоустройстве". Еще один вариант. 7) "ИИП с ограничением тока (немного переделанный вариант "D")" 8) "Простой повышающий преобразователь на трансформаторе от компьютерного БП". 9) "Коллекция схем простых зарядок для мобилок". На "Казусе". 10) "Сравнение ИИП и трансформаторного БП". На "Казусе". 11) "Аналог мощного высоковольтного стабилитрона в качестве электронной нагрузки для LED-драйвера" 12) "Клампер параллельно обмотке реле". 13) "Генератор (мультивибратор) на трех транзисторах" 14) "Генератор псевдослучайной последовательности на логике". На 63 и 255 шагов. 15) "Подмотчик спидометра на таймере 555". 16) "Циклический таймер для насоса". 17) "Таймер бытового вентилятора Домовент-100С". 18) "Зависимое управление вентилятором в туалете от вентилятора в ванной" 19) "Мостовой драйвер для электомоторчика на таймерах 555". Еще один пост. 20) "Драйвер для униполярного ШД на "рассыпухе" (+ меандр с выхода 555 таймера). Еще один пост. 21) "Драйвер для биполярного ШД на "рассыпухе (с опторазвязкой)". 22) "ШИМ-регулятор для заземленной нагрузки" (+ светодиодные габариты/стопы). 23) "Тестер стабилитронов и светодиодов"; "LED-тестер" 24) "Усилитель ЗЧ на интегральных стабилизаторах LM317". 25) "Регулятор нагрева паяльника с повышением напряжения" (на "Казусе"). 26) "Принцип организации самопитания PWM-контроллера в компьютерных БП". 27) "Двухполюсный стабилизатор тока". 28) "Светодиодное освещение от аккумулятора с линейным стабилизатором тока" 29) "Включение TDA2822 со сниженным коэффициентом усиления" Еще один пост 30) "Подключение обмоток трансформатора к выпрямительному мосту для питания УМЗЧ" 31) "Втекающий и вытекающий токи выходов логических микросхем" 32) "Линейный БП на умощненной LM317" 33) "Принцип работы диммера на аналоге двухбазового диода" 34) "Принцип работы сумматоров напряжения и тока" 35) "Разница между инвертирующим и неинвертирующим подключением дифкаскада" 36) "Поворотник в виде светодиодной линейки с заполнением на сдвиговом регистре" 37) "Паяльник для SMD-компонентов" 38) "ШИМирование Н-моста" 39) "Варианты цоколевки TL431" 40) "Питание тату-машинок" 41) "Генератор на таймере с независимой регулировкой частоты и длительности"
  14. 3 points
    1) А.с. СССР № 740227 "Способ диагностики разрыва эпифизарной ростковой зоны и осложнений при лечении компрессионно-дистракционным аппаратом" (соавт.: В.С.Шаргородский, Л.Г.Сафонов, В.Д.Бабич); 2) А.с. СССР № 925342 "Устройство для вытяжения нижней конечности" (соавт.: В.С.Шаргородский); 3) А.с. СССР № 950379 "Устройство для разработки тазобедренного и коленного суставов" (соавт.: В.С.Шаргородский); 4) А.с. СССР № 963517 "Ретрактор" (соавт.: В.Я.Фищенко, В.А.Улещенко); 5) А.с. СССР № 971257 "Угломер для рентгенограмм" (соавт.: В.А.Улещенко, Д.Е.Коваль); 6) А.с. СССР № 973105 "Ортопедический измеритель" (соавт.: Д.И.Кресный); 7) А.с. СССР № 973114 "Способ лечения остеомиелита позвоночника" (соавт.: В.Я.Фищенко, В.А.Фищенко, В.А.Улещенко); 8) А.с. СССР № 995754 "Способ оперативного лечения поясничного сколиоза" (соавт.: В.Я.Фищенко, В.А.Улещенко, В.Б.Левицкий, Н.Н.Вовк); 9) А.с. СССР № 1007681 "Индуктор для магнитотерапии"; Пат. Украины № 2219 (соавт.: В.С.Шаргородский, Л.Г.Сафонов, С.Л.Сафонов); 10) А.с. СССР № 1018622 "Плантограф" (соавт.: В.С.Шаргородский, Д.И.Кресный); 11) А.с. СССР № 1041112 "Устройство для лечения заболеваний позвоночника" (соавт.: В.Я.Фищенко, И.П.Маломуж, Ф.П.Лондон); 12) А.с. СССР № 1044291 "Способ стимулирования кровотока" (соавт.: В.В.Яровой, А.И.Найденов); 13) А.с. СССР № 1053816 "Способ оперативного лечения воронкообразной грудной клетки" (соавт.: В.Я.Фищенко, Л.Д.Стоков, В.А.Улещенко); 14) А.с. СССР № 1060183 "Устройство для вытяжения нижней конечности" (соавт.: В.С.Шаргородский); 15) А.с. СССР № 1081429 "Устройство для оптического определения микроколичеств веществ" (соавт.: Н.В.Романова, Г.И.Соколюк, З.П.Томаш, Т.П.Сирина); 16) А.с. СССР № 1108050 "Портативное устройство для переноски изделий, чувствительных к толчкам" (соавт.: Г.М.Дизик, С.В.Кислый); 17) А.с. СССР № 1114394 "Устройство для лечебной нагрузки" (соавт.: В.В.Яровой, А.И.Найденов, Н.П.Артеменко); 18) А.с. СССР № 1115756 "Зонд-проводник" (соавт.: Д.Е.Коваль, В.Я.Фищенко); 19) А.с. СССР № 1133513 "Устройство для исследования кинетики химических реакций" (соавт.: Г.И.Соколюк, Н.В.Романова, З.П.Томаш, Т.П.Сирина); 20) А.с. СССР № 1147376 "Способ торакопластики" (соавт.: В.Я.Фищенко); 21) А.с. СССР № 1152581 "Способ переднего корпородеза" (соавт.: В.Я.Фищенко, В.Г.Елизаров, В.А.Улещенко, Д.Е.Коваль, В.И.Левицкий, Н.Н.Вовк, В.А.Фищенко); 22) А.с. СССР № 1158182 "Способ передней декомпрессии спинного мозга на уровне первого грудного позвонка при травматическом вывихе седьмого шейного позвонка" (соавт.: В.Я.Фищенко, П.Я.Фищенко); 23) А.с. СССР № 1178434 "Устройство для остеосинтеза" (соавт.: Г.И.Овчинников, Л.П.Кукуруза, А.А.Яцевский); 24) А.с. СССР № 1189440 "Способ стимуляции перестройки костного регенерата при дистракционном чрескост­ном остеосинтезе" (соавт.: В.И.Стецула, М.И.Пустовойт); 25) А.с. СССР № 1192803 "Способ лечения тяжелых форм сколиоза" (соавт.: В.Я.Фищенко, Н.Н.Вовк); 26) А.с. СССР № 1230592 "Способ оперативного лечения воронкообразной деформации грудной клетки" (соавт.: В.Я.Фищенко, Л.Д.Стоков);[/size] 27) А.с. СССР № 1243709 "Способ лечения дегенеративно-дистрофических процессов опорно-двигательного аппарата" (соавт.: В.С.Шаргородский, В.В.Озинковский, В.В.Яровой, Л.Г.Сафонов)% 28) А.с. СССР № 1251890 "Способ удлинения трубчатых костей" (соавт.: О.Э.Михневич, В.П.Данькевич); 29) А.с. СССР № 1273085 "Способ лечения полидактилии стоп при удвоении первого пальца" (соавт.: О.Э.Михневич, В.Н.Турченко, В.Д.Бабич, В.П.Данькевич); 30) А.с. СССР № 1357012 "Способ изготовления костных аллотрансплантатов" (соавт.: А.Е.Державин, Н.К.Терновой, Р.О.Турчанинов); 31) А.с. СССР № 1367968 "Каблук ортопедический" (соавт.: А.И.Готштейн, Я.Б.Куценок, Е.П.Меженина, М.К.Роговая, Л.Л.Файнберг, Л.Е.Чечик, Н.И.Шаповал); 32) А.с. СССР № 1461436 "Компрессионно-дистракционный аппарат" (соавт.: М.И.Пустовойт); 33) А.с. СССР № 1475624 "Способ лечения кифосколиоза" (соавт.: В.Я.Фищенко, Н.Н.Вовк, В.Г.Вердиев); 34) А.с. СССР № 1516104 "Контрактор для коррекции и фиксации позвоночника" (соавт.: В.Я.Фищенко, В.Г.Вердиев, А.Г.Печерский); 35) А.с. СССР № 1570715 "Способ лечения укорочения конечности" (соавт.: В.И.Стецула, М.И.Пустовойт, Б.Б.Марко); 36) А.с. СССР № 1595490 "Компрессионно-дистракционный аппарат" (соавт.: М.И.Пустовойт 37) А.с. СССР № 1629047 "Устройство для лечения повреждений костей" (соавт.: М.И.Пустовойт, В.И.Стецула, Б.Б.Марко); 38) А.с. СССР № 1631569 "Способ моделирования миелопатии при врожденном сколиозе" (соавт.: В.Я.Фищенко, А.Г.Печерский, В.А.Улещенко, Т.В.Мижевич); 39) А.с. СССР № 1658061 "Состав мембраны твердофазного ионоселективного электрода для определения содержания ванадия V" (соавт.: А.Т.Пилипенко, О.П.Рябушко, Г.И.Соколюк, Е.А.Каретникова, Ю.Е.Климко); 40) А.с. СССР № 1681224 "Состав мембраны твердофазного ионоселективного электрода для определения содержания ионов ртути (II)" (соавт.: А.Т.Пилипенко, О.П.Рябушко, Г.И.Соколюк, Е.А.Каретникова, С.Д.Исаев); 41) А.с. СССР № 1681225 "Состав мембраны твердофазного ионоселективного электрода для определения содержания ионов меди (II)" (соавт.: А.Т.Пилипенко, О.П.Рябушко, Г.И.Соколюк, Е.А.Каретникова, Ю.Е.Климко); 42) А.с. СССР № 1771692 "Устройство для вызывания сухожильно-мышечных рефлексов" (соавт.: А.А.Соловьева); 43) А.с. СССР № 1782540 "Устройство для лечения нарушений осанки" (соавт.: Г.В.Блохинцев, Г.А.Покиданов, Е.А.Соколюк, А.А.Соловьева). 44) А.с. НРБ № 35349 "Оперативен метод за лечения на хълт­нали гръди" (соавт.: В.Я.Фищенко, Л.Д.Стоков ); 45) А.с. НРБ № 41502 "Метод за оперативно лечение на напречната форма на пектус каринатум" (соавт.: Л.Д.Стоков, В.Я.Фищенко, В.А.Улещенко). ЧУДАКИ Борис Пургалин Какие, право, пустяки — живут на свете чудаки. Но не забудьте, что они от слова "чудо"! Один чудак за полчаса творит такие чудеса — иным бы это сотворить за век не худо. Припев: Не обижайте чудака — его планида нелегка. С ним постоянно чудеса играют в прятки. Какие, право, пустяки — живут на свете чудаки. И в этом свете, как ни странно, все в порядке! Смешные люди чудаки напишут что-то от руки, но, словно чудо, зазвенит простая строчка. Они придумывают вдруг какой-нибудь квадратный круг и знак вопроса часто ставят вместо точки. (Припев) У них внутри какой-то бес все время требует чудес, таких, которые придумать невозможно. И мы, нормальные, зазря их убеждаем, что нельзя! Они ж наивно говорят: "Ну, значит, можно". (Припев) (Из репертуара Аллы Пугачевой) Список научных трудов.DOC Поэзия: http://samlib.ru/editors/s/sokoljuk_a_m/ Величальна (музыка Ирины Ярчевской-Губановой, исполняет солистка ВТА "Украиночка") Колискова (музыка Андрея Иванова, исполняет он же) Весільна (музыка Леонида Попернацкого, исполняет Рустам Галеев) Жіночий гімн (музыка Леонида Попернацкого, исполняет Ольга Гринчук) Седой мальчишка (музыка Ирины Ярчевской-Губановой, исполняет она же) Золотая тюрьма (музыка Ирины Ярчевской-Губановой, исполняет она же) Святвечір (музыка Александра Лисинчука, исполняет ВТА "Ластівка") Перший сніг (музыка Александра Лисинчука, исполняет ВТА "Ластівка") Ніч для нас (музыка Карлена Мкртчана, исполняет он же) (демоверсия, исполнение на концерте; полный текст здесь) Останній дзвоник (музыка Александра Лисинчука, минусовка) (песня написана для выступления в школе меньшой дочки, текст здесь) Еще пять песен, музыка Леонида Попернацкого. 03 Гольфстрім і Курасіво - Full Score.pdf 04 Краплиночка дощу - Full Score.pdf 05 ІНША - Full Score.pdf 06 ВИПУСКНИЙ ВАЛЬС - Full Score.pdf 07 Співдотики світів - Full Score.pdf
  15. 3 points
    3D-модели популярных одиночных и сдвоенных переменных резисторов фирмы ALPHA. Серии 3RP/1610N-_A1 и 3RP/1610G-_A1 соответственно, диаметр 16 мм, для монтажа в плату. Вал 6 мм, трех видов - зубчатый (knurled, KQ-тип), с пропилом (slotted, S-тип) и с плоским шлицем (flat, F-тип). Шайба и гайка в комплекте. Форма и длина вала L закодирована символом в названии резистора ..1610N-XA1.. Чертежи: Подробнее по ссылкам - одиночные, сдвоенные. Скачать
  16. 3 points
    Наша больничка перепрофилировалась на прием клиентов с COVID-19, поэтому основной контингент сейчас переведен на домашнее лечение. Ничего удивительного, сейчас многие самоизолировались и делают вид, что работают удаленно. А некоторые и в самом деле работают. Вот и мне пришлось взять домой служебный ноутбук, чтобы продожать выполнять свои рабочие функции не вставая с кровати. Но и домашний ноут никуда не делся - на нем я иной раз что-то программирую, или разрабатываю платы и тому подобное. Если у кого на столе больше одного компьютера, ему наверняка знакомы проблемы двух (не дай бог трех!!!) клавиатур и двух (см ранее - не дай бог больше!!!) мышек... Спустя несколько минут такой работы на двух компьютерах одновременно начинаешь жалеть, что ты не повар из Футурамы, и у тебя не 4 руки... Однако, есть выход из этого исхода! И называется он Мышь без границ. Устанавливаем на всех домашних и диких компьютерах эту программку, запускаем, настраиваем (при первом запуске будет запрос о том, установлены ли на других компьютерах эти утилиты - надо правильно ответить, и настрока произойдет почти автоматически). Интерфейс программки состоит из трех закладок - первая на картинке слева. Можно "повесить" на одну клавиатуру и мышку до 4-х компьютеров, подключенных к одной сети. На том компе, на котором установка утилиты была первой, вводим секретный ключ, который потом вводим на остальных. Собственно, это все - можно работать. Вторая закладка выглядит так: Вот как на картинке, так можно и оставить галочки. В нижней части перечислены горячие клавиши для управления. На мой взгляд, не очень удобно, что нельзя переназначить "префиксные" кнопки - они всегда Ctrl-Alt или Ctrl-Shift, причем для разных хоткеев по -разному. Но привыкнуть можно, потому что требутся они редко. Ну, установили мы все это на все компы, и что? А вот что: теперь вы работаете на своем домашнем компе, а рядышком стоит служебный ноут - бац! - там приходит почта. Вы, не выпуская из рук мышку, передвигаете курсор вбок (см. первую картинку настроек: local mashine - это ваш комп, а служебный или слева или справа, вот в ту сторону курсор и двигаем), и - опанки! - он "переезжает" на служебный ноутбук! Вы открываете почту, читаете её, и, не переставляя руки с "домашней" клавиатуры тут же пишите ответ! С клавиатуры домашнего компа пишите ответ на служебном ноутбуке!!! Разумеется, можно и наоборот - все компы равноценны, и клава/мышка каждого может "подключаться" к любому другому. Помимо такого разделени клавиатуры и мышки можно еще получать скриншоты "чужих" экранов, использовать "общий" (точнее, пользоваться чужим) буфер обмена между компьютерами, и даже перетаскивать файлы с одного на другой!!! Единственный, но небольшой, недостаток этой программки заключается в англоязычном интерфейсе и отсутствии справочного файла. Хоть эта утилита сделана не кем попало, а Microsoft-ом, даже на их сайте все доступно только на английском. Кстати, эта программка начинает работать и с экрана входа, т.е. даже пароль можно ввести на другом компе со своего. И, если захочется, послать на другой комп Ctrl-Alt-Del. В общем, теперь домашняя работа не в тягость, а в радость. Не болейте!
  17. 3 points
    Добрый день. При создании схем, на плате очень часто встречаются MELF диоды и определить где диод или стабилитрон мультиметром не возможно, маркировки ведь на них нет, кроме цветного кольца. В начале обходился простейшим способ определения, БП на 24В, Мультимет и пробник. Все было замечательно, но потом начали попадаться стабилитроны на более высокое напряжение, до 100В, чтобы их проверить моего БП (24В) не хватало. Начал шустрить сеть в поисках подходящего варианта и нашел одну замечательную статью. Все параметры данной схемы меня устраивали, одно из ключевых было, чтобы напряжение на выходе было не более 100В. По сути, это обычны повышающий DC-DC преобразователь, с полностью гальванической развязкой. С начало взял трансформатор от зарядного устройства, собрал все навесным монтажом. Устройство запустилось, но как я не старался, выше 36В не смог поднять напряжение. Начал искать подходящий трансформатор, который легко разобрать и мотать, так как кольцо я не хотел мотать. Взял Ш-Образны трансформатор, из не давно разобранного БП, прокипятил его 5 мин., чтобы клей разогрелся и его было возможно разобрать (брать нужно прям из кипятка в перчатках, тогда он легко разъединяет половинки ). Смотал все обмотки и начал мотать нужные мне, часть провода, использовал с только что смотанного с трансформатора. Каждая обмотка имеет свою изоляцию, мотал все обмотки по часовой стелки, мне так проще запоминать Начало и Конец обмоток. Высоковольтную обмотку мотал с помощью дрели, выставил минимум обороты и в навал, на глаз, мотал 200* витков (считал прям во время намотки ), каждые 50 витков изоляция. Да, с трансформатором пришлось повозиться, но больше времени заняло размещение все в корпусе. Подкинул трансформатор и на выходе получил 115В, для меня это много, но благо есть подстроечник и можно регулировать. Начал его крутить, но напряжение смог снизить только до 104В, все равно много, я пробовал всего два транзистора КТ817 и TIP31, первое что попало под руку. Потом все таки удалось снизить выходное напряжение до 97В, просто заменив пленочный конденсатор на керамический, на схеме указал. Почему именно 100В, для меня это важно потому, что на схеме могут быть 1N4148, а они не очень любят напряжение более 100В. С одной проблемой разобрался. Важная информация. Вторая проблема была все это разместить в корпусе. Нашел корпус об БП, размером 75*50*30 (Д*Ш*В). Все втиснулось с простором, все крепил на болтики М2, нарезал резьбы прям в пластике корпуса, толщина его 3 мм, сверлил сверлом 1,5 мм и прям болтиком нарезал резьбу, нет у меня такого метчика. Все держится мертво, крутить болтики я не буду они там до конца жизни устройства остались. Теперь осталось сделать крокодилы, для быстрого подключения стабилитронов и пинцет для MELF стабов. Ну а теперь характеристики приставки: 1. Автономное питание от 18650. 2. Модуль зарядки для 18650. 3. Низкое потребление на холостую 11 мА (зависит от применяемого транзистора). 4. Потребление во время измерения до 80 мА (зависит от подключаемого стабилитрона). 5. Очень быстрое восстановление режима работы, доли секунды. 6. Высокая надежность схемы. 7. Модульность. 8. Возможность измерения стабилитронов на потоке. 9. Полная гальваническая развязка, это на то случай если питать от БП. 10. Доступность компонентов и легкость настройки и сборки устройства. Фото собранного устройства, все собиралась навесным монтажом. Платка использовалась только для подключения разъема, там все-же есть нагрузка механическая. Схема устройства в *jpg 300 dpi, исходник в Spl7, PDF 720 dpi. Удачной сборки. Схема проверки стабилитронов.spl7 Схема проверки стабилитронов.pdf
  18. 3 points
    Мой первый блог. Схема промышленного регулятора температуры для вентиляции, называется Pulser D , примерно 2006 г. Особенности: напряжение питания может быть 380 или 220В, I макс: 15 А, регулирование : ШИМ Терморезистор распаян на выводе симистора, т.е. если симистор нагревается, то выходной сигнал будет уменьшен.
  19. 3 points
    Известно, что стандартного выходного напряжения типовых звуковых карт или ЦАП зачастую недостаточно для работы на высокоомные наушники. Как и недостаточно выходного тока для работы на низкоомные наушники. Поэтому необходим усилитель, который усилит мощность источника сигнала, и даст возможность источнику работать на широкий диапазон сопротивления нагрузки. Когда-то давно я собирал усилитель для наушников по схеме Питера Смита по схеме из Everyday Practical Electronics (мартовский номер 2008 года). По звуку он мне очень понравился, и до недавнего времени я его использовал в виде макета. Со временем стало понятно, что хочется его таки собрать в нормальный корпус. Тем более у меня появились отлично звучащие ортодинамические наушники ТДС-5М (копия Yamaha YH-1), с которыми и должен работать усилитель. Но в этом варианте конструкция имела недостатки - отсутствие стабилизаторов, которые есть в оригинальной схеме, громоздкость и защита была на отдельной плате. Схема Новая схема по сравнению с макетом претерпела некоторые изменения и приняла следующий вид: Конструкция Отправной точкой для конструкции нового варианта усилителя стало желание перевести схему на SMD-компоненты, сделать максимально монолитную одноплатную конструкцию и уместить ее в китайский алюминиевый корпус: Доступная высота для компонентов в таком корпусе (от платы внутри корпуса до крышки) всего 28,5 мм. Поэтому на замену имеющимся трансформаторам ТПК-2 (ТПГ-2) пришлось подыскать замену пониже, при сохранении максимально возможной габаритной мощности. Нужная модель нашлась у фирмы HAHN - BV EI 304 2047. С электролитами в блоке питания проблем не возникло - были взяты модели B41851F5228 фирмы EPCOS с высотой корпуса 25 мм. С выпрямителе был реализован C-R-2C фильтр. Охлаждение греющихся компонентов - транзисторов выходного каскада и стабилизаторов - реализовано с использованием радиаторов 28 на 28 мм и высотой 20 мм. Причем крепление сделано таким образом, что компоненты расположены горизонтально а радиаторы прижимают их к плате. Для равномерного прижима между платой и корпусами транзисторов проложен силикон толщиной 1 мм, а также в радиаторы вкручены стойки высотой 5 мм, которые не позволяют притянуть радиатор с перекосом и служат элементами крепления радиаторов. К сожалению, найти стабилизаторы в изолированных корпусах не предоставляется возможным, поэтому под них пришлось подложить теплопроводящие изоляционные прокладки. В качестве регулятора громкости применен потенциометр ALPS RK27 на 10 кОм, давно лежащий без дела. У корпуса внутри есть специальные пазы для платы, поэтому на краях платы сделаны соответствующие выступы справа и слева. Кроме этого по углам платы сделаны крепежные отверстия на случай, если будет применяться другой тип корпуса. Три других отверстия остались от варианта, когда планировалось в выбранном корпусе крепить плату ниже, чем это позволяют пазы. В итоге от этого варианта я отказался, а отверстия оставил. В качестве сетевого разъема применен разъем под кабель "восьмерку", совмещенный с выключателем. TRS-разъем взят под Jack 6.3 мм. На плате нашлось место даже для сетевого предохранителя, варистора и термистора. С учетом всего вышесказанного, была получена следующая конструкция и топология печатной платы: Монтаж получился достаточно плотный, но зато удалось все вписать в допустимые габариты: Дизайн Расположение разъемов, регулятора громкости и светодиода проводилось с учетом того, чтобы усилитель красиво выглядел. Некоторая асимметричность расположения компенсирована надписями на панели. Название усилителю придумалось Prometheus, то есть Прометей, что в данном случае ничего не значит, а просто выглядит красиво Реализация Платы были заказаны на JLCPCB. Последний раз я заказывал там в прошлом году, и сейчас показалось, что качество у них стало лучше. Особенно заметно по маркировке. В процессе пайки и испытаний выяснилось, что в конструкции есть ошибки. К счастью, их исправление обошлось "малой кровью": Посадочное место под выходной TRS-разъем сделано с ошибочным расположением отверстий под направляющие пластиковые штифты и при монтаже нужно было их откусить. Перепутаны вход и выход стабилизатора на 12В для реле, т.к. у мелких корпусов цоколевка почему-то сделана зеркально по сравнению с TO-220. Пришлось на место SOT-89 впаять стабилизатор лежа в корпусе TO-92, благо рассеиваемой мощности корпуса хватает. Отключение реле защиты происходит слишком долго из-за того, что емкость фильтра продолжает держать напряжение некоторое время после выключения. Слышны переходные процессы в наушниках. Если на питание защиты поставить отдельный выпрямитель, то проблема уходит. Сетевые трансформаторы небольших габаритов всегда имеют повышенное напряжение холостого хода, которое под номинальной нагрузкой просаживается до заявленных значений, но в данной конструкции оно остается довольно высоким. Это дает и лишний нагрев стабилизаторов. Поэтому трансформаторы я заменил на BV EI 304 2046 (это 2х9В). По температуре все стало гораздо приятнее. Комплектные переднюю и заднюю панель отдавал на фрезеровку и гравировку. Результат собранного варианта на фото ниже: Измерения Спектр выходного сигнала (нагрузка 100 Ом, в качестве источника ЦАП "Mercury"): Тут я удивился - откуда такой лес сетевых гармоник? Отключил защиту (потому что на нее питание выпрямляется однополупериодным выпрямителем). Стало лучше: Но все равно много. Грешу на земляную петлю, которая могла возникнуть на полигоне. Какие ваши идеи? По температуре все очень приятно. При тестах без корпуса самые горячие - трансформаторы, ~55 °C, радиаторы стабилизаторов ~45 °C, радиаторы выходного каскада ~43 °C. Потребление по каждой ветке питания около 23 мА при мощности, близкой к максимальной. Планы на будущее В планах исправить выявленные недостатки, сделать некоторые изменения и собрать еще один экземпляр: Исправить текущие недоработки по стабилизатору защиты. Добавить нормальный выпрямитель на питание защиты. Разобраться с трассировкой земли. Заменить полевой транзистор в схеме защиты на маломощный в корпусе SOT-23. Не очень удобно подкладывать под стабилизаторы теплопроводящие прокладки. А так как обмотки трансформатора раздельные, можно сделать независимые стабилизаторы на LM317 в изолированных корпусах как на положительно, так и отрицательное плечи питания. Возможно стоит заменить сетевой разъем - нужно чтобы он впаивался в плату. Так он будет занимать меньше места и компоненты, связанные с сетью, можно будет еще дальше отодвинуть от входного разъема. Для возможности применения других переменников для РГ нужно предусмотреть установку переходных платок. А пока я слушаю и наслаждаюсь как звуком, так и внешним видом
  20. 3 points
    Решил использовать валяющуюся плату регулятора мощности с неведомого прибора, в качестве регулятора для паяльников. Срисовал схему и для коллекционеров и просто интересующихся, разместил её здесь.
  21. 3 points
    Ох... Сколько бессонных ночей и трудовых дней потребовалось, чтобы завершить работу, которую прилагаю к этой записи... Вот отсюда можно скачать (просто распакуйте архив и запустите exe-шник): https://cloud.mail.ru/public/Co2R%2F3YxQDjR1P Что это? Это - система создания скриптов для моего плейера световых эффектов. Сложно рассказать в двух словах, что это и зачем, но если пойти и почитать по ссылке, какое-то представление получить можно. Ну и несколько картинок для интриги: Если звезды зажигают, значит, это кому-нибудь нужно? Если программы пишут - что это значит? P.S. Понимаю, что прошу слишком многого, но очень хотелось бы получить какую-то обратную связь по поводу этого проекта...
  22. 3 points
    Читая форум, неоднократно поражался повальному стремлению "юных дарований" создать из лабораторного БП своеобразный "мультитул", т.е. нагрузить его кучей самых разных функций, большая часть из которых если и будет когда-либо востребована, то разве что в единичных случаях, причем, вангую, что эти случаи вообще никогда не возникнут. Тут и возможность зарядки аккумуляторов, и проверка маломощных светодиодов и стабилитронов и много чего другого. Хорошо известно, что удобство пользования мультитулом ещё никогда и ни при каких обстоятельствах не превышало удобства пользования набором специализированных инструментов. В этой связи припоминается машина изобретателя Шурупчика (из Змеёвки), описанная в книге Н.Носова "Приключения Незнайки и его друзей": Если боковой ход может пригодиться при парковке в городских условиях (раз-два в месяц), рубка дров и чистка картошки - при поездках на пикник (раз-два в год), а стирка белья - при дальних поездках в отпуск к морю (опять же, раз в два-три года), то для кирпичного производства целесообразен совершенно отдельный специализированный агрегат. Однако, подобные фичи упорно закладываются в конструкцию "городского Е-мобиля" ... Второе удивительное стремление "юных дарований" - к гигантомании. И выходное напряжение чуть ли не до сотни вольт, и выходной ток порядка десятка ампер... Результат - аналогичный описанному выше. А давайте-ка проанализируем, каким же должен быть Лабораторный Блок Питания (ЛБП)! Заранее соглашусь, что многие из высказанных мною положений будут субъективными, но более, чем 40-летний радиолюбительский опыт в радиоэлектронике позволил выкристаллизовать именно их. Сначала определимся с дефинициями (определениями). Что же это такое — «ЛАБОРАТОРНЫЙ» БП. Не путать со СПЕЦИАЛИЗИРОВАННЫМ БП (например, для ремонтов мобильных телефонов)! В отличие от блока питания, интегрированного (встроенного) в общий конструктив питаемого им устройства (как правило, без возможности физического разъединения), ЛБП представляет собой АВТОНОМНЫЙ источник вторичного электропитания, предназначенный для питания стабильным напряжением различных макетируемых устройств. Ключевое слово здесь — именно «макетируемых», поскольку готовые законченные устройства, в подавляющем большинстве случаев, будут снабжены свои собственным, интегрированным в них, БП. Конечно же, вполне нормально питать от ЛБП схемы, требующиеся в редких случаях, к примеру, тестеры стабилитронов и светодиодов, тестеры ОУ и т.п., но это именно исключения, подтверждающие общее правило. Не следует возлагать на ЛБП несвойственные ему функции (к примеру, тестера стабилитронов или микроомметра). Для специфических задач, требующих специфических режимов (к примеру, для тестирования мощных электромоторов постоянного тока), к тому же, не нуждающихся в жесткой стабилизации питающего напряжения, лучше использовать специализированные источники вторичного электропитания. Итак, какими же свойствами должен обладать практичный Лабораторный БП, не содержащий ничего (или минимум) лишнего функционала и в то же время обладающий характеристиками, позволяющими использовать его для обеспечения 99% задач. 1) Количество выходных напряжений: Для начального уровня вполне приемлемым вариантом может оказаться БП с единственным выходным напряжением. Если понравится и будет нужно — можно построить второй такой же. Однако, всё-таки желательно иметь минимум два выходных напряжения, причем, гальванически изолированных одно от другого. Такой ЛБП будет иметь минимум две пары выходных клемм, по две на каждое из напряжений, которые внешними перемычками можно будет коммутировать как угодно, получая либо две полярности (т.е., положительное и отрицательное напряжения относительно объединенных клемм, образующих нулевой прводник), либо два разных напряжения одной полярности. В практике радиолюбительства нередки схемы, требующие двух различных напряжений питания ОДНОЙ полярности, например, +3,3…5 В для питания логики или микроконтроллера и +12…24 В для питания «силовой» части. Стремление построить двухполярный ЛБП со всего лишь тремя выходными клеммами (положительное напряжение, отрицательное и их общая шина), да еще и объединенной регулировкой сразу обоими полярностями, да к тому же еще и гальванически соединенных вместе, не расширяет, а наоборот, сужает его эксплуатационные качества. Парадоксально, но факт! Отсюда следует, что минимально оптимальным вариантом ЛБП является «двойное моно», т.е., два идентичных стабилизатора напряжения в общем корпусе с раздельной регулировкой выходного напряжения и одной парой измерителей выходных напряжения и тока, вручную переключаемых между каналами. Питаться стабилизаторы в таком варианте могут либо от отдельных сетевых трансформаторов, либо от одного с минимум двумя обмотками. А вообще-то, идеальным вариантом было бы «тройное моно», т.е., ЛБП с ТРЕМЯ выходными гальванически развязанными напряжениями, что позволило бы питать смешанные схемы с цифровой частью, требующей однополярного питания и аналоговой, требующей двухполярного питания. Понятно, что такое по силам уже продвинутому радиолюбителю, но держать этот вариант «в уме» все-таки сто́ило бы. Можно несколько упростить третий канал, сделав ему не плавную регулировку, а ступенчатую, к примеру, 3,3-5-9-12-15-24-27 В. Всё равно этот канал опциональный и будет использоваться изредка. 2) Минимальное выходное напряжение: Меня просто шокирует повальное стремление обеспечить регулировку выходного напряжения от нуля. На неоднократно задаваемый мною на форумах вопрос: «Что Вы собрались питать НУЛЕМ вольт?», я НИ РАЗУ не получил аргументированного внятного ответа! Построить такую схему, конечно же, вполне возможно, но она при этом усложняется совершенно непропорционально задаче. В 99,99% случаев достаточно порядка 1…1,2 В. Это напряжение соответствует вдрызг разряженным, соответственно, никелевому аккумулятору и батарейке. Если же вдруг (один-два раза за все время занятия электроникой) придется макетировать устройства с более низким напряжением питания (к примеру, фотоэлементы и т.п.), ничто не мешает подключить к выходу ЛБП дополнительный (временный!) регулируемый стабилизатор такого низкого напряжения на одном транзисторе и переменном резисторе. Тем более, что ток питания таких схем совсем небольшой. 3) Максимальное выходное напряжение: определяется максимально допустимым входным напряжением компонентов, использованных в схеме БП. Для ОУ это, как правило, 32…36 В; для интегральных регулируемых стабилизаторов — чуть больше, до 40 В. Поэтому «гигантомания» в плане желания получить на выходе, к примеру, 50 В стабилизированного напряжения, требует применения компонентов, способных работать при входном напряжении до 60…70 В. Такие, конечно, существуют, но их ассортимент не столь обширен, а стоимость достаточно велика, чтобы заставить задуматься: «А надо ли это мне?» Можно, конечно, собрать БП с таким выходным напряжением и на компонентах широкого применения, но его схема существенно усложнится. Итак, за реально достижимый простыми средствами верхний предел выходного стабилизированного напряжения примем 25…30 В. Если учесть, что в питающей сети допускаются отклонения напряжения в пределах ± 10% от номинальных 230 В, то 36 В выпрямленного и отфильтрованного постоянного напряжения при сетевых 253 В (плюс 10%) можно получить от трансформатора со вторичной(-ыми) обмоткой(-ами) на стандартные 24 В. При 207 В сетевого напряжения (минус 10%) на выходе будет 29 В постоянного напряжения (без учета пульсаций и просадки при максимальных токах нагрузки!). 4) Использование всего диапазона входного напряжения: стабилизированное напряжение всегда меньше входного на величину его падения на регулирующем элементе и амплитуду пульсаций на фильтрующем конденсаторе. Однако, в некоторых случаях из БП желательно "выжать" максимально возможное напряжение, невзирая на его пульсации (к примеру, при ремонте УМЗЧ, обладающих собственным высоким коэффициентом подавления пульсаций питания, либо при прозвонке высоковольтных стабилитронов тестером, фото которого показано выше и стабилизирующим ток, независимо от наличия или отсутствия пульсаций напряжения). Поэтому, нецелесообразно ограничивать выходное напряжение величиной ниже входного напряжения. Если процентов 10 угла поворота ручки переменного резистора и будут неэффективными - не страшно, остальные 90% угла ее поворота позволят регулировать выходное напряжение от минимума до "выше крыши". 5) Максимальный выходной ток: с этим параметром также наблюдается совершенно необоснованная повальная гигантомания. Почему-то многие стремятся соорудить БП с выходным током не менее 5 А, хотя можно заведомо предсказать, что для целей макетирования (а ЛБП, как было выше отмечено, предназначен именно для этого) не только бесполезны, но и вредны. При случайно сбившейся настройке ограничения по току макетируемая схема имеет большой шанс пыхнуть ярким пламенем с испусканием «волшебного дыма». Хорошо, если при этом не случится пожара! Допустим, что БП на такой выходной ток все-таки построен. При 30 В выходного напряжения и токе 5 А от трансформатора будет требоваться мощность не менее 150 Вт. Другой вариант: при 5 В выходного напряжения и токе 5 А, на регулирующем транзисторе при входном напряжении 35 В, рассеются те же 150 Вт. Во-первых, далеко не всякий транзистор такое потянет (а те, что потянут — до́роги), а во-вторых, чтобы рассеять такую мощность, нужен будет либо радиатор размерами с кирпич, либо охлаждение его кулером. И то и другое ведет к необоснованному усложнению и удорожанию устройства. Отсюда следует, что выходной ток можно ограничить значением 2…2,5 А, чего более, чем достаточно для подавляющего большинства задач. При этом и на регулирующем транзисторе рассеется не более 60…90 Вт, что не является какой-то экзотикой (те же «народные» КТ818/КТ819 в металле спокойно «держат» до 100 Вт), и силовой трансформатор нужен вменяемой мощности. 6) Ограничение выходного тока (оно же защита от короткого замыкания выхода) — является обязательным свойством ЛБП. Должно решать двоякую задачу: а) защитить от выхода из строя сам БП; и б) защитить от окончательного выгорания макетируемую схему. Если с первой задачей понятно — максимальный выходной ток определяется максимально допустимыми параметрами трансформатора питания и регулирующего транзистора и составляет упомянутые выше 2…2,5 А, то вторая требует более тщательного анализа. Если питается схема, уже смонтированная на печатной плате, то максимальный ток не должен вызывать разрушения дорожек на ней от перегрева, а также транзисторов средней и (желательно) малой мощности. По собственному опыту (не претендуя на его эксклюзивность) могу сказать, что данная задача решается при ограничении максимального тока уровнем 200...250 мА. Далее. Существует метод выявления коротких замыканий на плате путем питания ее током, еще не разрушающим печатные дорожки, но вызывающим их локальный нагрев. Для этого применяется ограничение тока уровнем порядка 500...600 мА. Такой же максимальный ток является оптимальным при ремонте УМЗЧ, не приводя к выгоранию драйверных и выходных транзисторов уцелевшего плеча. Итого, оптимальными уровнями ограничения выходного тока можно считать три фиксированных ступени: 200...250 мА; 500...600 мА и 2...2,5 А. Плавная установка тока ограничения "крутилкой" не только нецелесообразна, но и даже может быть вредна. Просто потому, что ручку регулировочного резистора можно случайно сбить с установленного значения и пустить на макетируемую схему экстра-ток. Указанные выше три уровня ограничения выходного тока позволят реализовать "боковой ход" машины Шурупчика -- заряжать таким ЛБП кислотно-гелевые аккумуляторы током порядка 0,03...0,15 С. А именно, первым (200...250 мА) -- аккумуляторы от фонариков; вторым (0,5...0,6 А) -- аккумуляторы от ИБП и третьим (2...2,5 А, правда, долгонько) -- автоаккумуляторы. Построить ЛБП с выходным током более 2...2,5 А, конечно же, можно, но это, во-первых, приведет к нерациональному усложнению и удорожанию схемы, а во-вторых, для ЛБП просто избыточно. Я великолепно ремонтировал монструозные эстрадные УМЗЧ на 1...1,5 кВт с помощью двухполярного ЛБП с ограничением выходного тока на уровне 0,5 А и максимальным выходным напряжением 23 В по обеим полярностям (уже нестабилизированным, с пульсациями!). Дело в том, что для окончательной проверки и настройки тока покоя ЛБП уже не нужен -- они выполняются при питании от штатного БП усилителей. 7) Измерители напряжения и тока: вопрос, казалось бы, второстепенный, однако красиво перемигивающиеся циферки цифрового вольтметра на практике, как ни парадоксально, снижают удобство пользования БП. Если уж и применять цифровой вольтметр, то не более, чем 3½-знаковый. Мельтешение цифр в младших разрядах 4-х и более разрядных вольтметров отвлекает от осознавания величины измеряемого напряжения, отнюдь не прибавляя точности. При импульсном характере потребления тока нагрузкой мельтешение цифр будет и в 3½-знаковом вольтметре. Если уж настолько критично выставить стабилизируемое напряжение до единиц-десятков миллиВольт, можно сделать это подключением к клеммам внешнего мультиметра, ибо возникнуть такая задача может примерно с такой же частотой, как рубка дров и чистка картошки в машине Шурупчика. С цифровым амперметром ситуация несколько серьезнее. Во-первых, измерение тока производится на его собственном токоизмерительном шунте, который включается последовательно с токоизмерительным шунтом цепи ограничения тока самого БП, тем самым повышая выходное сопротивление БП и снижая точность поддержания выходного напряжения. Во-вторых, из-за дискретности измерений в большинстве амперметров порядка 1...2 Гц, мгновенные скачки выходного тока (к примеру, при подключении к плате с короткозамкнутыми дорожками) отслеживаются с запозданием, обусловленным как этой дискретностью измерений, так и необходимостью какого-то времени на осознавание измеренной величины тока. Можно, конечно, цифровой амперметр и доработать на использование основного токоизмерительного шунта БП, либо же использовать шунт измерителя тока, но при этом потребуется его перекалибровка. В этом плане стрелочные измерительные головки намного информативнее и удобнее для встраивания и калибровки. Супер-точность измерений не столь важна, на первом месте стоит удобство примерного считывания показаний. 8) Выходное быстродействие на быстропеременную нагрузку: является своеобразным "камнем преткновения" для разработчиков ЛБП. Если питать им устройство с неизменяемым во времени потреблением тока (к примеру, лампочку, электромоторчик, да хоть заряжать аккумулятор), то быстродействие такой схемы может быть сколь угодно малым. Но если подключить импульсную или же аудио-схему, то ситуация кардинально меняется. Для таких потребителей выходное сопротивление ЛБП должно максимально близко приближаться к нулевому, чтобы обеспечить постоянство выходного напряжения независимо от силы тока (естественно, до момента его ограничения!). Нередко разработчик пытается обеспечить такую характеристику установкой на выходе электролитического конденсатора достаточно большой емкости. Такое схемотехническое решение, нередко встречающееся даже в промышленно выпускаемых ЛБП, на самом деле является профессиональным провалом разработчика, т.к. при подключении макетируемой схемы к выходным клеммам такого БП, через нее обязательно произойдет бросок тока, имеющий шанс сжечь схему, а реакция на быстропеременную нагрузку становится совершенно "дубовой". На выходе схемы ЛБП может стоять разве что пленочный конденсатор на 1 мкФ (да и то непосредственно на выходных клеммах), зашунтированный керамикой на 0,1 мкФ исключительно для подавления шумов и импульсных помех, циркулирующих по соединительным проводам от ЛБП к макетируемой схеме и обратно. Всё остальное быстродействие должно быть обеспечено за счет быстродействия и стабильности схемы самого ЛБП. 9) Регулирующий элемент - биполярный транзистор в сравнении с полевым: произведение разницы между входным и выходным напряжениями на силу выходного тока в любом случае должно на чем-то выделиться в виде тепла (увеличив этим энтропию Вселенной). Нет никакой принципиальной разницы, на чем это произойдет -- на коллекторном переходе биполярного транзистора, либо на канале полевого. Выделяющееся тепло в обоих случаях будет одинаковым. Поэтому сравнивать следует другие характеристики полевых и биполярных транзисторов, а именно: Ток управления, который для мощного биполярного транзистора с его невысоким коэффициентом усиления составит порядка 1/10...1/15 выходного тока, против пренебрежимо малого тока управления затвором полевого; Емкость затвора/базы, которая для полевого транзистора составит единицы нанофарад, что всё равно потребует достаточно существенного тока управления затвором при быстропеременных токах нагрузки, иначе БП не обеспечит нужного быстродействия, тогда как для биполярного транзистора -- десятки пикофарад, причем эта емкость мало изменяется с изменениями коллекторного тока. ; Падение напряжения база-эмиттер/затвор-исток, которое для биполярного транзистора составляет всего порядка 0,7 В, и слабо зависит от силы базового тока против 5...8 В для ключевых HEXFET транзисторов, что однозначно делает их практически неприемлемыми для работы в линейном режиме, поскольку совершенно впустую будут недоиспользоваться эти 5...8 В входного напряжения (речь идет о простых схемах ЛБП, с единственным входным напряжением). Если уж без полевых транзисторов ЛБП просто не мыслится, то для такого режима работы предназначены боковые (латеральные) МОП-транзисторы, разработанные для применения в звуковых трактах УМЗЧ. В качестве примера приведу графики передаточной характеристики латерального FET 2SK2220 в сравнении с HEXFET IRFP240. Надеюсь, разница достаточно очевидна. Хотя, всё равно, потеря напряжения (а следовательно, и излишнее тепловыделение) на полевых транзисторах будет больше. Либо же необходимо усложнять схемотехнику БП за счет вольтодобавки ко входному напряжению для управления затворами полевых транзисторов. Тем более, что допустимые токи (десятки Ампер) относятся не к линейному, а к ключевому режиму их работы. В линейном режиме ограничивающим параметром будет максимально допустимая рассеиваемая мощность, которая что у полевых, что у биполярных транзисторов определяется, в основном, типом корпуса, в который упакован кристалл. Учитывая изложенное в предыдущем пункте анализа относительно выходного быстродействия, преимущество полевых транзисторов для ЛБП по сравнению с биполярными становится достаточно сомнительным. 10) Стабильность выходного напряжения в переходных режимах: в ЛБП при его включении и/или выключении ни в коем случае не должно быть выбросов выходного напряжения сверх установленного значения!!! Иначе макетируемой схеме с большой долей вероятности придет белый северный пушной зверек. Требование однозначное и ревизии не подлежит, какой бы "вкусной" схема ЛБП ни была по другим параметрам. В первом приближении это пока что все мои аргументы "за" и "против" тех или иных схемотехнических решений и желаемых параметров ЛБП. В качестве подтверждения сказанному приведу личный пример своего "ветерана", верой и правдой служащего уже 40 (СОРОК!) лет: Верхняя крышка снята, чтобы показать "потрошки". Ни типа, ни марки, кроме надписи на лицевой панели "Блок питания универсальный "Электроника"" нет. Очевидно, "ширпотребовская" продукция какого-то военного завода. Схема, к сожалению, за эти годы тоже утеряна. "Родные" параметры с "родными" регулирующими транзисторами КТ807: 2...15 В / 300 мА. После модернизации (замены на TIP41) поднял ограничение выходного тока до 0,5 А. Четыре левых клеммы - выходы стабилизаторов напряжения. Полностью изолированы один от другого, питаются от отдельных обмоток трансформатора. Платы стабилизаторов стоят вертикально слева. В оригинале стояли по одной слева и справа от центрально установленного трансформатора. Крайние правые клеммы - выходы переменного напряжения, переключаемого пакетником над ними с шагом 3 В. Применяю преимущественно для питания мини-дрели на 27...30 В. На клеммы между стабилизированными и переменным напряжением в оригинале подавалось просто выпрямленное и отфильтрованное конденсатором напряжение. Они задействованы для вывода стабилизированного напряжения от дополнительного более мощного стабилизатора с током до 1,5 А (это уже моя модернизация) на еще К1УТ401Б, размещенного справа от трансформатора. Его регулирующий транзистор вынесен на заднюю стенку. Регулировка выходного напряжения - дискретная (3,3-5-9 В и дальше до 30 В с шагом 3 В), используя тот же пакетник, что и для переменного напряжения. Итого получается "тройное моно", как я и описывал выше, да еще и с каналом переменного напряжения. Второй пример - мощный "монстрик" на двухполярное напряжение без стабилизации (только выпрямленное). Токоограничение выполняется автомобильными лампами накаливания: Поскольку падал, плата выпрямителя и фильтров "сворочена" на сторону. Изготовлен для питания эстрадных усилителей при их ремонтах. Так вот, он НЕ ИСПОЛЬЗОВАЛСЯ НИ РАЗУ!!!
  23. 3 points
    Совсем недавно дал совет из двух одинаковых трансформаторов от UPSов сделать разделительный 220/220 В. И тут подвалило ОНО! Щастье, т.е. Сгорел на работе второй UPS, точно такой же, как лежал у меня уже пару лет. И я решил: "Значит, это судьба! Надо совершать телодвижения." И начал их совершать. Раздеребанил крепление выводов. Оказалось, что вторичная обмотка состоит из двух обмоток, намотанных одновременно двумя проводами. Поэтому соединил обмотки параллельно. Первичная обмотка имела отвод на 20 с хвостиком В (не запомнил) и еще одну обмотку на 22 В. Соединил их последовательно (все меньше ток Х.Х. будет). А чтобы выводы случайно не оборвались - поставил контактные планки. В корпус оба трансформатор вошли, как будто так и должно было быть. Осталось прикупить выключатель с подсветкой (отверстие справа вверху) и найти розетку, чтобы поместилась в отверстие слева вверху. Ну, и крышку, конечно же, вырезать. Старая слишком увеличит высоту, да и не нужна там, с отверстиями в ней. Тестовый прогон в таком, незаконченном виде, показал, что всё работает, как и должно быть. На Х.Х. выходное напряжение равно входному. При нагрузке лампой 75 Вт - на 1,1 В меньше. И тут принес племяш на ремонт релейный стабилизатор переменного напряжения Luxeon AVR-500VA с жалобой, что не отрабатывает повышенное напряжение. А ЛАТРа-то у меня и нет... И у знакомых, живущих поблизости, тоже нет. А переть за 40 км с другого конца города... Думал-думал и придумал использовать ту самую дополнительную обмотку, которую я включил последовательно с сетевой. Подключение/отключение ее на "горячей" и "холодной" сторонах позволит изменять выходное напряжение примерно на ±10% от номинального, чего должно быть достаточно. Пришлось разбирать и дорабатывать. Вот что получилось: Схема: Результат работы этого "недоЛАТРа". Сетевое напряжение = 234 В Оба переключателя S1 и S3 либо в верхнем, либо в нижнем положении - выходное напряжение = 232 В. Переключатель SА1 в верхнем положении, SА3 в нижнем - выходное напряжение = 204 В. Переключатель SА1 в нижнем положении, SА3 в верхнем - выходное напряжение = 264 В. Вот теперь и в "горячую" часть можно будет спокойно лазить и проверять устройства на критические режимы по входу.
  24. 3 points
    1. Знаешь, что ничего не знаешь. И это действительно так. 2. Уверен, что знаешь всё и "держишь Бога за бороду". Еще называется "звездная болезнь". 3. Понимаешь, что действительно ничего не знаешь. 4. Убедился, что ничего таки не знаешь, но УЧИТЬСЯ, ОКАЗЫВАЕТСЯ, БОЛЬШЕ НЕ У КОГО!..
  25. 2 points
    Добрый день. Попалась ко мне в руки плата SIT BIC Automatik 0.580.228 (или второе название SIT LA PRECISA 7530171_01). Плата довольно компактная, и маленькая. БП импульсный, трансформатор всего с двумя обмотками, первичка и вторичка, есть "обратная связь" за напряжением БП, есть даже контроль на наличие низкого напряжения выполненного на OPT1. Данную опцию часто встречаю в импульсных БП, в трансформаторных вариантов пока не видел, или это тенденция современных плат. Все разъемы и переходные отверстия позолочены, довольно жирно для такой платы. Пайка на бесвинцовом припое, очень твердый и крепкий. Выводные компоненты разбавлял легкоплавким припоем, а SMD просто с помощью флюса сразу выпаивал феном. Плата очень качественная. Правда производитель "за жадничал" нанести шелкографию для SMD, поэтому порядковые номера я ставил самостоятельно и в произвольном порядке, но он мне дал другой бонус. Трассировка платы выполнено очень качественно, хотя на данный момент для меня эталон Bertelli, но тут тоже не плохо все сделано. При создании схемы меня всегда интересует, кто и как реализуют схемы включения реле газового клапана. Я до сих пор пока не могу вникнуть в этот процесс, пока мне поддался только один вариант, на DIMS-TH01. Производителям респект за вклад в безопасность работы газового оборудования.. В данной схеме производитель не пожалел диодов и стабилитронов, прям от души их "насыпал". Из-за них я так и не смог понять, как работают некоторые узлы на плате. Но теперь у меня есть схема запуска трансформатора розжига, замечательно. Дефицитных деталей на плате нет, но кроме "прошивки". Не на все детали я смог найти документацию, стабилитроны (D9-11) и супрессоры (D3), диод (D4), RV3-4 (1206) это варисторы, но какие я без понятия. Емкость С42 я не смог замерить своими приборами. Схемы на модуль дисплея не будет, потому что он у меня всего один и рабочий. Схема нарисована полностью, с учетом всех деталей, чтобы были на плате, деталей которые не были на плате, (от производителя) в схему не переносил. Как всегда целый пакет файлов: Печатная плата в Lay6, схема в DipTrace и PDF, так-же в картинке *jpg в 1000 Dpi. Список деталей в Excel 2010 и сами сканы платы, может кому-то пригодятся. Схему желательно распечатывать на А3 или делать склейку из двух А4. Модели котлов в которых стоит данная автоматика: Фото самой платы Удачных ремонтов. Sit Bic Automatik 0.580.228 печатная плата.lay6 Sit_Bic_Automatik_0_580.228_сканы_платы_в_PDF.rar SIT BIC Automatik 0.580.228 Список деталей Excel 2010.rar Sit Bic Automatik 0.580.228 схема DipTrace.rar SIT BIC Automatik 0.580.228 схема.pdf
  26. 2 points
    Силовая часть трехфазного регулятора температуры Используются драйвер симистора Т2117 Регулирование ШИМ (вкл/выкл), низкий уровень помех 2006 г. Дополнение R1, R6 - варисторы 420V C4... C7 - пленочные 100V C1 - пленочный, 440VAC, класс Х1
  27. 2 points
    Добрый день. Понадобилось мне сделать автоматическую (ручная тоже должна быть опция) регулировку разрежения котлом Е1/9. Несколько лет назад, как всегда зимой, вышел из строя на котле блок регулировки разрежением. Подвели к котлу и поставили перед фактом, чтобы через час он был в работе, а на улице -10. Снял с котлов, настенных двух, прессостаты и сварганил игрушку, так появилась первая версия данного устройства, она и по сей день исправно работает. Все было хорошо, жил не тужил. Месяц назад сгорел (трансформатор) второй блок управления разрежение Р25.1.1, на втором котле. Подвели к котлу, как и в прошлый раз, чтобы сделал как и на первом котле. Тут мне повезло, так как времени было много, пару месяцев, начал думать над схемой, более совершенную, так как нужно несколько вариантов иметь в запасе. Так появилась данная схема, вторая версия данного устройства. Цель была, как и прежне, чтобы была возможность автоматического регулирования и ручного. Показания текущего разряжения снимались с Тягонапоромера. Так как мне нужно одно значение разрежения, проблем со составлением схемы у меня не возникло. Также огромная благодарность форумчанину, разрешения на его упоминание я не спрашивал, за некислый подгон, безвозмездно, реле и колодок Finder, целая коробка. Выручила она меня кардинально. Поэтому было решение сделать схему на реле Finder, так появилась данная схема. Что умеет устройство: 1. Имеет световую индикацию Сеть, Открыть, Закрыть. 2. Возможность работать, как в автоматическом режиме, так и в ручном. 3. Защита от включения двух сразу реле. 4. Защита контактов прессостата, так как нагрузка вся проходит через реле. 5. Калибровка прессотатов на нужное значения с помощью колесика с цифровой шкалой. Она практически соответствует действительность, но все же рекомендуется выставлять значение по тягометру эталонному. 6. Поддержание в автоматическом режиме необходимого значения разрежения (Только одно настроенное значение). 7. Защита от скачка напряжения до 270В/380В. 8. Очень простая наладка и калибровка устройства. 9. Высокая точность поддержания разрежения, применены очень качественные прессостаты, ели достали их. Точно такие-же прессотаты работают на котлах уже 15 лет. 10. Легкость сборки и хорошая взаимозаменяемость компонентов. Фоточки собранного девайса. Все прекрасно разместилось в старом корпусе от регулятора Р25.1.1, максимально использовал все, что там было. Свой экземпляр настроил на поддержания 75 Па. Также приложил схему в Spl7. Теплой зимушки. Схема контроля разрежения.spl7
  28. 2 points
    Тоже, что и предыдущая версия, но уже с темброблоком. Резистор 3К3 со звёздочкой отсутствует на плате, он был добавлен позже в процессе настройки. Мощность.sch Защита.sch Тембр.sch Мощность2.pcb Предохранители2.pcb Тембр2.pcb Защита2.pcb Конденсаторы2.pcb
  29. 2 points
    Педаль эффекта overdrive. Это предварительный усилитель для гитарного звукоснимателя с эффектом перегруза. Переключатель CLEAR-OVER для изменения режимов чистого звука и перегруза. Регулятор GAIN-OVER определяет величину эффекта перегрузки overdrive а GAIN-CLEAR устанавливает уровень громкости в режиме чистого звучания. Регулятор тембра с одной ручкой позаимствован у Big muff. Общее усиление педали позволяет подключать к линейному входу любого бытового усилителя без дополнительных преампов. Микросхему можно заменить на LM2902. Файл печатной платы в формате PCAD-2004 прилагается ГУ1.pcb
  30. 2 points
    Электронная токовая нагрузка для лаборатории радиолюбителя и не только. Предназначена для испытаний источников питания и схем защиты. Силовые транзисторы как всегда по вкусу, а их количество по апетиту, от одного до бесконечности, конечно с учётом максимального тока напряжения и мощности которую необходимо рассеивать. В моём случае установлено 10 P- канальных полевиков на общем радиаторе без изоляции, который по совместительству является минусовым контактом и задней стенкой корпуса, это очень удобно. Схема разрабатывалась по принципу, чем проще тем лучше. Печатную плату не делал, монтаж навесной.
  31. 2 points
    Писал как-то по заказу прошивку для синтезатора частоты на AD9833 для любительской самодельной радиостанции. Заказчик собирает подобные и другие необходимые модули радиостанций для себя и знакомых. Камень ATmega8A. Писал на ассемблере, прога вышла достаточно объёмная для асма, но работает надёжно, все замеченные глюки убраны. Диапазон выходных частот синтезатора 1.5 - 3МГц. При достижении границы диапазона переходим соответственно с минимума на максимум или наоборот. Можно выставить другой диапазон в программе. Кроме основного есть режимы ПЧ , расстройки и выбора ПЧ. Меняется частота валкодером в любом разряде до десятков Гц, при выборе 2х крайних разрядов экран сдвигается влево. Выбор разряда также валкодером после нажатия его кнопки. Новое значение частоты запоминается каждые 10 мин в EEPROM. В режиме выбора ПЧ меняется величина ПЧ также в любом разряде до десятков Гц и запоминается в EEPROM. По умолчанию ПЧ 500кГц. В архиве файл .asm и подробный алгоритм работы синтезатора. AD9833.rar
  32. 2 points
    Еще до недавнего времени считал, что со звукорежиссурой покончено навсегда - ан нет! Нашли, отряхнули пыль, посадили за пульт... А поскольку работать надо с комфортом, пришлось озаботиться подсветкой пульта с регулировкой яркости. За основу была взята подсветка с прежнего места работы (правда, она была без регулировки яркости) и по ее образцу смайстрячена более совершенная. В стандартном профиле для LED-ленты были установлены два отрезка по 6 троек с током 60 мА на тройку (всего максимум 360 мА). Токоограничительный резистор для каждой тройки составлял 39 Ом. Профиль посредством "гусиной шеи" (купленной когда-то для крепления лупы, но поскольку брат подогнал бинокулярный микроскоп, надобность в таком применении отпала) прикреплен к разъему XLR (папа), служащему исключительно суппортом всей системы в одном из свободных разъемов пульта. Питается подсветка от готового маломощного ИИП 12 В х 1 А. Вид со стороны светоизлучающей поверхности: Вид с противоположной стороны ("тыла"): Сверху пластины, соединяющей профиль и "гусиную шею" установлена платка регулятора-стабилизатора тока (прикреплена "вверх ногами"): Спереди видно колесико переменного резистора от регулятора громкости наушников (использована только одна подковка сопротивлением 1 кОм). Схема регулятора: Несколько слов по схеме. 1) В качестве регулирующего транзистора использован не Дарлингтон, а пара эмиттерный повторитель (VT1) - стабилизатор тока (VT2) потому, что у Дарлингтона повышенное напряжение насыщения - порядка 1,5 В. В относительно высоковольтных- схемах (выходные каскады УМЗЧ) это просто фича, а вот когда приходится ловить буквально десятые доли вольта, превращается в недостаток. А так напряжение насыщения определяется только параметрами VT2. 2) Примененный стабилитрон на 3,3 В всё равно многоват. Надо было бы на 2,7...3 В, потому, что падение напряжения на регулирующем транзисторе VY2 не должно превышать разницы между падением напряжения на цепочке светодиодов + напряжение насыщение + падение напряжения на R5. В противном случае в прямом направлении смещается уже базово-коллекторный переход с потерей токостабилизирующей функции каскада. Регулировка яркости обеспечивается от полной темноты до максимальной яркости для данной ленты. Подсветка, установленная на пульте.
  33. 2 points
  34. 2 points
    Добрый день. Понадобилась мне схема для Автоматической откачки воды из приямка, так как Весной и Осенью очень часто заливает и следить за уровнем постоянно быстро надоедало. Прошустрил сеть в поисках решения и наткнулся на один замечательный проект, полностью удовлетворяющий мои хотелки. Схема содержит минимум деталей, все собиралась навесным монтажом, печатная плата просто не нужна. Устройство в наладке не нуждается (кроме расположения высоты погружения в воду электродов ), запускается сразу и работает, как швейцарские часы. Как работает устройство описано на схеме. Собрал все на доске, очень удобно все крепить на ней, все закрепил на саморезы, тиристор в крутил в доску, оголенные места обмотал изолентой, провод взял витую пару и запаралелил их, для уменьшения сопротивления. Электроды, взял пруток нержавейки 6 мм и нарезал 30 см (Е1), 25 (Е3), 20 см (Е2), и разместил их на 10 мм гетинаксе. Данное устройство у меня работает (следит за уровнем) 24/7 круглый год уже более 3 лет. Со своей задачей справляется отлично. Насос у меня погружной, керамический, с верхним всасом, поэтому электрод (самый длинный) расположил на 1 см выше всаса насоса, чтобы насос не затянул воздух, постоянно был под водой. За все время эксплуатации, не один из электродов не разрушился, лишь покрылись налетом от воды. Так же рекомендую использовать реле на колодке, так колодка имеет винтовые зажимы, все очень удобно соединять. Трансформатор можно использовать с напряжением (на вторичке) от 20 до 24В. Реле на DC24V с коммутацие контактов на Вашу нагрузку, реле желательно брать со встроенным светодиодом и рычажком для ручного включения контактов реле. Длина провода от электродов до схемы 50 м (испытание, мне хватило длины 20 м), длинее кабеля под рукой не было, чтобы проверить максимальную длину, остатки от бухты. Фото Схема: картинка Gif 300 Dpi , Spl7, Pdf 720 Dpi. Сухого пола. Автоматическая водооткачка.pdf Автоматическая водооткачка.spl7
  35. 2 points
    Я собрал на монтажке вот такую конструкцию. Слева внизу красненькие ключи подключены ко входам логического контроллера и подтянуты резисторными сборками к +5 вольт. Пи замыкании ключика, на вход подаётся логический ноль, при размыкании - логическая единица. Выходы подключены к светодиодам. Если на выходе логический ноль, то зажигается красный светодиод, если же логическая единица, то зажигается зелёный светодиод. Зелёная плата слева внизу фотографии - это преобразователь USB-UART собранный на микросхеме CP2102. В данный момент я отключил RS-485 и ползуюсь этой платкой для связи с компом и заодно запитал всё от USB. Я уже писал, что использую для обмена программу гипертерминал, которую перенёс из операционной системы WindowsXP, поскольку в WIN7 она отсутствует. Далее показываю, как я настроил его для корректной работы с ПЛК. Даём имя соединению. Я выбрал такое, потому, что у меня обмен происходит по соединению COM14. Жмём OK. Далее выбираем наш порт и жмём Ок. Выбираем настройки показанные на рисунке и жмём "Применить", затем ОК. Теперь гипертерминал запустился, но это ещё не всё. Выбираем из меню Файл - Свойства, как на рисунке ниже. Попадаем на страничку свойств. Выбираем вкладку "Параметры" делаем настройки как на картинке и далее нажимаем кнопку "Параметры ASCII". Далее ставим галочки как на рисунке ниже и настройка выполнена. Нажимаем ОК во всех открытых окошках и теперь перед нами чистое окно гипертерминала. Теперь мы можем вести диалог с ПЛК при помощи команд. Команда "D" позволяет выводить на экран гипертерминала содержимое памяти схемы ПЛК в 16-ричном коде. В данный момент в памяти присутствует схема генератора и несколько делителей-двоичных счётчиков. Вводим команду D0000,007F и нажимаем Enter. Результат на картинке ниже. К сожалению у меня по независящим от меня причинам пока нет графической среды разработки для данного ПЛК, приходится всё делать в машинных кодах, благо последовательный интерфейс и гипертерминал позволяют это делать. Ниже видео рабты ПЛК с этой схемой. В следующей статье опишу работу с ПЛК более подробно. Пишите комментарии, отзывы. Голосуйте за мой блог и получите скидку на приобретение данного ПЛК. В случае победы в конкурсе обещаю подарить трём самым активным участникам моей поддержки по 1 штуке ПЛК в виде микросхемы.
  36. 2 points
    За последнее время пришлось ремонтировать несколько линейных светодиодных светильников на 16...18 Вт, составленных из цепочек светодиодов на 150...175 мА, включенных в "ячейки" попарно, а сами пары - последовательно. Пример такого ремонта: https://forum.cxem.net/index.php?/topic/198431-светодиодные-лампы-хорошие-и-плохие/&do=findComment&comment=3209796 . При этом было выявлено, что в подавляющем большинстве таких "ячеек" (обведены рамками) более выражено деградирует люминофор одного из светодиодов каждой пары (показаны стрелками): Объяснение этому было дано следующее: С ним можно не соглашаться, спорить, списывать на некачественные компоненты, но ТРИ светильника за неполный месяц с одинаковыми проявлениями - вещь упрямая. А другого логически непротиворечивого объяснения измыслить сложно. Задался вопросом: "А почему, собственно, производители размещают светодиоды в одну цепочку?". Исключений такому размещению не встречал. Понятно, что стремятся улучшить охлаждение греющихся при работе светодиодов. Но ведь тогда и нагрев каждого светодиода из пары будет индивидуальным. И на падение напряжения на P-N переходе "соседа" практически влиять не будет. И вот тогда голову посетила очередная нестандартная мысля: "А что ,если пары светодиодов размещать "впритык"один к другому?"! Тогда и греться они будут ну, не совсем, чтобы одинаково (всё таки, на на одном кристалле они размещены), но и не так, чтобы "каждый сам по себе". Тот, который греется больше, будет нагревать своего "соседа", тем самым снижая падение напряжения на нем и хоть частично, но уравнивая протекающий через пару ток. Больше двух светодиодов в "ячейки" объединять таким образом нецелесообразно - если греться будет один из светодиодов, расположенных с одного края, то передача тепла на светодиод, размещенный с противоположного края будет неэффективной. Собственно, это и всё мое предложение. На первый взгляд - совершенно примитивное и самоочевидное. но почему-то до сих пор никто не удосужился реализовать подобное. Можно возразить, что вроде бы при таком размещении светодиодов будет хуже распределение светимости по длине светильника. Но, во-первых, яркость остается прежней, а во-вторых, есть немало мест, где длинные светильники (соответствующие длине трубчатых люминисцентных ламп на 18 Вт) излишне длинны. В-третьих, теплоизлучающая поверхность подложки можно спокойно сохранить за счет увеличения ее ширины. В-четвертых, конструкция подложки резко упрощается. Не нужно извращаться, со сложной конфигурацией токопроводящих полигонов. Даже в любительских условиях достаточно прорезать фольгу резаком. Ну, разве что добавить по краю возвратную дорожку, чтобы вывести подключение к одному торцу. Может возникнуть резонный вопрос: "А почему так никто до сих пор не делал?" Сложно сказать. Иногда очевидные решения просто не видны "замыленным глазом".
  37. 2 points
    Вопрос, неоднократно поднимаемый на форумах: есть схема ключевого каскада. Если с номиналом базового (токоограничительного) резистора (в данном случае R3) особых проблем не возникает, для ключевого режима он должен обеспечивать базовый ток не меньше, чем коллекторный (через резистор R1), деленный на коэффициент усиления (h21, бета) данного транзистора (хотя это "не меньше" должно быть НАМНОГО не меньше, что будет показано ниже), то с номиналом базо-эмиттерного резистора R2 возникают существенные непонятки не только у "юных дарований", но даже у казалось бы грамотных и квалифицированных инженеров. Нередки рекомендации ставить его в диапазоне 10...100 кОм (искать ссылки несколько лениво, прошу поверить на слово). Либо вообще не ставить. Последнее наиболее часто можно наблюдать в буржуинских схемах. Поэтому давайте в конце концов разберемся, зачем этот резистор вообще нужен и каким должен быть его номинал. У биполярного транзистора существует такой паразитный параметр, как неуправляемые коллекторный и базовый токи. Их величина зависит от материала (у германиевых они примерно на порядок больше, чем у кремниевых) технологии (качества изготовления), мощности и т.п. При определенных сочетаниях режимов работы транзистора (высокое напряжение между коллектором и эмиттером, повышенная температура, влияние импульсных помех и др.) эти неуправляемые токи могут привести к самопроизвольному (при)открыванию транзистора с дальнейшим переходом в лавинный режим работы и соответствующими печальными результатами. Чтобы такого не произошло, между базой и эмиттером ставится внешний резистор, через который этот неуправляемый базовый ток и закорачивается. Для кремниевого транзистора такого резистора, как правило, достаточно. Для германиевого - обычно было недостаточно и приходилось подавать через него небольшое запирающее напряжение. Сейчас, поскольку германиевые транзисторы применяются разве что в экзотических схемах, этот момент для них стал неактуален. С назначением базо-эмиттерного резистора вроде понятно. Так каким же должен быть его номинал? Дома у меня лежат пара бумажных справочников по транзисторам: 1. Транзисторы для аппаратуры широкого применения: Справочник / К.М.Брежнева и др.; Под ред. Б.Л.Перельмана.- М.: Радио и связь, 1981.- 656 с. 2. Мощные полупроводниковые приборы. Транзисторы: Справочник / Б.А.Бородин и др.; Под ред. А.В.Голомедова.- М.: Радио и связь, 1985.- 560 с. Приведенный ниже сканы взяты из первого из них. Во втором эти данные тоже есть. Давайте внимательно посмотрим в разделе "Максимально допустимые параметры" на такой параметр, как постоянное напряжение коллектор-эмиттер UКЭ max, а именно, условие его измерения - номинал базового резистора RБ (обведено красной рамкой). для маломощного транзистора КТ104 RБ = 10 кОм. Для транзистора средней мощности КТ611 RБ = 1 кОм. Для транзистора большой мощности среднечастотного КТ803 RБ = 100 Ом. Для транзистора большой мощности высокочастотного КТ913 RБ = 10 Ом (!!!) А-ФИ-ГЕТЬ!!! Разброс на ТРИ порядка! От 10 кОм до 10 Ом. Конечно же, для каждого типа транзистора значения свои. Так, для ГТ109 его номинал равен 200 кОм; для КТ630 - 3 кОм. Для ГТ122 он равен нулю. И т.д. и т.п. А для МП39...МП42, МП111...116, да и для немалого количества других типов транзисторов (особенно маломощных) его номинал вообще не приведен. Но суть не в этом, а в том, что чем больше мощность транзистора, тем меньший номинал базо-эмиттерного резистора гарантирует, что при любых температурных (и прочих) условиях транзистор самопроизвольно не откроется. Кстати, пересмотрел десятка два даташитов на буржуинские биполярные транзисторы - ни в одном из них (в разделе Absolute Maximum Rating) не нашел даже упоминания о таком резисторе. В первом приближении можно принять зависимость между мощностью и номиналами RБ, приведенную выше на сканах: 10 кОм для маломощных, 1 кОм - средней мощности и 100 Ом - для мощных транзисторов. Кроме того, чем выше граничная частота работы данного типа транзистора, тем меньше должен быть номинал RБ. Естественно, такая зависимость не является догмой. Каждый может сам для себя выбирать, что ему по вкусу. Но именно сам для себя, когда "выбирающий" и отвечает за работоспособность устройства. Если же устройство должно выполнять какие-то критические функции, то выбор "с потолка" становится уже неприемлемым. В действие вступает правило: "Не делайте тяп-ляп. Делайте хорошо. Плохо само получится"! IMXO, спасибо за наводку. Очень даже похоже на истину. Только почему-то очень мало кто использует этот параметр для расчета. Лепят отсебятину кто во что горазд. Не сложно ли будет пояснить, откуда взялась цифра 0,1 В? Отсимулировал этот каскад при отключенном Rб. Вот что получилось. Выходит, что транзистор начинает открываться при напряжении на базе, равном 425 мВ (канал "С", красная вертикальная метка Т1). Но это при температуре 20оС! Если она повысится до предельно допустимой (как это сделать в Мультисиме, пока не знаю), скажем, до 150оС, то учитывая, что напряжение на р-п переходе снижается на 2...2,5 мВ/град. получается как раз около 0,1 В. А теперь я увеличил чувствительность трека "В" (красный), показывающего базовый ток до 50 мВ/дел. В точке начала открывания транзистора (Т1) его величина составляет 224 нА (коэффициент преобразования датчика тока составляет 1 В/мА). Еще увеличил чувствительность (до 1 мВ/дел). Переместил маркер Т2 в точку, где базовый ток начинает отклоняться от нуля. Она соответствует базовому напряжению 225 мВ. Делим на 2 (для надежности) - получаем этот самый 0,1 В.
  38. 2 points
    Здесь, в теме, я коротко информировал о том, что когда-то, давным-давно (в начале 80-х прошлого века), когда пленочная фотография была ещё востребованной, я сваял аналоговый таймер (реле времени) для микрофильмирования с помощью электромагнитного спуска к фотоаппарату "Зенит" (для печати было другое, цифровое, еще на 172-й серии). В нынешние времена, с завершением "эры" пленочной фотографии, надобность в подобном таймере сократилась до небольшой ниши экспонирования фоторезиста, но полностью так и не пропала. Именно поэтому я и рискнул описать принцип его реализации. "Фишкой" того таймера была нелинейная шкала выдержек. В широко распространенных и в то время (да и сейчас) таймерах шкала выдержек равномерная, из-за чего (к примеру) выдержка длительностью 1 с отличается от 2 с в два раза, а 9 с от 10 с - всего на 11%. Поэтому пересчет выдержки при изменении ее длительности приходилось делать "в уме", естественно, приближенно. Поэтому диапазон выдержек был разбит на 5 троек значений + еще одно, всего 16 (в наличии был пакетник на столько положений). Каждое следующее значение отличалось от предыдущего в 1,29 раза (корень кубический из двух). Дискретность при этом получилась, равной 1...1,26...1,59...2...2,52...3,18...4... и т.д. до 32 с. Она была подсказана моим хорошим приятелем - экспертом-криминалистом в области фотографии и подтвердилась в процессе эксплуатации. Дискретность 1...2...4...8... являлась слишком грубой. Обдумывалась дискретность 1,41 (корень квадратный из 2), но была признана тоже грубоватой, а вот 1,19 (корень 4-й степени из 2) - излишне дробной. Точность отработки выдержки аналоговым способом составляла (на глазок) примерно ±10%, что меня более-менее удовлетворяло, хотя уже тогда возникала мысль, как реализовать эту схему на цифровой компонентной базе. Однако, до реализации в "железе" дело так и не дошло, поскольку "эра" пленочной фотографии взяла и подошла к концу. А идея осталась... Вот ее-то я и хочу описать, как реализовать подобное в цифровом виде. Естественно, "та" схема за давностью лет не сохранилась, поэтому для данной записи я вчерне восстановил ее по памяти (в виде ФУНКЦИОНАЛЬНОЙ схемы, т.е., не привязанной ни к какой серии логики, ТТЛ либо КМОП!). При этом не отображены некоторые нюансы конкретной реализации, которые будут зависеть от типа использованной логики. Важна ведь не сама схема, как таковая, а ПРИНЦИП ее функционирования! Для знакомых с микроконтроллерами (сам я, к сожалению, уже "опоздал") не составит особого труда реализация алгоритма, на котором базируется схема, на МК. Если найдутся желающие - готов за отдельную, весьма умеренную плату даже изготовить такой таймер "в железе". Либо, что обойдется дешевле, крякнуть и доработать схему до принципиальной на желаемой компонентной базе (кроме МК, естественно). Итак, функциональная схема такого таймера: Главным "действующим лицом" является триггер "Т", управляющий ключевым каскадом на транзисторе VT1. Его нагрузкой показано реле К1, коммутирующее сетевую нагрузку. Вместо него можно применить (если финансы позволят) либо оптореле, либо связку из оптрона серии МОС30хх + симистор. Хотя и ПМСМ реле более, чем достаточно. Пара сотен/тысяч коммутаций оно по-всякому выдержит. Запуск триггера производится динамически (по фронту входного сигнала) на сход С, а сброс в ноль - статически по входу R, который имеет преимущество перед запуском. Генератор G1 на выходе формирует тактовую частоту 100 Гц, которая двоичным счетчиком СТ2.1 делится на одно из трех значений: 100, 126 или 159, выбираемое мультиплексором MUX1 в зависимости от положения многопозиционного переключателя SB. Эта уже низкая частота поступает на вход двоичного делителя СТ2.2, который делит ее дальше на 2, 4, 8, 16 и 32. Можно и больше, но тогда может быть сложно найти пакетник на нужное число положений. С выхода этого счетчика выходной сигнал через мультиплексор MUX2 поступает на вход обнуления триггера Т, прекращая формирования выдержки. Отработку выдержки можно оборвать в любой момент кнопкой "Стоп". На первый взгляд схема сложновата, но реально правильно спроектированный цифровой автомат в настройке не нуждается и начинает работать сразу.
  39. 2 points
    Ну а как еще можно перевести название сайта godbolt.org? Очень занятный сайт для программистов-любителей, рекомендую. Позволяет немедля увидеть, как выглядит та или иная конструкция на одном из 19 языков в ассемблерной реализации. Любопытно поизучать, как опции оптимизации влияют на результат, например. Можно сравнить код, генерируемый разными версиями одного и того же семейства компилятора или сравнить код разных компиляторов... Видно, какие ассемблерные команды соответствуют той или иной строке кода... Короче, занятное получается путешествие внутрь кода онлайн. Главное, все происходит быстро, заметно быстрее, чем если делать это на локальном компиляторе, и уж точно много быстрее, если делать то же самое на разных версиях компиляторов. Подерживается огромное коичество платформ: от 8-битного AVR до 64-битных ARM, в том числе под винду (включая CE) и линух.
  40. 2 points
    (Исходники проекта прикреплены к блогу) Проект создан на основе аналогичного проекта, найденного в сети: http://tutlay.ru/radioshemy/r6/75-dva-migayuschih-svetodioda.html. Его исходник также включен в архив. Я решил его немного улучшить, добавив включатель и отсек для батареек. Ну и еще презентабельную коробочку из оргстекла. Позже оказалось, что сделать такую коробочку не так то просто, как казалось вначале. По итогу на нее было потрачено раз в 10 больше сил и времени, чем на создание платы. Итак начнем. Открываем проект в Sprint Layout и печатаем стороны схемы на лазерном принтере на глянцевой бумаге, предварительно выставив в настройках печать максимальный расход тонера. В настройках моего принтера это выглядит так (Economy Color: выкл): Печатаем отдельно слой Ш1 и Ф2 на разных листах, Ш1 - это слой с шелкографией, он нам нужен для переводки номиналов элементов на обратной стороне платы, а так же для обозначения мест сверления отверстий для ножек и крепления батарейного отсека. Слой Ф2 - это собственно слой с дорожками, и он будет переводится на фольгированную сторону платы. Печатать лучше прямо перед переводкой на плату. Т.е. печатаем слой Ш1, переводим его на плату, моем-сушим. Далее печатаем слой с дорожками, переводим на плату, моем сушим. Бумага для печати на лазернике подходит не всякая. Например НЕЛЬЗЯ использовать глянцевую бумагу от струйных принтеров, иначе вы рискуете убить свой принтер. Я пользовался специальной глянцевой бумагой для лазерного принтера Cactus CS-LPA4160100. Заказывал ее на OZON (https://www.ozon.ru/context/detail/id/33923838/). Для перевода пользуемся обычным ЛУТ методом, т.е. газетки + утюг без дырок на нагревателе. Подробно описывать ЛУТ не буду, он в принципе хорошо описан, в интернете можно найти много статей на эту тему. Добавлю только некоторые ремарки, относительно того, как делал сам: - обезжиривание - обычным пемолюксом + губка; - сушка - паяльным феном (можно обычным феном); - переводка утюгом - минут 4-5, утюг был НЕ на максимуме; - травка - в обычном пластиковом контейнере для еды, лимонной кислотой и перекисью водорода, процесс прошел на удивление быстро - буквально 10-15 минут. Рецепт тут есть https://fb.ru/article/284433/travlenie-platyi-perekisyu-vodoroda-i-limonnoy-kislotoy-tonkosti-obrabotki-platyi . - смывка бумаги - губкой и подручными средствами под струей теплой воды, смывать нужно аккуратно, чтоб не повредить дорожки; - после аккуратной смывки дорожки получились очень четкие и целые, поэтому я их не лудил. Далее сверлим отверстия под элементы 22 шт. сверлом 0,7 мм, 6 отверстий под крепления размером 2 мм и два отверстия под клеммы - 5мм. И паяем. Ножки для платы делаем из дюбелей 4мм с цилиндрическими кончиками, отрезав эти самые кончики ножом. Ножки накручиваем на 4 болта. Собственно с самой платой все. Конструирование коробочки из оргстекла - тема отдельная и обширная. Но сразу скажу, что без технологичного оборудования сделать красиво не получится. Разрезать оргстекло ровно вручную практически невозможно. А такие инструменты как лобзик, роторайзер и др. вызывают сильный нагрев оргстекло и его оплавление. У меня получилось разрезать его роторайзером, специальным тупым диском, но рез получался плавающий из-за плавления и из-за отсутствия жесткой фиксации пилы. Отклонения в размерах пришлось устранять вручную мелким напильником - процесс длительный, нудный и трудоемкий. Чтоб зажать оргстекло в тисках и не поцарапать его я использовал силиконовые проставки, вырезанные и специально купленного для этого кухонного коврика. Размеры вырезаемых можно взять в проекте раскроя, сделанного в программе Астра Раскрой 5.1, ниже скрин с размерами. Ну и в заключении приведу таблицу с радиодеталями, конструктивными элементами и другими материалами, использованными в проекте. Мигающие светодиоды.zip
  41. 2 points
    Как то приобрел на китайской торговой площадке регулируемый паяльник с керамическим нагревателем и сменными жалами, а вместе с ним набор самых обиходных жал. По сравнению с прошлым, спиральным - небо и земля. Всем доволен, вот только жала быстро сгорают. Сначала думал заказать еще несколько партий, но передумал и решил попробовать изготовить их самостоятельно. Измерив заводское жало стал подыскивать подходящий материал. По внешнему и внутреннему диаметрам практически полностью подошла медно-луженная гильза типа GTY 10 длиной 30мм, предназначенная для соединения медных проводов сечением до 10 мм2 методом опрессовки. Внутри гильзы есть ограничитель для проводов, который нужно высверлить сверлом соответствующего диаметра. Осталось лишь подобрать материал для изготовления самого жала. Для спирального паяльника я их изготавливал из медных проводов подходящего диаметра. Для сменного решил поступить аналогичным образом. Вариант 1. Неразборные одноразовые жала. В качестве заготовки для жал беру провод ПВ1 6мм2, в пересчете на диаметр - 2,78мм. И все что нужно сделать - соединить данный провод с вышеописанной гильзой, поместив его внутрь оной на глубину 5 мм, чтоб оставить место для нагревателя (25 мм). Но поскольку провод почти в 2 раза тоньше внутреннего диаметра муфты, буду использовать переходные соединительные муфты GTY 2,5. Соединять гильзу и жало буду с помощью опрессовочного инструмента. Если опрессовочного инструмента нет и опрессовать негде, можно попробовать это сделать "дедовским методом" - плоскогубцами, тисками или молоточком. Опрессовываем детали и придаем жалу необходимую форму. Нужно отметить, что место опрессовки должно пролазить через ограничитель паяльника, диаметр которого 5,8 мм. Ну вот и все. Осталось только залудить жала и радоваться жизни. Вариант 2. Универсальная гильза для сменных жал. Повторяем последовательность действий как в Варианте №1 с одним отличием - вместо провода плотно и аккуратно обжимаем хвостовик сверла 2,5мм. После обжима извлекаем сверло и метчиком М3 нарезаем в месте обжима внутреннюю резьбу. Далее придаем необходимый размер и форму медной заготовке и плашкой М3 нарезаем на ней резьбу длиной не более 5мм. Ну вот и все - разборное жало готово. Ну и, напоследок, несколько вариантов исполнения медных, латунных и несгораемых сменных жал. Как видите, все материалы для изготовления подобных жал можно приобрести в одной торговой точке, в которой нередко можно найти и опрессовочный инструмент. Вместо гильзы можно попробовать подобрать медную трубку для кондиционеров, а провод брать большего диаметра и обтачивать до нужной формы и размера. По сравнению со стоковыми такие жала служат намного дольше, а из-за своей большей массивности более инертны к резким перепадам температур в процессе пайки. Жизненных и творческих всем успехов.
  42. 2 points
    По Sprint Layout 6 на сайте "Паяльник" мной был написан курс из четырех статей - часть 1, часть 2, часть 3, часть 4. Со временем стало понятно, что неплохо бы материал переработать, дополнить и объединить в одну кучу. Так возникла книга "Проектирование печатных плат в программе Sprint Layout 6". Книга состоит из пяти глав. Первая глава подготовительная и в ней рассказывается о программе Sprint Layout 6, ее интерфейсе и настройках, координатах, сетках, линейках и единицах измерения. Вторая глава книги расскажет вам о графических примитивах и инструментах, используемых при трассировке. В третьей главе речь идет о создании макросов и организации библиотеки посадочных мест. В четвертой главе вы научитесь выводить рисунок платы на печать для домашнего изготовления и экспортировать в графический формат для публикации. Дополнительно рассказано о функции перевода любого имеющегося рисунка платы в формат Sprint Layout 6 и о возможностях экспорта списка компонентов в любой табличный процессор. В завершающей пятой главе рассмотрены возможности работы Sprint Layout 6 с многослойными платами. Рассказано об особенностях трассировки, направленной на дальнейшее фабричное изготовление плат, и показано как правильно получить набор файлов, необходимых для производства (Gerber-файлы и файл сверловки). Также затронуты функции импорта Gerber-файлов и экспорта Plot-файла для фрезеровки на станке с числовым программным управлением. Примечание - Для описания была выбрана последняя на момент написания книги версия, переведенная на русский язык пользователями форума «РадиоКот» Men1 и Sub. Случайные страницы: Скачать книгу -------------------------------------------- Обновление от 21/06/17 Опубликован материал с некоторыми дополнениями и полезными советами по работе с программой: http://cxem.net/comp/comp213.php Зазор на автополигоне Быстрая смена начала координат Быстрое изменение радиуса окружностей и дуг Сложные контура и вырезы Об отверстиях в файле сверловки Вырезы в маске Создание горячих клавиш для плат в проекте Решение проблемы стыковки дорожки и автополигона Номер кошелька Яндекс.Деньги для выражения благодарности автору: 410011551289010
  43. 2 points
    Никак не претендуя на лавры Исаака Азимова, тем не менее, в свое время сформулировал три закона схемотехники: 1. Наилучшая элементная база - та, с которой знаком. Следствие: Любую задачу можно решить самыми разными способами. Учиться, конечно, надо обязательно, осваивая новые компоненты. Причем, постоянно. Но из всего существующего на сегодняшний день многообразия компонентов для разработки всё-таки надо выбирать те, о которых точно знаешь, как именно они работают. 2. Сложность настройки прямо пропорциональна количеству узлов с совмещенными функциями Следствие 1: Каждый узел должен выполнять только одну-единственную, присущую ему, функцию. Лучше поставить 3-4 лишних корпуса, чем заморачиваться с настройкой, если связи настолько хитры, что "косяк" только в одной из них делает неработоспособной всю остальную схему (например, рефлексные приемники). Именно поэтому целесообразно разделять схему на отдельные узлы, каждый из которых в принципе автономен и может настраиваться независимо от других. Следствие 2: Опираясь при проектировании устройства на недокументированные свойства компонентов, не удивляйтесь его неработоспособности. Следствие 3: Простота - хуже воровства. 3. Работает? И НЕ ДЫШАТЬ!!! Следствие 1: Лучшее - враг хорошего. Следствие 2: Самое долговременное - это временное. Разъяснений не требует
  44. 2 points
    Уже 100500 раз говорено-переговорено об этом вопросе и всё равно постоянно возникают тупейшие темы по управлению светодиодами. "Юные дарования" почему-то считают, что раз светится - значит, это "лампа" накаливания. Уже и FAQов куча понаписано, и в Интернете море информации - а воз и ныне там... Повторяю 100501-й раз: СВЕТОДИОДЫ - НЕ ЛАМПОЧКИ!!!!! и требуют к себе совершенно иного подхода. Для начала давайте повторим, в общем-то, известные сведения о лампах накаливания. Их спираль, выполненная из тугоплавкого вольфрама, представляет собой чисто омическое сопротивление. По закону дедушки Ома (I = U / R) сила тока, проходящего через спираль, прямо пропорциональна приложенному к ней напряжению и обратно пропорциональна сопротивлению спирали. Поскольку у вольфрама температурный коэффициент сопротивления достаточно велик, то при раскаливании (свечении) спирали, ее сопротивление существенно (не менее, чем в десяток раз) увеличивается. В итоге зависимость тока, протекающего через спираль от приложенного к ней напряжения нелинейна. Это позволяет питать лампы, расчитанные, скажем, на 220 В, и 240 вольтами, не особо беспокоясь за их "здоровье". Тем более, что такие колебания напряжения (+\- 10%) считаются допустимыми для сети 220 В. Кстати, в сети бывают единичные всплески напряжения (от молний и других причин), намного больше указанных 10%. Иногда от них лампы перегорают, но в большей части случаев остаются "живыми"). Зачем я всё это расписываю - будет изложено позже. Теперь о вольт-амперной характеристике (ВАХ) светодиодов. На рисунке представлена ВАХ красного светодиода. Для светодиодов другого цвета она будет точно такой же, только сдвинутой вправо. А теперь сравните ее с ВАХ стабилитрона. Только нужно учесть, что "рабочим" диапазоном для стабилитрона является область обратной ветви (расположенной в левом нижнем квадранте графика). Иными словами, ВАХ светодиода (СветоИзлучающего диода = СИД или по английски Light Emitting Diode = LED) практически повторяет ВАХ стабилитрона. Разве что имеет немного больший наклон. Получается, что если прикладывать к СИД (в данном случае - красному) какое-то напряжение, то до значения 1,7...1,8 В он светиться вообще не будет. При увеличении его до 2 В яркость свечения будет номинальной (при номинальном токе = 20 мА). А при увеличении его всего-навсего еще на 0,05 В он тупо сгорит, т.к. ток превысит максимально допустимый. А это составляет ВСЕГО ЛИШЬ 2,5%!!! Кроме того, данный график является усредненным. Для каждого конкретного СИД он может сдвигаться вправо или влево по оси "Х" (напряжений). Т.е., если задать на СИД напряжение 2 В, то одни при нем будут светиться "вполнакала", а другие - могут и сгореть вследствие превышения через них допустимого тока. "Дядюшки Ляо", соединяя СИД в своих дешевых фонариках параллельно, просто ставят их из одной партии, поэтому и параметры ВАХ для использованных СИД оказываются очень близкими. Да еще и плавность наклона "рабочей" ветви позволяет худо-бедно согласовать протекающие через них токи. Из изложенного следует, что даже если запитать СИД жестко стабилизированным напряжением, всё равно придется либо его подстраивать под конкретные экземпляры, либо мириться или со снижением светоотдачи, или с укорочением времени работоспособности. Этот путь приемлем для тех, кто желает делать "по-китайски". Но мы-то пойдем "взрослым" путем! Он заключается в том, чтобы задать светодиоду(ам) оптимальный для него (них) ТОК. При этом нам будет глубоко начхать на то, какое на СИД упадет напряжение. Оно будет таким, каким позволит быть их ВАХ. Для красных и желтых СИД - примерно 2 В. Для зеленых и синих (и белых тоже!) - примерно 3 В. Указанные значения примерные, и будут несколько различаться для СИД различных производителей (технологий изготовления). Для нас это пока непринципиально. Наиболее простой путь ограничения тока через СИД - поставить последовательно с ним токоограничительный резистор. Такой способ широко применяется в светодиодных лентах, где они включены последовательно с цепочками из трех (как правило) включенных также последовательно СИД. Просто, но стрёмно. Давайте рассмотрим одну такую цепочку. Пускай СИД будут белого цвета. На них упадет 3 х 3 = 9 В. На токоограничительном резисторе - 3 В. Для тока через цепочку 20 мА при номинальном напряжении питания = 12 В, его сопротивление должно составлять 150 Ом. А что будет, если мы поставим такую ленту в авто, где напряжение в сети (приблизительно!) будет колебаться от 13,5...14 В (летом при заведенном двигателе) до 11...12 В (зимой, при остановленном двигателе)? На СИДах останется то же падение напряжения = 9 В, а вот на резисторе упадет уже не 3, а 5 В! Следовательно, ток через цепочку возрастет на 67% (до 33 мА). Что для СИДов - "смерти подобно", т.к. приближается к границе максимально допустимого значения. При снижении напряжения светимость СИДов будет стремительно падать. Тоже плохо. Еще хуже ситуация сложится, если попытаться запитать такую ленту от просто выпрямленного диодным мостом переменного напряжения с 12-вольтового трансформатора. Нужно учесть, что 12 В - это среднее действующее значение переменного тока. Максимальное амплитудное будет в корень из двух (примерно 1,4 раза) больше. Даже если исключить 1,4 В падения на диодах моста, всё равно получится 15,4 В. А значит, в пике ток через цепочку составит 42 мА! Уже больше, чем допустимо. СИДам будет явный гаплык. Большинство "юных дарований" (и не очень юных), пытаются исключить такую ситуацию, стабилизируя напряжение питания. Однако, импульсные стабилизаторы для них оказываются слишком сложные в повторении, а линейные 3-выводные интегральные стабилизаторы (7812) требуют входного напряжения минимум на 2 В больше, чем стабильное выходное. Т.е., при 14 В на выходе будет нужные 12 В, а при 12 В - всего 10 В, что дает всего 6...7 мА тока через цепочку. Вот теперь переходим к главному вопросу, ради которого и затевалась вся эта писанина. Какими же средствами можно застабилизировать ток через светодиоды? Желательно - максимально простыми, доступными даже начинающим (несмотря на то, что я неоднократно повторял: "Простота - хуже воровства!"). Однако, еще раз повторю старую и банальную истину: ничего универсального не бывает! Схемотехническое решение обязательно должно адаптироваться под ставящуюся задачу. Поэтому в последующем будет рассматривать два задачи: а) световые эффекты в авто и б) выходной каскад светодиодной светомузыки. Рассмотрим простейший транзисторный стабилизатор тока. В минимальном варианте ("А") он состоит из из всего двух деталей: транзистора VT1 с эмиттерным резистором R2. Нагрузка (цепочка из белых СИДов с падением на каждом из них по 3 В, без токоограничительного резистора!) включена между коллектором и шиной питания, а на базу подано опорное напряжение с параметрического стабилизатора на стабилитроне VD1 и балластном резисторе R1. Ток через эмиттерный резистор по закону Ома равен падению напряжения на нем, поделенному на его номинал. Такой же ток по определению протекает между коллектором и эмиттером транзистора и, соответственно, через СИДы. Поскольку транзистор можно рассматривать, как эмиттерный повторитель, то напряжение на эмиттерном резисторе равно напряжению на базе транзистора минус падение на базо-эмиттерном переходе (0,7 В). Т.о., ток через светодиоды можно регулировать либо величиной опорного напряжения на базе, либо номиналом эмиттерного резистора. Входное сопротивление эмиттерного повторителя равно произведению номинала эмиттерного резистора на коэффициент усиления транзистора, поэтому такая простейшая схема годится только для случаев относительно небольшого тока через СИДы. Скажем, в районе 100...200 мА. Если приходится коммутировать мощные, да еще и запараллеленные СИДы, либо достаточно длинную светодиодную ленту, то в качестве транзистора желательно поставить составной транзистор Дарлингтона ("Б"). Коэффициент его усиления равен произведению Ку составляющих его транзисторов. В случае параллельного подключения нескольких цепочек СИДов в каждую из них придется добавлять токовыравнивающие резисторы (R3R5), правда их номинал достаточен в пределах единиц Омов, а в ленте они уже имеются "по жизни". Для применения такой схемы в авто, где обшей шиной является кузов, придется использовать транзисторы p-n-p проводимости ("А"). Базовое опорное напряжение в этом случае отсчитывается от шины питания. Работа такой схемы ("Б"), обеспечивающей плавное зажигание и гашение СИДов при открывании двери (контакт SA1), показана на ролике. Данная параметрическая схема, с "аналоговым" управлением, вполне достаточна для применений, не требующих особо стабильного тока, а именно, для авто. Теперь давайте рассмотрим схему источника более стабильного тока а также роль токоограничительных резисторов, встроенных в светодиодную ленту. Правда, должен отметить, что эта схема позволяет регулировать ток только изменением номинала эмиттерного (истокового) резистора, независимо от уровня напряжения, поступающего на управляющий вход ("цифровое" управление). Во всех примерах применены цепочки белых СИДов с падением напряжения на каждом из них по 3 В. В простейшем варианте ("А") собственно стабилизатор тока выполнен на регулирующем транзисторе VT2. Напряжение на его базе при наличии управляющего напряжения на входе (левый вывод резистора задается таким, чтобы на его эмиттерном резисторе создавалось падение напряжения, равное 0,7 В, которое приоткрывает дополнительный транзистор VT1, между коллектором и эмиттером которого поддерживается напряжение, обеспечивающее нужный уровень приоткрывания транзистора VT2. Рассмотрим "бюджет" напряжений в цепочке поддержания стабильного тока через СИДы. На них падает 9 в, на эмиттерном резисторе - 0,7 В и все остальное напряжение (2,3 В) - на регулирующем транзисторе VT2. Т.о., при изменении питающего напряжения (скажем, от 10 В и больше), всё "лишнее" напряжение всё равно упадет между коллектором и эмиттером VT2, а ток в цепи останется на том же уровне. Если же коммутируется светодиодная лента ("Б"), со встроенными токоограничительными резисторами, то видно, что на них вместо 3 В упадет всего 1,8 В. Это обусловлено наличием т.н. "напряжения насыщения" между коллектором и эмиттером регулирующего транзистора, которое, к сожалению, невозможно "объехать на кривой козе", а значит, максимальной светимости ленты добиться тоже не удастся. Выходом из этой ситуации может быть применение в качестве регулирующего низковольтного полевого транзистора ("В"), имеющего (в отличие от высоковольтных), как правило, очень малое сопротивление канала, в пределах десятка мОм. Падение напряжения на таком малом сопротивлении составляет всего несколько десятков мВ, чем можно пренебречь. При питающем напряжении уже 13 В ("Г") такой стабилизатор обеспечивает номинальный ток. А что делать, если необходимо всё-таки регулировать яркость СИДов? Да очень просто: применить Широтно-Импульсную Модуляцию (ШИМ) входного напряжения. Т.е., на вход подать либо постоянное входное напряжение (тогда яркость будет максимальной), либо импульсную последовательность с частотой более 400...500 Гц (для исключения стробоскопического эффекта) и изменяющейся скважностью (отношение длительности периода между входными импульсами к длительности этого входного импульса). Чем короче входные импульсы, тем меньше яркость свечения СИДов. При этом, в отличие от ламп накаливания, яркость свечения СИДов будет прямо пропорциональной среднему протекающему через них току. При том, что максимальный ток не будет превышать номинального значения. Подобным образом можно организовать режим индикации габаритов и стоп-сигнала одними и теми же СИДами красного свечения. Схема генератора ШИМ выходит за рамки данной "статьи" и поэтому здесь не обсуждается. Да хоть банальнейший классический транзисторный мультивибратор! На говоря уже о таймере. Ну, и наконец, перейдем к светомузыке. Я просто долго и нудно ржу, когда вижу схемы, в которых СИДы питаются каскадами, построенными на транзисторах с общим эмиттером (истоком). Например, вот такую: Ведь совершенно очевидно (по крайней мере для меня), что это никаким образом не светомузыка, с плавным режимом свечения СИДов, а просто тупая "мигалка". Три последовательно включенных каскада с ОЭ-ОЭ-ОИ обеспечат режим либо полной отсечки, либо полного насыщения полевого транзистора. Для данного применения описанные выше схемы, конечно, возможно применить, но коль в исходную схему уже понапихано столько ОУ, то еще 3...4 к существенному усложнению не приведут, а качество работы повысят существенно. Ничего нового по схеме генератора тока на ОУ не скажу, поскольку она известна давным-давно. Принцип ее работы очень похож на описанный выше для двухтранзисторной схемы. ОУ поддерживает падение напряжения на резисторе R2 (а следовательно и ток через него) таким же, как и входное напряжение на неинвертирующем входе. Номинал резистора R2 можно выбрать достаточно малым, чтобы падение напряжения составляло всего 0,1...0,2 В, что позволит спокойно применять светодиодные ленты при практически полной яркости их свечения. Ну, а заодно и применить прецизионные выпрямители на ОУ: http://www.gaw.ru/ht.../funop_13_2.htm . ОУ для данного применения целесообразно применить LM358/LM324. На схеме показано, как лучше "заглушить" неиспользуемый ОУ из одного корпуса LM358 (DA1.1). В этой схеме нас совершенно не волнует, какое напряжение будет на затворе полевого транзистора - это "личное дело" ОУ. Главное, чтобы на истоковом резисторе поддерживалось нужное падение напряжения. Кроме того, СИДы можно питать НЕстабилизированным напряжением, прямо с выхода выпрямительного моста с конденсаторным фильтром, а стабилизировать только напряжение питания ОУ. Это существенно снизит токовую нагрузку на стабилизатор напряжения питания. А для схемы стабилизатора тока такой режим - сугубо фиолетовый. А теперь крепче держитесь за стул! В журнале "Радиолоцман" № 12 за 2015 год, на стр.15-16 описаны "новые" микросхемные стабилизаторы тока для светодиодов BCR420U/BCR421U фирмы "Infineon". Вниманию знатоков, их внутренняя схема!!! Схема из журнала "Радиомир", 2014, № 11, С.26: Дополнительный диод - германиевый или Шоттки. Схема позволяет существенно (в 2...3 раза) уменьшить падение напряжения на эмиттерном токоизмерительном шунте. Вот, собственно, и всё, что хотелось бы изложить по этому вопросу. Может быть, что-то запамятовал - так на то и существуют уточняющие вопросы. Ну и до кучи еще ссылочка на подобную тему: http://forum.cxem.ne...howtopic=134692
  45. 2 points
    Модели полярных электролитических конденсаторов с радиальным расположением выводов, включая модели с самозащелкивающимися выводами (snap-in). Давно уже просили их сделать... Я проанализировал электролиты нескольких известных фирм - Vishay, Panasonic, Rubycon и Jamicon, чтобы охватить как можно больше вариаций корпусов. Среди совершенно обыденных корпусов 6,3x11 и 10x20 мм обнаружились довольно дикие для меня типоразмеры. Например, вы знали, что существуют электролиты размерами 6,3 на 50 мм? Оказывается, что да В итоге получился набор моделей электролитов вертикального монтажа диаметрами от 4 до 25 мм с различными вариациями высоты - от 5 до 60 мм. Кроме этого имеются модели двухвыводных корпусов с самозащелкивающимися (snap-in) выводами, диаметры от 22 до 25 мм, высоты от 20 до 70 мм. Все модели именованы согласно рекомендациям стандарта IPC-7351. Например, CAPPRD750W80D1800H2500 CAPPRD – Выводной круглый полярный конденсатор с радиальным расположением выводов 750 – Межвыводное расстояние = 7.50mm W80 – Диаметр выводов = 0.80mm D1800 – Диаметр конденсатора = 18.00mm H2500 – Высота конденсатора = 25.00mm Ножки подрезаны с учетом толщины платы в 1,5 мм. Всего 134 модели Если кто-то обнаружит недостающий размер, пишите - добавим. А в следующем наборе будут модели для горизонтального монтажа на плату. Также, думаю, стоит сделать набор под дюймовую сетку. Например, межвыводное расстояние 2,5 мм легко войдет в футпринт 2,54 мм, и т.п. Позже добавлю сюда же. Скачать модели с проволочными выводами (метрический шаг) Скачать модели с самозащелкивающимися (snap-in) выводами (метрический шаг)
  46. 2 points
    Забыл модель сушилки с которой была снята плата. Данное устройство не имеет гальванической развязки с сетью, поэтому будьте очень аккуратны при работе с печатной платой. Схема в Spl7 Pcb Lay6 Сушилка рук.rar
  47. 2 points
    Широкий набор STEP-моделей корпусов серии TO-92 (они же TO-226 или КТ-26) стандарта JEDEC. Сделал 23 различные конфигурации. Если кому-то не хватит их, пишите, сделаю по заказу Система обозначений такая: C - Center (центральный вывод) L - Left (левый вывод) R - Right (правый вывод) S - Side (боковой вывод/в сторону) B - Back (назад) F - Forward (вперед) Например, TO-92_CF254SB254 означает: корпус TO-92, центральный (С) вывод изогнут вперед (F) на 2,54 мм, боковые (S) - назад (В) на 2,54 мм (см. рис). Или TO-92_SS127: корпус TO-92, боковые (S) выводы изогнуты в стороны (S) на 1,27 мм. Кстати говоря, TO-92 = TO-226AA TO-92_CB127 = TO-226AB Есть также удлиненный вариант, т.н. TO-92MOD. Также 23 конфигурации. И есть двуногий TO-92. У него 7 конфигураций. Скачать
  48. 1 point
    Сидя на самоизоляции, поскреб по сусекам и собрал еще один экземпляр "ушного" усилителя Prometheus. Но в отличие от исходной схемы поставил в ООС конденсаторы 1,2 нФ как в оригинальной схеме Смита. Посмотрел спектры и очень удивился: Не помню откуда у меня там был номинал 22 пФ. Вот уж не думал, что этот элемент может влиять на сетевые гармоники. А я грешил на наводки от трансформаторов. Но и они определенно дают свой весомый вклад. Напомню схему:
  49. 1 point
    3D-модели подстроечных резисторов Bourns серии 3296. Всего 5 моделей. Скачать
  50. 1 point
    Зарядное устройство шуруповёрта Bosh AL 2425 DV ремонт. Попало в руки зарядное устройство шуруповёрта Bosh AL 2425 DV. Ремонт начал, как потом оказалось немного не с того. Выпаял и проверил высоковольтный полевик, подал напряжение на UC3842 и убедился в наличии импульсов на выходе. И только потом обнаружил сгоревший резистор на 180 кОм через который подается напряжение на UC3842 от высоковольтной части. Что-то Bosh сэкономил, Не верится мне, что такая финтиклюшка будет являться двухваттником, как положено по ДШ. Заменил на советский двухваттник. Думаю, в этом месте больше проблем не будет. Преобразователь работает, как тут называют «с подхватом». Прежде чем впаивать полевик решил глянуть, что происходит без т. н. «подхвата». На 7-й ноге UC3842 напряжение качается в пределах 10-15 Вольт, а на выходе идёт переключение с периодом около 1 сек. Впаял полевик и всё заработало. Смутило немного выходное напряжение без вставленного аккумулятора, которое составляет аж 40 В. При вставленном аккумуляторе оно падает до 19-20В. Аккумулятор на 18 В. При зарядке светодиод начинает мигать и выключается после окончания зарядки. Заснял резисторы, может, кому пригодится маркировка. Не понял только, почему на маркировке блока написано «Выход 7,2-24 В.»
×
×
  • Create New...