Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 11/15/18 in Blog Entries

  1. 9 points
    Вопрос, давно "циркулирующий" по разным форумам: каким же должен быть БП для ремонта и предварительной настройки транзисторных УМЗЧ. Если с ремонтом более-менее понятно, то насчет "настройки", да еще и "предварительной" - поясню более подробно. Новоизготовленный УМЗЧ нередко обладает "косяками" (непропаи, пермычки дорожек припоем, перепутаны компоненты и т.п.), из-за чего включать его нужно осторожно и с ограничением тока, дабы не дожечь окончательно. Для ограничения тока рекомендуется использовать либо лампы накаливания на нужное напряжение, либо просто резисторы на несколько десятков Ом. Оба способа токоограничения, при своей простоте и дешевизне, обладают рядом существенных недостатков. Лампы накаливания имеют ограниченный ассортимент напряжений, хрупкую стеклянную колбу и малое сопротивление спирали в холодном состоянии, из-за чего начальный бросок тока может значительно превышать установившееся значение. Достоинство - по свечению нити накала сразу видно, что что-то идет "не так" (короткое замыкание в нагрузке). Резисторы более стабильны в отношении пропускаемого тока, дешевы, но вот никакой индикации аварийного состояния не обеспечивают. Нужны дополнительные вольтметры или амперметры. Что же касается собственно БП, то не устаю удивляться многообразию схем "лабораторных БП", изготавливаемых для этих целей. Если подумать, то регулируемый по напряжению и току ограничения "лабораторник" для данной задачи - "масло масляное маслянистое"! Реально не нужны ни плавная регулировка напряжения, ни тока. Нормальная схема УМЗЧ (подчеркиваю: НОРМАЛЬНАЯ, а не извращенная!) обязана работать при колебаниях питающего напряжения +100 / -50% от номинального значения. Естественно, либо на холостом ходу (Х.Х.), либо на нагрузку , составляющую порядка 10% номинальной. Окончательная настройка режимов (ток покоя, ноль на выходе при отсутствии сигнала и т.п.) должны производиться на ШТАТНОМ БП, с которым этот УМЗЧ будет работать в дальнейшем. Исходя из этих положений, необходимый и достаточный БП для ремонта/настройки УМЗЧ состоит всего-навсего из трансформатора, вторичная обмотка которого может быть вообще без отводов, либо иметь один-два отвода на напряжение порядка 18...24...30 В, выпрямительного мостика, конденсаторного фильтра и ограничителей тока по плюсовой и минусовой шинам. ВСЁ ОСТАЛЬНОЕ - НЕНУЖНОЕ ИЗВРАЩЕНИЕ!!! Ограничение выходного тока (по опыту) достаточно на уровне 0,5 А, чтобы не пожечь сохранившиеся транзисторы средней мощности драйверных каскадов. Транзисторы малой мощности (дифференциальный каскад, усилитель напряжения) обычно "обвязаны" резисторами, не пропускающими избыточные токи. При изготовлении такого БП я оттолкнулся от Двухполярного БП на трансформаторе без среднего отвода: Его схема: Поясняю еще раз и ме-е-е-дленно: Два трансформатора на напряжение первичной обмотки 110 В (сто десять! - севороамериканский стандарт) стоят исключительно потому, что в свое время я их получил по гуманитарке из Канады и они просто валялись в загашниках. И не более того! Первичные обмотки включены последовательно, вторичные - параллельно. Мощность каждого составляет 36 Вт (итого - 72 Вт, чего хватает "выше крыши"). На выходе получается двуполярное питание напряжением ±24 В. Вначале была мысль снабдить этот БП транзисторными ограничителями тока: с индикацией стрелочными гальванометрами от мафонов по падению напряжения на эмиттерном резисторе. Сдвоенный переключатель SA3 переключает выход либо через ограничители тока, либо почти напрямую (через резисторы R4 R7, всё-таки хоть чуть-чуть, но защищающие от полного К.З.). А когда уже подобрал детали - задумался. зачем же я ограничиваю сам себя применением дополнительного БП помимо штатного? По правде говоря, нередко такой дополнительный БП нужен. Скажем, ремонтируется эстрадный УМЗЧ массой под два пуда - сильно такой не покрутишь туда-сюда, даже на каком-то поворотном приспособлении. Приходится снимать плату и ставить ее на "стапель" отдельно от корпуса собственно УМЗЧ с его БП. И тогда выкристализовалось решение соорудить ограничитель тока в виде отдельного блочка, к которому можно было бы подключить любой БП, включая штатный. Сказано - сделано. Нашел в загашниках пару корпусов от разобранный свичей, радиаторы, снятые с компьютерных БП, два комплекта гальванометров М6250-1. Схема содержит два идентичных канала, никак не связанных один с другим. Каналы являются ДВУНАПРАВЛЕННЫМИ, т.е., если на левый по схеме вывод верхнего ограничителя подать плюс от БП, то с его правого вывода снимется плюс на нагрузку (усилитель). И наоборот, если не правый по схеме вывод нижнего ограничителя подать минус от БП (как это изображено для второго узла схемы - на рисунке ниже), то минус на нагрузку снимется с левого вывода. Причем, входы и выходы можно менять местами. Каждый из каналов можно включать как одновременно, каждый в свое плечо питания, так и любой из них по отдельности (скажем, при ремонте усилителя с однополярным питанием). Развел платы (одну - себе, вторую - хорошему приятелю, тоже занимающемуся ремонтом УМЗЧ). Вид сверху (в процессе изготовления): Вид снизу: Из-за простоты и нетиражности не стал ЛУТить, а применил старый добрый способ - рисованием лаком для ногтей через обрезок инъекционной иглы. Хочу еще раз подчеркнуть: ПЛАТА ИЗГОТАВЛИВАЕТСЯ ПОД КОРПУС!!! Ну, и вот что в итоге получилось (один из блочков): На фото показан режим К.З. в левом канале при питании от 12-вольтового аккумулятора. В таком режиме радиатор нагревается до температуры порядка 55...60° (рука еще терпит) примерно за 5 минут. Надо быть совершенно "тёмным" в ремонта, чтобы при наличии "металлического" К.З. в канале продолжать подавать на него питание. Если стрелка ушла вправо до упора - питание НЕМЕДЛЕННО отключается и ищется пробитый компонент. Так и только так! Оба канала настроены на максимальный ток 0,5 А, чему соответствует максимальное отклонение стрелки гальванометров. Они приклеены к корпусу снаружи двухсторонним скотчем. Шкалу не перекалибровывал, поскольку разборка этих гальванометров - квест из геморройных, причем, мало полезных - проще наклеить сверху переводную шкалу, по которой можно ориентироваться в токе потребления по имеющейся оцифровке. В режиме отсутствия ограничения тока падение на каждом из токоограничителей составляет 2,4 В. Светодиоды зеленого свечения (на 2,1 В + последовательно кремниевый диод) индицируют наличие полного К.З, когда это значение повышается более, чем на 2,7 В. Входные и выходные проводники подключаются к разъемам, выведенным на переднюю (бывшую заднюю) стенку. Если входные минус и плюс подключить к крайним контактам обоих разъемов, то выходы будут средними. И наоборот. Данную приставку можно подключать к любому БП, включая штатный для данного УМЗЧ, либо к показанному выше. Если с каналом усилителя всё в порядке и ток потребления соответствует току покоя, тогда и только тогда приставка отключается и питание подается на УМЗЧ непосредственно от БП. Настраиваются нужные параметры (ноль на выходе, коррекция и т.п.).
  2. 9 points
    Известно, что стандартного выходного напряжения типовых звуковых карт или ЦАП зачастую недостаточно для работы на высокоомные наушники. Как и недостаточно выходного тока для работы на низкоомные наушники. Поэтому необходим усилитель, который усилит мощность источника сигнала, и даст возможность источнику работать на широкий диапазон сопротивления нагрузки. Когда-то давно я собирал усилитель для наушников по схеме Питера Смита по схеме из Everyday Practical Electronics (мартовский номер 2008 года). По звуку он мне очень понравился, и до недавнего времени я его использовал в виде макета. Со временем стало понятно, что хочется его таки собрать в нормальный корпус. Тем более у меня появились отлично звучащие ортодинамические наушники ТДС-5М (копия Yamaha YH-1), с которыми и должен работать усилитель. Но в этом варианте конструкция имела недостатки - отсутствие стабилизаторов, которые есть в оригинальной схеме, громоздкость и защита была на отдельной плате. Схема Новая схема по сравнению с макетом претерпела некоторые изменения и приняла следующий вид: Конструкция Отправной точкой для конструкции нового варианта усилителя стало желание перевести схему на SMD-компоненты, сделать максимально монолитную одноплатную конструкцию и уместить ее в китайский алюминиевый корпус: Доступная высота для компонентов в таком корпусе (от платы внутри корпуса до крышки) всего 28,5 мм. Поэтому на замену имеющимся трансформаторам ТПК-2 (ТПГ-2) пришлось подыскать замену пониже, при сохранении максимально возможной габаритной мощности. Нужная модель нашлась у фирмы HAHN - BV EI 304 2047. С электролитами в блоке питания проблем не возникло - были взяты модели B41851F5228 фирмы EPCOS с высотой корпуса 25 мм. С выпрямителе был реализован C-R-2C фильтр. Охлаждение греющихся компонентов - транзисторов выходного каскада и стабилизаторов - реализовано с использованием радиаторов 28 на 28 мм и высотой 20 мм. Причем крепление сделано таким образом, что компоненты расположены горизонтально а радиаторы прижимают их к плате. Для равномерного прижима между платой и корпусами транзисторов проложен силикон толщиной 1 мм, а также в радиаторы вкручены стойки высотой 5 мм, которые не позволяют притянуть радиатор с перекосом и служат элементами крепления радиаторов. К сожалению, найти стабилизаторы в изолированных корпусах не предоставляется возможным, поэтому под них пришлось подложить теплопроводящие изоляционные прокладки. В качестве регулятора громкости применен потенциометр ALPS RK27 на 10 кОм, давно лежащий без дела. У корпуса внутри есть специальные пазы для платы, поэтому на краях платы сделаны соответствующие выступы справа и слева. Кроме этого по углам платы сделаны крепежные отверстия на случай, если будет применяться другой тип корпуса. Три других отверстия остались от варианта, когда планировалось в выбранном корпусе крепить плату ниже, чем это позволяют пазы. В итоге от этого варианта я отказался, а отверстия оставил. В качестве сетевого разъема применен разъем под кабель "восьмерку", совмещенный с выключателем. TRS-разъем взят под Jack 6.3 мм. На плате нашлось место даже для сетевого предохранителя, варистора и термистора. С учетом всего вышесказанного, была получена следующая конструкция и топология печатной платы: Монтаж получился достаточно плотный, но зато удалось все вписать в допустимые габариты: Дизайн Расположение разъемов, регулятора громкости и светодиода проводилось с учетом того, чтобы усилитель красиво выглядел. Некоторая асимметричность расположения компенсирована надписями на панели. Название усилителю придумалось Prometheus, то есть Прометей, что в данном случае ничего не значит, а просто выглядит красиво Реализация Платы были заказаны на JLCPCB. Последний раз я заказывал там в прошлом году, и сейчас показалось, что качество у них стало лучше. Особенно заметно по маркировке. В процессе пайки и испытаний выяснилось, что в конструкции есть ошибки. К счастью, их исправление обошлось "малой кровью": Посадочное место под выходной TRS-разъем сделано с ошибочным расположением отверстий под направляющие пластиковые штифты и при монтаже нужно было их откусить. Перепутаны вход и выход стабилизатора на 12В для реле, т.к. у мелких корпусов цоколевка почему-то сделана зеркально по сравнению с TO-220. Пришлось на место SOT-89 впаять стабилизатор лежа в корпусе TO-92, благо рассеиваемой мощности корпуса хватает. Отключение реле защиты происходит слишком долго из-за того, что емкость фильтра продолжает держать напряжение некоторое время после выключения. Слышны переходные процессы в наушниках. Если на питание защиты поставить отдельный выпрямитель, то проблема уходит. Сетевые трансформаторы небольших габаритов всегда имеют повышенное напряжение холостого хода, которое под номинальной нагрузкой просаживается до заявленных значений, но в данной конструкции оно остается довольно высоким. Это дает и лишний нагрев стабилизаторов. Поэтому трансформаторы я заменил на BV EI 304 2046 (это 2х9В). По температуре все стало гораздо приятнее. Комплектные переднюю и заднюю панель отдавал на фрезеровку и гравировку. Результат собранного варианта на фото ниже: Измерения Спектр выходного сигнала (нагрузка 100 Ом, в качестве источника ЦАП "Mercury"): Тут я удивился - откуда такой лес сетевых гармоник? Отключил защиту (потому что на нее питание выпрямляется однополупериодным выпрямителем). Стало лучше: Но все равно много. Грешу на земляную петлю, которая могла возникнуть на полигоне. Какие ваши идеи? По температуре все очень приятно. При тестах без корпуса самые горячие - трансформаторы, ~55 °C, радиаторы стабилизаторов ~45 °C, радиаторы выходного каскада ~43 °C. Потребление по каждой ветке питания около 23 мА при мощности, близкой к максимальной. Планы на будущее В планах исправить выявленные недостатки, сделать некоторые изменения и собрать еще один экземпляр: Исправить текущие недоработки по стабилизатору защиты. Добавить нормальный выпрямитель на питание защиты. Разобраться с трассировкой земли. Заменить полевой транзистор в схеме защиты на маломощный в корпусе SOT-23. Не очень удобно подкладывать под стабилизаторы теплопроводящие прокладки. А так как обмотки трансформатора раздельные, можно сделать независимые стабилизаторы на LM317 в изолированных корпусах как на положительно, так и отрицательное плечи питания. Возможно стоит заменить сетевой разъем - нужно чтобы он впаивался в плату. Так он будет занимать меньше места и компоненты, связанные с сетью, можно будет еще дальше отодвинуть от входного разъема. Для возможности применения других переменников для РГ нужно предусмотреть установку переходных платок. А пока я слушаю и наслаждаюсь как звуком, так и внешним видом Как всегда есть остатки плат...
  3. 6 points
    Запустил прошлогодний проект небольшого простого ЦАПа на микросхеме ES9023. Конструкция содержит пару недочетов, но в целом рабочая и выдает прекрасный результат. Схема практически повторяет конструкцию Lynx D68: ЦАП можно эксплуатировать в двух режимах: в синхронном режиме с внешним сигналом MCLK - при этом не запаиваются генератор DD1 с обвязкой (Z1, C1, R1) и резистор R3. в асинхронном режиме - при этом запаивается генератор с обвязкой и НЕ запаивается резистор R4. Размеры модуля 50 на 70 мм. Питание осуществляется от трансформатора с парой независимых обмоток на 6-10 В. Измерения экземпляра ЦАПа на ES9023 + MC1458P, режим асинхронный Уровень выходного сигнала 0 дБ - 2,76 Vp-p. 0 дБ (левый, правый), 48 кГц: Есть пустые платы для желающих Внимание! При монтаже диодный мост VD2 надо перевернуть кверху пузом, так как у него перепутаны +/-. P.S.: Pluto - потому что маленький
  4. 6 points
    Как же меня достали разработчики современного программного обеспечения под Андроид! Модель бизнеса "продажи превыше всего" не позволяет делать ПО, которм можно пользоваться - это я вам категорически заявляю. В тот самый момент, когда тебе нужна какая-то функция, о которой ты знаешь, что она есть и даже специальное приложение для этого заранее ты установил, вдруг оказывается, что "Приложение остановлено" или "Приложение не отвечает" - и что делать?! А вся твоя вина в том, что ты не покупаешь каждые 3 месяца новый телефон с самой последней версией Андроида, с объемом озу на 1-2 гигабайта больше предыдущего, с быстродействием на 1-2 гигагерца выше и так далее. Все, тебя лишают возможности применить СМАРТфон по назначению, т.е. использовать его УМНЫЕ функции. Умные - значит полезные. Дебилы в разработке ПО решили, что новые иконки, цветовые палитры, анимации меню - все это умные функции, а какое-то тупое редактирование файлов, просмотр PDF или работа с таблицами - это глупые функции. Именно поэтому любой смартфон до поседнего продолжает заниматься анимацией, в то время как от шлака вроде Excel или приличного почтового клиента можно и отказаться. Кому вообще приходит в голову на СМАРТфоне не играть, а работать?! Что вообще эти людишки себе возомнили?! Сматрфон за пару-тройку зарплат нужен для умных занятий умных людей - поиграть в 3D-монстров каких-нибудь, котиков в Вконакте полайкать, в фейсбук тарелку каши запостить... Все умные люди этим занимаются, потому они умные и богатые, что могут себе позволить обновлять сматрфон ежемесячно под новые версии анимации 3D и еще более широкие экраны для котиков. А дуракам, которые письма со смартфонов пишут СЕРЬЁЗНЫЕ, или работают с данными, или, не дай бог, расчеты какие делают, так и надо - пусть на арифмометрах считают. Мыслимое ли это дело - применять для этого СМАРТФОН?! А ведь всего-то хотелось малого: просто открыть таблицу, просто добавить в нее новые данные и сохранить в облако. Скажите мне, разработчики ПО, если уж вы так решили, что каждая программа должна работать только с одним-двумя наперед заданными облаками для хранения файлов (главное - не удобство пользователя, а конкуренция), то почему бы вам не делать вход в это ваше облако автомаически? Почему вы заставляете меня каждый раз видеть дурацкую надпись "время предыдущей сессии истекло, необходимо осуществить вход"? Истекло время, нужен вход - так делайте его автоматически! Храните пароль в куках или где там его положено хранить, берите его оттуда и делайте вход! Гугл делает все автоматически по своей учетке - значит и все другие могут делать. Почему не делают?! Скажите мне, разработчики ПО, куда ваши приложения девают память?! Почему вместо открытия файла и работы я вижу сообщение "недостаточно памяти"?! Почему неделю назад её было достаточно, а теперь - нет?! Почему без обновления ваше приожение отказывается работать?! Что поменялось с прошлого запуска, что вот уже невозможно снова открыть и обновить тот же файл?! Вы обновление выпустили? А я вас просил об этом? Я хочу ПОЛЬЗОВАТЬСЯ функциями вашего приложения, а не обеспечивать этому приложению комфортные условия для сущствования на моем смартфоне! Мало того, что этот самый Excel занимает больше 300 мегабайт памяти в хранилище (боже, куда столько-то?!), так он еще и не работает. Чтобы открыть и отредактировать ЛОКАЛЬНЫЙ файл, я должен ВОЙТИ В ОБЛАЧНУЮ УЧЕТНУЮ ЗАПИСЬ - это какому гению на ум пришло так сделать?! Ну не хотите вы задаром давать работать с ВАШИМ облаком - не надо, подавитесь. Почему с ЛОКАЛЬНЫМ файлом не даете работать без вашей БЕСПЛАТНОЙ учетки?! Суки, если вам надо денег - так потребуйте оплаты открыто, подлянки-то зачем устраивать?! Да и вообще - если учетка бесплатна, то какой смысл вынуждать её заводить вообще?! Это не прогресс, это отстой полный! И полная безнадежность - альтернатив просто нет. От слова совсем. Приложение или на 101% состоит из рекламы, или не работает на 101%. На этом все богатство выбора исчерпано. Будущее наступило - шагнуть без "новых технологий" и шагу нельзя, но и новые технологии вяжут ноги и руки так, что можно только стоять на месте.
  5. 5 points
    3D-модели подстроечных резисторов Bourns серии 3296. Всего 5 моделей. Скачать
  6. 4 points
    Почему-то современные вещи не создают ощущение теплоты... а старые (не все, конечно) обладают какой-то притягательной элегантностью, вызывают необъяснимое желание их потрогать и даже заполучить в собственность. Что это - приближающаяся старость или неоспоримый факт? На полках магазинов появляются а-ля ретро поделки, этакий закос под винтаж Когда прохожу мимо - пробирает дрожь отвращения. А на фотографии "настоящих" древностей засматриваюсь... Стало модно в кафе и т.п. для интерьера расставлять подобные вещи - если попадаю в такое место, забываю есть и пить, глазею по сторонам. Все-таки, что-то в этом есть, теплое, ламповое... Не зря же, в конце-концов, тема часов на газоразрядных индикаторах не сходит с повестки дня уже много лет... Но не одними лампами подпитывается эта странная страсть к ретро... Например, не смог пройти мимо вот такого индикатора HPDL-2416 Не имею понятия, зачем они мне нужны, но заполучил-таки их себе, как ранее запасся другими HCMS-2913 Почему-то просто приятно от того факта, что они у меня есть... Жаль, нет идей, куда их можно реально применить. Под такие раритеты и поделки должны быть соответствующие, делать какой-нибудь "MP3-плейер" с подобными индикаторами кощунство какое-то... А мысль уже зажата в тиски современных тенденций... Душа просит тепла и ласки, а жизнь шершавит ее наждаком практичности и функциональности.
  7. 4 points
    Ну вот, наконец-то осуществил давнюю мечту - переделал свой первый компьютерный БП ATX (Codegen 300W P4) в регулируемый по общеизвестной схеме "итальянца". А поскольку эта тема, причем с точно таким же БП, на форуме поднималась не раз, решил поделиться своим вариантом переделки с прилагающейся схемой. Авось кому пригодится. В сети полно информации по переделке БП по данной схеме, поэтому в подробности вдаваться не буду. После переделки, то есть выпаивания всего лишнего и добавления элементов, отмеченных на схеме красным цветом, блок заработал сразу. Минимальное выходное напряжение вышло 1В, максимальное ограничил на уровне 21В. Минимальный ток ограничения - 0,1А, максимальный - 11А. Сторонние шумы при регулировании по максимуму убрал подбором конденсаторов, отмеченных на схеме * "звездочкой". Стабилизация по току работает тихо, по напряжению все равно остался небольшой писк, зависящий от нагрузки. Силовые диоды выбирал именно такие по личным соображениям. Можна ставить ультрафасты или Шоттки. В случае Шоттки минимальное выходное напряжение будет на порядок выше. Можна собрать полный мост, тогда выходное напряжение увеличится в 2 раза. Шунт собрал из двух запараллеленных керамических резисторов 0,1 Ом, 5Вт. В разрыв цепи "масса - корпус" установил защитный резистор 510 Ом, 2Вт, чтоб с одной стороны сохранить экран и в то же время предотвратить возможные случайные КЗ на оголенный корпус. Учитывая конструктивную особенность китайского ампервольтметра - спаренные выводы "I-" и "GND", что исключает возможность подключения последнего к общей массе, пришлось для цепи питания делать гальваническую развязку с помощью трансформатора Т4, подключенного к выводу 5В трансформатора дежурки Т3. Трансформатор сделал из дросселя нерабочей "экономки", намотав первичную обмотку L1 - 25 вит. проводом ПЭВ-2, 0,45 мм, вторичную L2 - 85 вит. проводом ПЭВ-2, 0,25 мм. Ампервольтметр потребляет мизер, поэтому марки и диаметры обмоточных проводов не критичны. Напряжение питания вышло 16В. Вместо предоставленной схемы питания ампервольтметра можно установить отдельный БП. Кулер запитал от вывода питания ШИМ дежурки через ограничительный резистор, который нужно подобрать. Схема "итальянца" довольно простая и легкая в повторении, но имеет существенный недостаток - при обрыве цепи любого из регулировочных резисторов на выходе будут максимальные параметры БП, что может быть весьма чревато для многих подключаемых схем. Дебютный БП собирал на скорую руку, в большей степени как учебное пособие, поэтому на приз зрительских симпатий не претендую, а эстетов, педантов и перфекционистов прошу вести себя скромно и сдержанно ))))) Успехов всем в жизни и творчестве.
  8. 3 points
    Ох... Сколько бессонных ночей и трудовых дней потребовалось, чтобы завершить работу, которую прилагаю к этой записи... Вот отсюда можно скачать (просто распакуйте архив и запустите exe-шник): https://cloud.mail.ru/public/Co2R%2F3YxQDjR1P Что это? Это - система создания скриптов для моего плейера световых эффектов. Сложно рассказать в двух словах, что это и зачем, но если пойти и почитать по ссылке, какое-то представление получить можно. Ну и несколько картинок для интриги: Если звезды зажигают, значит, это кому-нибудь нужно? Если программы пишут - что это значит? P.S. Понимаю, что прошу слишком многого, но очень хотелось бы получить какую-то обратную связь по поводу этого проекта...
  9. 3 points
    Видеозаметка - обзор функционала релейного коммутатора.
  10. 3 points
    3D-модели корпуса TO-3P(L) / 2-21F1A фирмы Toshiba. Выполнены в двух вариантах - с прямыми и гнутыми выводами для монтажа под платой. Именование моделей: TO-3P(L)_F1100B2600 - расстояние F от платы до фланца транзистора 11 мм (т.е. рассчитано под стойку 11 мм), расстояние B от отверстия крепления до места сгиба выводов 26 мм. TO-3P(L)_H2800 - расстояние H от отверстия крепления до платы 28 мм. Для гнутых моделей размер F варьируется от 8 до 14 мм с шагом 1 мм, размер B - от 26 до 32 мм с шагом 0,5 мм (насколько хватает по длине выводов). Для прямых моделей размер H варьируется от 25 до 37 мм с шагом 1 мм. Всего 62 модели Скачать
  11. 3 points
    3D-модели силовых реле серии RT компании Schrack Technik. Всего 6 вариантов: Скачать
  12. 3 points
    В последней ревизии своего ЦАПа на PCM1794 я заложил возможность подачи внешнего сигнала мастерклока. А для переключения генераторов разных сеток частот на входной разъем I2S следует подать управляющий сигнал на 2 вывод. Лог. 0 соответствует сетке x48, лог. 1 - сетке x44. Далее после гальванической развязки он попадает на разъем CTRL. Поэтому был разработан модуль, который содержит пару генераторов на обе сетки частот мастерклока и управляющий микроконтроллер ATtiny24/44/84. Схема модуля имеет вид: Логика работы программы до безобразия проста. После инициализации контроллера производится инициализация ЦАПа (опционально), включается один из генераторов в зависимости от сигнала SEL_OSC (Select of Oscillator). Далее МК переключается в режим сна с отключением всех источников тактирования (режим Power-Down). При изменении уровня сигнала SEL_OSC МК пробуждается, приглушает выход ЦАПа путем записи соответствующего бита в его регистр по SPI (бит MUTE регистра 18 PCM1796), переключает генератор и возвращает нормальный режима работы ЦАПа. После этого МК снова уходит в сон до очередной смены уровня сигнала управления генераторами. Объем программы не занимает и 512 байт. Печатная плата: Скачать прошивку под микроконтроллер ATtiny44 (13/03/19) для SW управления. Конфигурационные биты (fuses) следует установить в следующие значения: SELFPRGEN = [ ] RSTDISBL = [ ] DWEN = [ ] SPIEN = [X] WDTON = [ ] EESAVE = [X] BODLEVEL = 4V3 CKDIV8 = [ ] CKOUT = [ ] SUT_CKSEL = INTRCOSC_8MHZ_6CK_14CK_0MS EXTENDED = 0xFF (valid) HIGH = 0xD4 (valid) LOW = 0xC2 (valid)
  13. 3 points
    Продолжая свой полет, неожиданно сделал давно задуманную, да почему-то постоянно откладываемую на потом, штуку... А именно: параллельный опрос нескольких термодатчиков семейства DS18x20. Дело в том, что у этих датчиков в качестве плюса технологии позиционируется обращение по уникальному адресу, что позволяет повесить на 2 провода хоть сотню датчиков и с каждым работать индивидуально. Плюс-то это плюс, да, как любой плюс, состоит из двух минусов (один вдоль, другой поперек). Последовательный опрос несколких датчиков, хоть по адресу хоть без увеличивет общее время опроса пропорционально количеству датчиков. В частности, в моих личных играх опрос 8 датчиков последовательно затягивался почти на 100 мс. С учетом того, что примерно половина этого времени будет требовать запрета прерываний (кусочками по 65 мкс примерно), такая длительность выглядит не очень хорошо. Кроме того, при "адресной" работе даже с тремя датчиками возникает проблема иного рода, так сказать, верхнеуровневая. Устройство должно как-то опознавать назначение каждого датчика по его адресу - этот измеряет температуру на улице, этот - в помещении, а этот - воду в системе отопления. И как вы себе представляете процесс присваивания "назначений" адресам этих датчиков? Сами по себе датчики никакой маркировки о собственном номере не имеют, т.е. на глаз их отличить невозможно. И получается геморрой. А когда датчиков восемь - геморроев на 1 человека получается слишком много... Нет, если вы делаете для себя, то вы, конечно, можете адреса этих датчиков и вручную прописать в программу, и красочкой их пометить... А если это "на сторону" устройство? А если датчик в процессе эксплуатации выйдет из строя и потребует замены? Вот зачем пользователю все эти проблемы с сопоставлением адреса датчика и функцией устройства? С моей точки зрения - оно ему не нужно. Альтернатива - повесить на один порт один датчик, а портов задействовать столько, сколько надо. Минус, конечно, есть, и не маленький - расход пинов микроконтроллера. Зато плюсов существенно больше. Во-первых, нет гемора с адресацией: любой датчик используется в режиме SKIP_ROM, потому как он единственный на своей линии. Достаточно к линии порта, ответственной за температуру на улице, подключить уличный датчик, и "соответствие" автоматически обеспечено. Во-вторых, считывать информацию с датчиков, подключенных к одному порту, можно одновременно, т.е. по сравнению с "последовательным опросом" многократно быстрее! Идея проста, как колумбово яйцо (правое): управляя не отдельным битом порта, а сразу всеми битами, формируются тайм-слоты чтения (при записи тоже ничто не препятствует, но это менее интересно, т.к. одновременная запись в "обычную" цепочку 1-wire датчиков возможна и так), и считывание битов из 8 линий происходит одновременно. Т.е. вместо 72 битов из одного датчика мы получаем 8х72 бита из 8-и датчиков. Накопив в отдельный массив эти 72 байта за время опроса ОДНОГО датчика, мы затем можем пройтись по этому массиву и выделить информацию каждого из восьми... Ну понятно же, что в 0-ом бите всех байтов массива будут биты из датчика с линии 0, в 1-ом бите - из датчика с линии 1 и т.д. Поскольку обработка массива может вестись на предельной частоте микроконтроллера, длиться она будет крайне незначительное время, не смотря на кажущуюся громоздскость. В частности, в своих играх я получаю информацию с 8-и параллельно подключенных к одному порту датчиков за 12 мс (примерно) - ощутите разницу! Ровно (на самом деле нет) в 8 раз быстрее, чем традиционным способом. Так что если интересуетесь многодатчиковыми системами контроля температуры - рекомендую.
  14. 2 points
    Долгое время хотел попробовать собрать ламповый усилитель. Для первой конструкции выбрал схему усилителя для наушников по схеме SRPP. В сети есть несколько схем, выполненных по подобной схемотехнике. За основу я взял вот эти две: Развел плату (на рисунке уже чуть измененная первая ревизия): Рисунок земляного полигона напомнил мне осьминога, отсюда и название Для питания приобрел трансформаторы ТАН-2. Звук оказался очень даже неплохим. Лампы поставил 6Н23П. Реакция усилителя на меандр 20 кГц следующая: Воспроизводимый диапазон частот получился (+0/-0,5 дБ) 6 ... 80 000 Гц Послушав некоторое время конструкцию в виде макета, я начал задумываться об упаковке его в хороший корпус (хотя изначально планировалось уместить все в корпус от CD-ROM): Но через некоторое время передумал и продал плату одному из форумчан Решил, что для наушников такой большой усилитель нецелесообразен. Сейчас решил выложить все файлы в открытый доступ, думаю, кому-то будет интересно. Плата - SRPP HeadAmp REV. 1.1.lay6 Внимание! В схеме присутствует высокое напряжение! Будьте аккуратны при сборке. 3D-модель корпуса (дарю дизайн ) - SRPP HeadAmp 3D.zip
  15. 2 points
    Намедни была опубликована моя статья [1], "изюминкой" которой явилось задание смещения на одну из баз дифференциального каскада, равное половине питания подаваемого на микрофон, непосредственно с управляющего электрода шунтового регулятора TL431. Описываемая ниже схема построена по подобному же принципу, но из-за отсутствия в ней особой оригинальности я посчитал нецелесообразным оформлять её в виде статьи, пускай будет просто как запись в блоге. Разработка основывалась на запросе ансамбля струнных народных инструментов на комплект звукоснимателей для них. Предложенный для апробации Предусилитель для пьезоэлектрического звукоснимателя[2] удовлетворил заказчика по качеству, Но вызвал возражения в плане затратности снабжения автономными источниками питания (гальваническими батарейками). При этом ансамбль был оснащен тремя 16-канальными микшерами с фантомным питанием микрофонных линеек, что, естественно, заставило задуматься в направлении использовать эту возможность. За основу разработки была взята схема симметрирующего усилителя для электретного микрофона М.Сапожникова [3], переделанная под пьезозвукосниматель, однако, при ее апробации выяснилось, что выходной сигнал переусиливается, приводя к клиппированию микрофонных входов даже при минимальном усилении. Это заставило ввести в коллекторные цепи транзисторов дополнительные резисторы R2 и R3, обеспечивающие снижение усиления примерно в 4 раза. Решение неоднозначное, но апробация "стандартного" приема снижения усиления дифкаскада путем уменьшения номинала эмиттерного резистора R1 не дала должного эффекта, поскольку линии передачи сигнала к пульту одновременно являются линиями подачи питания к схеме. Есть еще один неочевидный фактор - это определенные сложности с подбором транзисторов в SMD корпусах. Дело в том, что их коллекторно-эмиттерное напряжение должно быть не менее 50 В (а лучше с запасом 60 В). Кроме ограниченного ассортимента, такие относительно "высоковольтные" транзисторы сложно отнести к малошумящим, тогда, как 40-вольтовые вполне укладываются в обозначенные требования. При разработке была апробирована схема с незаземленным пьезодатчиком: Однако, она не продемонстрировала каких-либо качественных преимуществ, а повышенный вдвое уровень сигнала и вообще был ни к чему. Если его приходится и так снижать... Кроме того, в качестве стабилизатора базовых потенциалов была апробирована схема с обратносмещенным эмиттерно-базовым переходом диффузионного транзистора (КТ315), но она оказалась чрезмерно шумной. Так что стабилизатор на TL431 оказался оптимальным как по шумовым свойствам, так и по стабильности. В качестве пьезодатчиков использовались разъединенные половинки от пьезозуммеров ЗП-1, каждая из которых содержала по пьезокристаллу. Сама схема выполнена на SMD-деталях на круглой печатной плате по размерам пьезодатчика. Поскольку в TL431 от разных производителей цоколевка управляющего электрода и катода бывает зеркальной [4], в приаттаченном файле с ПП имеются две вкладки с разной распайкой компонентов стабилизатора. Возможно также применение пьезоизлучателей типа от электронных часов "Montana" с кольцевой прокладкой по высоте SMD-компонентов (внизу): Готовый датчик соединяется с гнездом под джек ("палец") проводами, дабы шевеление соединительного кабеля не отражалось на датчике. Для экспериментальной проверки датчик и гнездо крепились к инструменту через двухсторонний скотч. Естественно, размещение датчика на корпусе инструмента следует подбирать экспериментально. Ну и, наконец, приаттачен также файл с записанным звуком гитары. Литература: 1. Falconist Балансный предусилитель электретного микрофона / Falconist.– http://cxem.net/sound/soundpred/soundpred44.php 2. Falconist Предусилитель для пьезоэлектрического звукоснимателя / Falconist.– http://forum.cxem.net/index.php?/topic/61619-снять-звук-с-акустической-гитары/&do=findComment&comment=605880 3. Сапожников, М. Симметрирующий усилитель для электретного микрофона / М. Сапожников.– Радио.– 2004, №7.– С. 21. 4. Falconist Цоколевка TL431 / Falconist.– http://forum.cxem.net/index.php?/topic/209416-контролька-электрика/&do=findComment&comment=3185691 Guitar_TL431.mp3 Звукосниматель.lay6
  16. 2 points
    Попросил меня знакомый сваять ему блок питания для домашнего пользования автоприемника. Лежал у меня БП формата АТХ. Я по-быстрому повыпаивал лишние шнурки, а зеленый проводок (PC-ON) подпаял на общий. Включаю в сеть - а фигушки! Кулер дергается и дальше не вращается. На выходе - ничего нет. Дежурное питание +5 присутствует. Разбираться с проблемой было некогда, т.к. на следующий день я отчаливал на гастроли. Взял тайм-аут. Честно признаюсь, так до сих пор и не разобрался, что ж там была за причина . По возвращению мне подкинули больше десятка компьютерных БП, среди которых обнаружился один старенький формата АТ. Взял я его, повыпаивал из платы ВСЁ лишнее (включая обмотки по цепям +/-5 В на ДГС), оставив только цепь +12 В (обе обмотки ДГС по цепям + и минус 12 В запараллелил). Подстроил ее под 13,6 В. Заодно заменил полумост их двух FR302 на MBR20100 (синяя стрелка) с радиатором большей площади, ключевые транзисторы на 13007, добавил дроссель и конденсаторы в фильтр сетевого питания (обведено фиолетовым), а также поставил прямо на плату светодиод индикации наличия выходного напряжения (красная стрелка) и запитал кулер через два последовательно включенных диода, на которых упало "лишние" 1,4 В (зеленая стрелка). Плата выдает свои 10 А при стабильных 13,6 В. Единственное, что не дает пока запихнуть ее в корпус и отдать человеку - то, что совершенно нет защиты от перегрузки по току. А ведь почти 100% вероятности, что он это "чудо" рано или поздно сожжет. А может, и не сожжет? Х.З. ... Как утверждал Starichok: "Старый стал, ленивый"... Еще раз внимательно рассмотрел печатку, пошастал по Интернету и нашел схему контроля ширины управляющих импульсов: http://www.interlavka.narod.ru/stats03/im/pic46.jpg Защиту восстановил (R21D23C16R25R26). Правда, что на этой схеме делает С16 - ума не приложу. Ведь 15-й вывод подключен к референтному напряжению (14-й вывод) напрямую... Но работает - и ладно (3-й закон схемотехники). Я-то его поставил на всяк случай, но чешу себе репу: что ж там в этой цепи за постоянная времени на 15-й ноге получается, если выходной ток 14-го вывода составляет до 10 мА (т.е., входное сопротивление соединенных вместе 14 и 15 выводов весьма низкое). Вот и я о том же! Спасибо, Володя.
  17. 2 points
    (Исходники проекта прикреплены к блогу) Проект создан на основе аналогичного проекта, найденного в сети: http://tutlay.ru/radioshemy/r6/75-dva-migayuschih-svetodioda.html. Его исходник также включен в архив. Я решил его немного улучшить, добавив включатель и отсек для батареек. Ну и еще презентабельную коробочку из оргстекла. Позже оказалось, что сделать такую коробочку не так то просто, как казалось вначале. По итогу на нее было потрачено раз в 10 больше сил и времени, чем на создание платы. Итак начнем. Открываем проект в Sprint Layout и печатаем стороны схемы на лазерном принтере на глянцевой бумаге, предварительно выставив в настройках печать максимальный расход тонера. В настройках моего принтера это выглядит так (Economy Color: выкл): Печатаем отдельно слой Ш1 и Ф2 на разных листах, Ш1 - это слой с шелкографией, он нам нужен для переводки номиналов элементов на обратной стороне платы, а так же для обозначения мест сверления отверстий для ножек и крепления батарейного отсека. Слой Ф2 - это собственно слой с дорожками, и он будет переводится на фольгированную сторону платы. Печатать лучше прямо перед переводкой на плату. Т.е. печатаем слой Ш1, переводим его на плату, моем-сушим. Далее печатаем слой с дорожками, переводим на плату, моем сушим. Бумага для печати на лазернике подходит не всякая. Например НЕЛЬЗЯ использовать глянцевую бумагу от струйных принтеров, иначе вы рискуете убить свой принтер. Я пользовался специальной глянцевой бумагой для лазерного принтера Cactus CS-LPA4160100. Заказывал ее на OZON (https://www.ozon.ru/context/detail/id/33923838/). Для перевода пользуемся обычным ЛУТ методом, т.е. газетки + утюг без дырок на нагревателе. Подробно описывать ЛУТ не буду, он в принципе хорошо описан, в интернете можно найти много статей на эту тему. Добавлю только некоторые ремарки, относительно того, как делал сам: - обезжиривание - обычным пемолюксом + губка; - сушка - паяльным феном (можно обычным феном); - переводка утюгом - минут 4-5, утюг был НЕ на максимуме; - травка - в обычном пластиковом контейнере для еды, лимонной кислотой и перекисью водорода, процесс прошел на удивление быстро - буквально 10-15 минут. Рецепт тут есть https://fb.ru/article/284433/travlenie-platyi-perekisyu-vodoroda-i-limonnoy-kislotoy-tonkosti-obrabotki-platyi . - смывка бумаги - губкой и подручными средствами под струей теплой воды, смывать нужно аккуратно, чтоб не повредить дорожки; - после аккуратной смывки дорожки получились очень четкие и целые, поэтому я их не лудил. Далее сверлим отверстия под элементы 22 шт. сверлом 0,7 мм, 6 отверстий под крепления размером 2 мм и два отверстия под клеммы - 5мм. И паяем. Ножки для платы делаем из дюбелей 4мм с цилиндрическими кончиками, отрезав эти самые кончики ножом. Ножки накручиваем на 4 болта. Собственно с самой платой все. Конструирование коробочки из оргстекла - тема отдельная и обширная. Но сразу скажу, что без технологичного оборудования сделать красиво не получится. Разрезать оргстекло ровно вручную практически невозможно. А такие инструменты как лобзик, роторайзер и др. вызывают сильный нагрев оргстекло и его оплавление. У меня получилось разрезать его роторайзером, специальным тупым диском, но рез получался плавающий из-за плавления и из-за отсутствия жесткой фиксации пилы. Отклонения в размерах пришлось устранять вручную мелким напильником - процесс длительный, нудный и трудоемкий. Чтоб зажать оргстекло в тисках и не поцарапать его я использовал силиконовые проставки, вырезанные и специально купленного для этого кухонного коврика. Размеры вырезаемых можно взять в проекте раскроя, сделанного в программе Астра Раскрой 5.1, ниже скрин с размерами. Ну и в заключении приведу таблицу с радиодеталями, конструктивными элементами и другими материалами, использованными в проекте. Мигающие светодиоды.zip
  18. 2 points
    По Sprint Layout 6 на сайте "Паяльник" мной был написан курс из четырех статей - часть 1, часть 2, часть 3, часть 4. Со временем стало понятно, что неплохо бы материал переработать, дополнить и объединить в одну кучу. Так возникла книга "Проектирование печатных плат в программе Sprint Layout 6". Книга состоит из пяти глав. Первая глава подготовительная и в ней рассказывается о программе Sprint Layout 6, ее интерфейсе и настройках, координатах, сетках, линейках и единицах измерения. Вторая глава книги расскажет вам о графических примитивах и инструментах, используемых при трассировке. В третьей главе речь идет о создании макросов и организации библиотеки посадочных мест. В четвертой главе вы научитесь выводить рисунок платы на печать для домашнего изготовления и экспортировать в графический формат для публикации. Дополнительно рассказано о функции перевода любого имеющегося рисунка платы в формат Sprint Layout 6 и о возможностях экспорта списка компонентов в любой табличный процессор. В завершающей пятой главе рассмотрены возможности работы Sprint Layout 6 с многослойными платами. Рассказано об особенностях трассировки, направленной на дальнейшее фабричное изготовление плат, и показано как правильно получить набор файлов, необходимых для производства (Gerber-файлы и файл сверловки). Также затронуты функции импорта Gerber-файлов и экспорта Plot-файла для фрезеровки на станке с числовым программным управлением. Примечание - Для описания была выбрана последняя на момент написания книги версия, переведенная на русский язык пользователями форума «РадиоКот» Men1 и Sub. Случайные страницы: Скачать книгу -------------------------------------------- Обновление от 21/06/17 Опубликован материал с некоторыми дополнениями и полезными советами по работе с программой: http://cxem.net/comp/comp213.php Зазор на автополигоне Быстрая смена начала координат Быстрое изменение радиуса окружностей и дуг Сложные контура и вырезы Об отверстиях в файле сверловки Вырезы в маске Создание горячих клавиш для плат в проекте Решение проблемы стыковки дорожки и автополигона Номер кошелька Яндекс.Деньги для выражения благодарности автору: 410011551289010
  19. 2 points
    Новая ревизия ЦАПа Mercury. Еще фото: Изменения по сравнению с предыдущей версией: 1. Исправил ошибку с подключением реле. 2. Добавил керамические конденсаторы на выходы стабилизаторов. 3. Заменил футпринты резисторов преобразователя ток-напряжение на выводные. 4. Добавил ферритовые бусины для м/с гальванической развязки. 5. Убрал полигон и дорожки над м/с гальванической развязки (насколько это было возможно). 6. Привел вход к устоявшейся распиновке от Lynx (1 - BCLK, 2 - NC, 3 - SDATA, 4,6,8 - GND, 5 - LRCK, 7 - MCLK, 9 - PWR, 10 - MUTE). 7. Разъем CTRL сделал универсальным для м/с серии PCM179x с токовым выходом. 8. Добавил возможность приглушать выход ЦАПа сигналом MUTE с разъема INPUT. 9. Изменил трассировку и немного схемотехнику обвязки стабилизаторов LM317/337. 10. Исправил незначительные недочеты в рисунке печатных проводников. Описание сигналов разъема Для PCM1794/98: Управление аппаратное при помощи установки нужных перемычек, либо программное, а номинал R30-R33 200 Ом. RST - сигнал сброса ЦАП, инверсный. F0 - ZERO, сигнал отсутствия сигнала на входе, устанавливается в высокий уровень при обнаружении во входном сигнале 1024 подряд идущих нулевых отсчетов, при этом R2 на плату не устанавливается. F1 - FMT1, выбор формата входного сигнала, по умолчанию - I2S, низкий уровень (установлена перемычка). F2 - FMT0, выбор формата входного сигнала, по умолчанию - I2S, низкий уровень (установлена перемычка). F3 - MUTE, включение режима приглушения, по умолчанию - нормальный режим, низкий уровень (установлена перемычка). F4 - DEEMP, включение функции de-emphasis, по умолчанию - функция отключена, низкий уровень (установлена перемычка). F5 - CHSL, выбор формы огибающей встроенного цифрового фильтра, по умолчанию - крутой (sharp), низкий уровень (установлена перемычка), альтернативный вариант - плавный (slow), высокий уровень (перемычка отсутствует). F6 - MONO, переключение ЦАПа в моно-режим, в данной конструкции эта функция должна быть отключена - сигнал должен быть низкого уровня (установлена перемычка). OE - OUTPUT ENABLE, включение аналогового выхода, высокий уровень - включен (установлена перемычка), низкий уровень - выключен (перемычка отсутствует). SR - SAMPLE RATE, сигнал LRCK шины I2S, который показывает актуальную частоту дискретизации. EXT MCLK - EXTERNAL MCLK, вход внешнего сигнала MCLK. Для PCM1792/95/96: Управление только программное, номинал R30-R33 390 Ом. RST - сигнал сброса ЦАП, инверсный. F0 - MDO, для SPI - сигнал MISO, для I2C - сигнал данных SDA. F1 - MC, для SPI - тактовый сигнал SCK, для I2C - тактовый сигнал SCL. F2 - MDI, для SPI - сигнал MOSI, для I2C - сигнал выбора адреса ADR1. F3 - nMS, для SPI - сигнал nCS, для I2C - сигнал выбора адреса ADR0. F4 - MSEL, выбор интерфейса управления м/с ЦАП, низкий уровень - SPI, высокий уровень - I2C. F5 - ZEROR, сигнал отсутствия сигнала на входе в правом канале, устанавливается в высокий уровень при обнаружении во входном сигнале 1024 подряд идущих нулевых отсчетов в правом канале, при этом R7 на плату не устанавливается. F6 - ZEROL, сигнал отсутствия сигнала на входе в левом канале, устанавливается в высокий уровень при обнаружении во входном сигнале 1024 подряд идущих нулевых отсчетов в левом канале, при этом R8 на плату не устанавливается. OE - OUTPUT ENABLE, включение аналогового выхода, высокий уровень - включен, низкий уровень - выключен. SR - SAMPLE RATE, сигнал LRCK шины I2S, который показывает актуальную частоту дискретизации. EXT MCLK - EXTERNAL MCLK, вход внешнего сигнала MCLK. ADuM1400 при подаче MCLK с отдельного генератора должна быть заменена на ADuM1401. Таким образом, плата получилась универсальной и поддерживает установку любой микросхемы серии PCM179x с токовым выходом. Проведенные сравнительные измерения двух экземпляров ЦАПа на м/с PCM1794 (вых. ток 7,8 mAp-p) и PCM1796 (вых. ток 4,0 mAp-p) показали, что лучший результат THD и IMD дает ЦАП с меньшим выходным током. Измерения экземпляра ЦАПа на PCM1796 + AD8066 + LME49990 THD (1 кГц, 0 дБ) - не хуже 0,0003 %. IMD (60 Гц + 7 кГц) + шум - не хуже 0,0022 %. Уровень выходного сигнала 0 дБ - 3,12 Vp-p 0 дБ (левый, правый), 48 кГц: -6 дБ (левый, правый), 48 кГц: Два тона 250 Гц и 8 кГц (амплитуды 4:1), -3 дБ (левый, правый): Тест джиттера (левый, правый): Подключение к Combo384 (Amanero) Подключение выполняется по следующей схеме: Mercury Combo384 1 - BCLK --------------------- CLK - 4 2 - Not Connected 3 - SDATA ------------------- DATA - 3 4 - GND ---------------------- GND - 13 5 - LRCK ------------------- FSCLK - 5 6 - GND ---------------------- GND - 14 7 - MCLK -------------------- MCLK - 6 8 - GND ---------------------- GND - 15 9 - PWR ---------------------- 3V3 - 10 10 - MUTE -------------------- MUTE - 11 У Amanero нумерация разъема нестандартная - вдоль длинной стороны разъема: У ЦАПа такая: Дополнительные материалы BOM - Bill of Materials - MERCURY.xls Assembly Drawing - DAC02.MERCURY.MB_A.pdf
  20. 2 points
    Строящийся усилитель будет с питанием от двух раздельных трансформаторов, т.е. хочу реализовать полное "двойное моно", поэтому и защита акустических систем нужна соответствующая. Тут два пути решения - либо делать полностью раздельные платы защиты с раздельным питанием, либо одну, но с гальванической развязкой между каналами. Хоть трансформаторы и имеют дополнительные слаботочные обмотки, заложенные специально для питания защиты АС, я решил делать по второму варианту - плата будет занимать чуть меньше места. В качестве основы для схемы взял защиту усилителя Nataly на оптронах. Так как в конструкции подразумевается микроконтроллерное управление с отображением режимов работы на дисплее, то кроме всего прочего, мне необходимо было добавить цепи контроля срабатывания и принудительного отключения защиты. Схема: Контроль срабатывания реализован в исходной схеме в виде светодиодной индикации. Его я заменил на оптрон и теперь срабатывание защиты вызовет появление сигнала PRT_ERR высокого уровня. Для принудительного отключения добавлен оптрон U1 параллельно U2 и U3. При подаче лог. 1 на вход PRT_LOCK реле отключают АС. Полностью передавать МК управление защитой не стал, оставил управление по принципу монтажного "ИЛИ". То есть при включении МК будет формировать задержку около 3 с и только после пропадания сигнала PRT_LOCK реле подключит АС к усилителю. А отключать их может как сама защита, так и МК. Размер платы составляет 60 на 60 мм. Остались заводские платы, если кому-то нужно, пожалуйста в ЛС. Испытания показали, что при указанных на схеме номиналах задержка при включении составляет около 2 с (при питании 24 В), а срабатывание происходит при постоянном напряжении около 3 В любой полярности. Использовать плату можно и автономно - без какого либо внешнего управления.
  21. 2 points
    Вот вы говорите: AVR слишком убоги, чтобы применять на них RTOS... А я рискнул... Сначала попытался рассмотреть имеющиеся варианты, чтобы сделать предварительные выводы. Поиск вываливает примерно с десяток готовых разработок RTOS разной степени крутости, из которых FreeRTOS, естественно, в лидерах. Однако, я оценил свои силы и решил, что вхождение в эту ОС для меня обернется большими сложностями, в основном, из-за большого количества возможностей API, и англоязычным их описанием. Ну не принимает душа русская языка аглицкого, даже со словарем и гуглопереводчиком в больших количествах. А из осей на великом и могучем нашлось только две: кооперативная OSA и присиплюсплюснатая ScmRTOS. Опять-таки из-за собственной ограниченности более современная и продвинутая ScmRTOS мне показалась недоступной - С++ пока что понимаю и принимаю исключительно в качестве наказания. Ну, собственно, и вышло, что начать и закончить поиск осей для AVR можно на OSA. Попробовал - получается. Не без скрипа, но работает. И даже увлекло меня это. Но вот что мне не понравилось в этом варианте. Главная особенность этой ОС, которую следует учитывать при работе (то есть при написании программ), это отсутствие сохранения контекста при переключении задач. Иными словами, если в текущей задаче вызывается сервис операционной системы, переключающий задачи, то все локальные переменные текущей задачи могу потерять свою актуальность. Это означает, в частности, запрет на вызов сервисов системы в циклах по счетчику (значение счетчика будет потеряно). И единственный способ решить эту проблему - вместо автоматических локальных переменных использовать static или вообще отказаться от локальных в пользу глобальных. Сами понимаете, это совсем не гуд. Вторая особенность этой ОС, это возможность вызывать сервисы ОС, преключающие задачи, только из тела самой задачи, но не в вызываемых из неё функций. То есть нельзя сделать функцию, например, ожидающую прием символа из USART при помощи системного сервиса OS_Wait, а затем вызывать эту функцию из разных задач, то есть поступать по аналогии с привычным "не-многозадачным" подходом. Вот представьте себе ситуацию: задачи формируют текстовые сообщения и выводят их в USART. Кажется логичным сделать функцию, которая занимается отправкой в USART строки посимвольно и использовать эту функцию во всех задачах - а нельзя! Более того, не смотря на то, что все задачи ПООЧЕРЕДНО формируют строки (ОС ведь кооперативная), каждая из задач должна иметь собственный промежуточный static-буфер для формирования своей строки - это ведь явно лишний расход памяти! При обычном подходе мы бы работали с локальным буфером в каждой функции, а локальный буфер, как известно, исчезал бы при выходе из функции... Наконец, архитектура этой ОС (под архитектурой я подразумеваю набор файлов-модулей и порядок работы с ними) такова, что почти все файлы инклюдятся друг в друга, что очень сильно нарушает модульный подход при программировании. Напомню, что модульный подход означает, в частности, возможность компиляции каждого Сишного файла отдельно от других сишных файтов. А в OSA системные сишники "вставляются" в один большой "общий" сишник, который затем и компилируется. В итоге я потратил немало времени, чтобы разобраться, как же настроить проект в Eclipse, чтобы можно было комфортно работать. Eclipse очень привык считать все сишники отдельными модулями проекта, и страстно стремится компилировать их отдельно. В общем, знакомство с OSA было увлекательным, недолгим, интересным, но разочаровывающим. Другие же ОС, найденные мной, были не кооперативными, а вытесняющими. Вытесняющие ОС имеют много преимуществ перед кооперативными, но один их недостаток сильно ограничивает применение на AVR: они весьма требовательны к объемам ОЗУ. Именно отсюда растут ноги у паникерских мнений, что AVR и "нормальная" RTOS - понятия несовместимые. И это на самом деле так, если мы говорим о микроконтроллерах младше (т.е. слабее) atmega32. Для справки: OSA вполне себе способна быть полезной не только на atmega8, но даже и на attiny2313! Но, к счастью для меня, не одной atmega32 ограничен мир AVR, и, кроме прочего, не ограничен и я сам. У меня в загашнике есть и at90can128, и даже atmega2560! И, спросил я себя, почему я должен переживать по поводу вытесняющей ОС при таких-то ресурсах? В at90can128 целых 4К ОЗУ, а уж flash-памяти по 8-битным меркам просто немеряно - 128К, а у монстра atmega2560 вдвое больше всего! Правда, если первый МК паять вполне комфортно (TQFP64), то второй без микроскопа уже сложно (TQFP100 c шагом выводов 0,5 мм). А тут еще у меня завалялась отладочная платка DVK90CAN1... Ну, вы поняли... Итак, решающим теперь для меня стал поиск максимально простой операционки - чтобы мне по силам. Их не так мало, как может показаться, но самой простой, по моему мнению, является YAVRTOS (скачать архив с исходниками, примерами и документацией можно по ссылке, но сайт автора уже не существует) - это практически такой же малоизвестный, как OSA, продукт примерно тех же времен (видимо, тогда было можно каждому мастерить свою собственную ОС с блекджеком и девушками низкой социальной ответственности). Не смотря на инглиш, эта ось оказалась мне по силам: всего два файла и с полтора десятка системных функций! За один вечер легко расщелкал все необходимое для первого старта. Плюсы этой RTOS перед OSA неоспоримы: не надо предпринимать практически никаких усилий по оформлению кода - пишется точно так же, как всегда, с локальными переменными, с вложенными вызовами функций и т.д. Разумеется, надо следить за общими ресурсами и блокировать к ним доступ, если необходимо - но это вообще всегда необходимо в многозадачных системах, и даже в ОSA частично так. Минусы, правда, тоже заметны: минимальное приложение, тупо мигающее двумя светодиодами (каждый в своей задаче) занимает почти 2К flash и порядка 400 байт ОЗУ. На просторах выбранного мной МК это даже и не заметно, но для atmega8 может быть близким к техническому пределу. YAVRTOS написана на 99,9% на Си (только сохранение/восстановление контекста реализовано в виде ассемблерной вставки из трех десятков push-pop), всего два файла (task.c и task.h) - все это явный плюс в плане изучения и модификации под себя, если надо (и если хватает ума). Косвенным плюсом (или минусом, если продолжать переживать о ресурсах) является массовое применение malloc в ядре ОС, а значит, и в пользовательском приложении уже вполне оправдано динамическое распределение памяти. И мой энтузиазм просто на взлете от первого опыта! Например, вот как выглядит код задачи и вспомогательных функций для извлечения точного времени из GPS-приемника, подключенному к USART1, и вывода этих показаний на стандартный вывод (stdout, связанный с USART0): const __flash char gps_msg[] = "RMC,"; #define GPS_MSG_SZ (sizeof(gps_msg)-1) // поллинг 1 символа от GPS static uint8_t get_char(void){ while(bit_is_clear(UCSR1A, RXC)) wait_for_increment_of(&tick, 1); return UDR1; } // получение 1 цифры из символа static uint8_t get_dig(void){ return (get_char() - '0'); } // собственно сама задача void p2p_usart(void *p){ uint8_t i; uint8_t h,m,s; while(1){ i = 0; // ждем прихода сообщения с точным временем while((i < GPS_MSG_SZ) && (get_char() == gps_msg[i])) i++; if(i == GPS_MSG_SZ){ // разбираем сообщение по символам h = get_dig()*10 + get_dig() + 3; // +3 - это часовой пояс h %= 24; m = get_dig()*10 + get_dig(); s = get_dig()*10 + get_dig(); // пропускаем сотые доли секунды get_char(); // '.' get_char(); // 's' get_char(); // 's' get_char(); // ',' // проверка корректности времени и его вывод if(get_char() == 'A'){ printf_P(PSTR("GPS Time %02d:%02d.%02d\r"),h,m,s); } else { printf_P(PSTR("No GPS, wait... \r")); } } } } Как видите, код крайне "тупой", то есть прямолинейный, как лом: сплошные ожидания и никакой заботы о том, что параллельно должно что-то еще работать. В моем случае просто мигают 2 светодиода - один с длительностью импульса/паузы в 500 тиков, а второй в 501 (кстати, 1 тик = 1 мс, тактовая частота МК = 8 МГц). Но вместо светодиодов может быть еще две (или сколько надо) аналогично прямолинейно написанных задач, и можно быть уверенным, что все будет работать! Приведу данные по итогам компиляции проекта, чтобы продемонстрировать израсходованные ресурсы: Не так уж и плохо, учитывая свободное применение printf. В активном режиме используется дополнительно 380 байт ОЗУ под стеки задач и ОС, т.е. примерно 10% всего объема - еще много остается. Есть, кроме YAVRTOS, и другие альтернативы, например, FemtoOS, которая поддерживает даже (!!!) attiny25, и при этом тоже является вытесняющей операционкой. Но она существенно "богаче" в плане API, и разобраться с нею будет посложнее, т.к. документирована она явно менее детально. Возможно, я и её попробую на вкус... И, скорее всего, теперь это станет для меня основным способом написания программ. RTOS позволяет сильно упростить себе жизнь. Имхо.
  22. 2 points
    Читая форум, неоднократно поражался повальному стремлению "юных дарований" создать из лабораторного БП своеобразный "мультитул", т.е. нагрузить его кучей самых разных функций, большая часть из которых если и будет когда-либо востребована, то разве что в единичных случаях, причем, вангую, что эти случаи вообще никогда не возникнут. Тут и возможность зарядки аккумуляторов, и проверка маломощных светодиодов и стабилитронов и много чего другого. Хорошо известно, что удобство пользования мультитулом ещё никогда и ни при каких обстоятельствах не превышало удобства пользования набором специализированных инструментов. В этой связи припоминается машина изобретателя Шурупчика (из Змеёвки), описанная в книге Н.Носова "Приключения Незнайки и его друзей": Если боковой ход может пригодиться при парковке в городских условиях (раз-два в месяц), рубка дров и чистка картошки - при поездках на пикник (раз-два в год), а стирка белья - при дальних поездках в отпуск к морю (опять же, раз в два-три года), то для кирпичного производства целесообразен совершенно отдельный специализированный агрегат. Однако, подобные фичи упорно закладываются в конструкцию "городского Е-мобиля" ... Второе удивительное стремление "юных дарований" - к гигантомании. И выходное напряжение чуть ли не до сотни вольт, и выходной ток порядка десятка ампер... Результат - аналогичный описанному выше. А давайте-ка проанализируем, каким же должен быть Лабораторный Блок Питания (ЛБП)! Заранее соглашусь, что многие из высказанных мною положений будут субъективными, но более, чем 40-летний радиолюбительский опыт в радиоэлектронике позволил выкристаллизовать именно их. Сначала определимся с дефинициями (определениями). Что же это такое — «ЛАБОРАТОРНЫЙ» БП. В отличие от блока питания, интегрированного (встроенного) в общий конструктив питаемого им устройства (как правило, без возможности физического разъединения), ЛБП представляет собой АВТОНОМНЫЙ источник вторичного электропитания, предназначенный для питания стабильным напряжением различных макетируемых устройств. Ключевое слово здесь — именно «макетируемых», поскольку готовые законченные устройства, в подавляющем большинстве случаев, будут снабжены свои собственным, интегрированным в них, БП. Конечно же, вполне нормально питать от ЛБП схемы, требующиеся в редких случаях, к примеру, тестеры стабилитронов и светодиодов, тестеры ОУ и т.п., но это именно исключения, подтверждающие общее правило. Не следует возлагать на ЛБП несвойственные ему функции (к примеру, тестера стабилитронов или микроомметра). Для специфических задач, требующих специфических режимов (к примеру, для тестирования мощных электромоторов постоянного тока), к тому же, не нуждающихся в жесткой стабилизации питающего напряжения, лучше использовать специализированные источники вторичного электропитания. Итак, какими же свойствами должен обладать практичный Лабораторный БП, не содержащий ничего (или минимум) лишнего функционала и в то же время обладающий характеристиками, позволяющими использовать его для обеспечения 99% задач. 1) Количество выходных напряжений: Для начального уровня вполне приемлемым вариантом может оказаться БП с единственным выходным напряжением. Если понравится и будет нужно — можно построить второй такой же. Однако, всё-таки желательно иметь минимум два выходных напряжения, причем, гальванически изолированных одно от другого. Такой ЛБП будет иметь минимум две пары выходных клемм, по две на каждое из напряжений, которые внешними перемычками можно будет коммутировать как угодно, получая либо две полярности (т.е., положительное и отрицательное напряжения относительно объединенных клемм, образующих нулевой прводник), либо два разных напряжения одной полярности. В практике радиолюбительства нередки схемы, требующие двух различных напряжений питания ОДНОЙ полярности, например, +3,3…5 В для питания логики или микроконтроллера и +12…24 В для питания «силовой» части. Стремление построить двухполярный ЛБП со всего лишь тремя выходными клеммами (положительное напряжение, отрицательное и их общая шина), да еще и объединенной регулировкой сразу обоими полярностями, да к тому же еще и гальванически соединенных вместе, не расширяет, а наоборот, сужает его эксплуатационные качества. Парадоксально, но факт! Отсюда следует, что минимально оптимальным вариантом ЛБП является «двойное моно», т.е., два идентичных стабилизатора напряжения в общем корпусе с раздельной регулировкой выходного напряжения и одной парой измерителей выходных напряжения и тока, вручную переключаемых между каналами. Питаться стабилизаторы в таком варианте могут либо от отдельных сетевых трансформаторов, либо от одного с минимум двумя обмотками. А вообще-то, идеальным вариантом было бы «тройное моно», т.е., ЛБП с ТРЕМЯ выходными гальванически развязанными напряжениями, что позволило бы питать смешанные схемы с цифровой частью, требующей однополярного питания и аналоговой, требующей двухполярного питания. Понятно, что такое по силам уже продвинутому радиолюбителю, но держать этот вариант «в уме» все-таки сто́ило бы. Можно несколько упростить третий канал, сделав ему не плавную регулировку, а ступенчатую, к примеру, 3,3-5-9-12-15-24-27 В. Всё равно этот канал опциональный и будет использоваться изредка. 2) Минимальное выходное напряжение: Меня просто шокирует повальное стремление обеспечить регулировку выходного напряжения от нуля. На неоднократно задаваемый мною на форумах вопрос: «Что Вы собрались питать НУЛЕМ вольт?», я НИ РАЗУ не получил аргументированного внятного ответа! Построить такую схему, конечно же, вполне возможно, но она при этом усложняется совершенно непропорционально задаче. В 99,99% случаев достаточно порядка 1…1,2 В. Это напряжение соответствует вдрызг разряженным, соответственно, никелевому аккумулятору и батарейке. Если же вдруг (один-два раза за все время занятия электроникой) придется макетировать устройства с более низким напряжением питания (к примеру, фотоэлементы и т.п.), ничто не мешает подключить к выходу ЛБП дополнительный (временный!) регулируемый стабилизатор такого низкого напряжения на одном транзисторе и переменном резисторе. Тем более, что ток питания таких схем совсем небольшой. 3) Максимальное выходное напряжение: определяется максимально допустимым входным напряжением компонентов, использованных в схеме БП. Для ОУ это, как правило, 32…36 В; для интегральных регулируемых стабилизаторов — чуть больше, до 40 В. Поэтому «гигантомания» в плане желания получить на выходе, к примеру, 50 В стабилизированного напряжения, требует применения компонентов, способных работать при входном напряжении до 60…70 В. Такие, конечно, существуют, но их ассортимент не столь обширен, а стоимость достаточно велика, чтобы заставить задуматься: «А надо ли это мне?» Можно, конечно, собрать БП с таким выходным напряжением и на компонентах широкого применения, но его схема существенно усложнится. Итак, за реально достижимый простыми средствами верхний предел выходного стабилизированного напряжения примем 25…30 В. Если учесть, что в питающей сети допускаются отклонения напряжения в пределах ± 10% от номинальных 230 В, то 36 В выпрямленного и отфильтрованного постоянного напряжения при сетевых 253 В (плюс 10%) можно получить от трансформатора со вторичной(-ыми) обмоткой(-ами) на стандартные 24 В. При 207 В сетевого напряжения (минус 10%) на выходе будет 29 В постоянного напряжения (без учета пульсаций и просадки при максимальных токах нагрузки!). 4) Использование всего диапазона входного напряжения: стабилизированное напряжение всегда меньше входного на величину его падения на регулирующем элементе и амплитуду пульсаций на фильтрующем конденсаторе. Однако, в некоторых случаях из БП желательно "выжать" максимально возможное напряжение, невзирая на его пульсации (к примеру, при ремонте УМЗЧ, обладающих собственным высоким коэффициентом подавления пульсаций питания, либо при прозвонке высоковольтных стабилитронов тестером, фото которого показано выше и стабилизирующим ток, независимо от наличия или отсутствия пульсаций напряжения). Поэтому, нецелесообразно ограничивать выходное напряжение величиной ниже входного напряжения. Если процентов 10 угла поворота ручки переменного резистора и будут неэффективными - не страшно, остальные 90% угла ее поворота позволят регулировать выходное напряжение от минимума до "выше крыши". 5) Максимальный выходной ток: с этим параметром также наблюдается совершенно необоснованная повальная гигантомания. Почему-то многие стремятся соорудить БП с выходным током не менее 5 А, хотя можно заведомо предсказать, что для целей макетирования (а ЛБП, как было выше отмечено, предназначен именно для этого) не только бесполезны, но и вредны. При случайно сбившейся настройке ограничения по току макетируемая схема имеет большой шанс пыхнуть ярким пламенем с испусканием «волшебного дыма». Хорошо, если при этом не случится пожара! Допустим, что БП на такой выходной ток все-таки построен. При 30 В выходного напряжения и токе 5 А от трансформатора будет требоваться мощность не менее 150 Вт. Другой вариант: при 5 В выходного напряжения и токе 5 А, на регулирующем транзисторе при входном напряжении 35 В, рассеются те же 150 Вт. Во-первых, далеко не всякий транзистор такое потянет (а те, что потянут — до́роги), а во-вторых, чтобы рассеять такую мощность, нужен будет либо радиатор размерами с кирпич, либо охлаждение его кулером. И то и другое ведет к необоснованному усложнению и удорожанию устройства. Отсюда следует, что выходной ток можно ограничить значением 2…2,5 А, чего более, чем достаточно для подавляющего большинства задач. При этом и на регулирующем транзисторе рассеется не более 60…90 Вт, что не является какой-то экзотикой (те же «народные» КТ818/КТ819 в металле спокойно «держат» до 100 Вт), и силовой трансформатор нужен вменяемой мощности. 6) Ограничение выходного тока (оно же защита от короткого замыкания выхода) — является обязательным свойством ЛБП. Должно решать двоякую задачу: а) защитить от выхода из строя сам БП; и б) защитить от окончательного выгорания макетируемую схему. Если с первой задачей понятно — максимальный выходной ток определяется максимально допустимыми параметрами трансформатора питания и регулирующего транзистора и составляет упомянутые выше 2…2,5 А, то вторая требует более тщательного анализа. Если питается схема, уже смонтированная на печатной плате, то максимальный ток не должен вызывать разрушения дорожек на ней от перегрева, а также транзисторов средней и (желательно) малой мощности. По собственному опыту (не претендуя на его эксклюзивность) могу сказать, что данная задача решается при ограничении максимального тока уровнем 200...250 мА. Далее. Существует метод выявления коротких замыканий на плате путем питания ее током, еще не разрушающим печатные дорожки, но вызывающим их локальный нагрев. Для этого применяется ограничение тока уровнем порядка 500...600 мА. Такой же максимальный ток является оптимальным при ремонте УМЗЧ, не приводя к выгоранию драйверных и выходных транзисторов уцелевшего плеча. Итого, оптимальными уровнями ограничения выходного тока можно считать три фиксированных ступени: 200...250 мА; 500...600 мА и 2...2,5 А. Плавная установка тока ограничения "крутилкой" не только нецелесообразна, но и даже может быть вредна. Просто потому, что ручку регулировочного резистора можно случайно сбить с установленного значения и пустить на макетируемую схему экстра-ток. Указанные выше три уровня ограничения выходного тока позволят реализовать "боковой ход" машины Шурупчика -- заряжать таким ЛБП кислотно-гелевые аккумуляторы током порядка 0,03...0,15 С. А именно, первым (200...250 мА) -- аккумуляторы от фонариков; вторым (0,5...0,6 А) -- аккумуляторы от ИБП и третьим (2...2,5 А, правда, долгонько) -- автоаккумуляторы. Построить ЛБП с выходным током более 2...2,5 А, конечно же, можно, но это, во-первых, приведет к нерациональному усложнению и удорожанию схемы, а во-вторых, для ЛБП просто избыточно. Я великолепно ремонтировал монструозные эстрадные УМЗЧ на 1...1,5 кВт с помощью двухполярного ЛБП с ограничением выходного тока на уровне 0,5 А и максимальным выходным напряжением 23 В по обеим полярностям (уже нестабилизированным, с пульсациями!). Дело в том, что для окончательной проверки и настройки тока покоя ЛБП уже не нужен -- они выполняются при питании от штатного БП усилителей. 7) Измерители напряжения и тока: вопрос, казалось бы, второстепенный, однако красиво перемигивающиеся циферки цифрового вольтметра на практике, как ни парадоксально, снижают удобство пользования БП. Если уж и применять цифровой вольтметр, то не более, чем 3½-знаковый. Мельтешение цифр в младших разрядах 4-х и более разрядных вольтметров отвлекает от осознавания величины измеряемого напряжения, отнюдь не прибавляя точности. При импульсном характере потребления тока нагрузкой мельтешение цифр будет и в 3½-знаковом вольтметре. Если уж настолько критично выставить стабилизируемое напряжение до единиц-десятков миллиВольт, можно сделать это подключением к клеммам внешнего мультиметра, ибо возникнуть такая задача может примерно с такой же частотой, как рубка дров и чистка картошки в машине Шурупчика. С цифровым амперметром ситуация несколько серьезнее. Во-первых, измерение тока производится на его собственном токоизмерительном шунте, который включается последовательно с токоизмерительным шунтом цепи ограничения тока самого БП, тем самым повышая выходное сопротивление БП и снижая точность поддержания выходного напряжения. Во-вторых, из-за дискретности измерений в большинстве амперметров порядка 1...2 Гц, мгновенные скачки выходного тока (к примеру, при подключении к плате с короткозамкнутыми дорожками) отслеживаются с запозданием, обусловленным как этой дискретностью измерений, так и необходимостью какого-то времени на осознавание измеренной величины тока. Можно, конечно, цифровой амперметр и доработать на использование основного токоизмерительного шунта БП, либо же использовать шунт измерителя тока, но при этом потребуется его перекалибровка. В этом плане стрелочные измерительные головки намного информативнее и удобнее для встраивания и калибровки. Супер-точность измерений не столь важна, на первом месте стоит удобство примерного считывания показаний. 8) Выходное быстродействие на быстропеременную нагрузку: является своеобразным "камнем преткновения" для разработчиков ЛБП. Если питать им устройство с неизменяемым во времени потреблением тока (к примеру, лампочку, электромоторчик, да хоть заряжать аккумулятор), то быстродействие такой схемы может быть сколь угодно малым. Но если подключить импульсную или же аудио-схему, то ситуация кардинально меняется. Для таких потребителей выходное сопротивление ЛБП должно максимально близко приближаться к нулевому, чтобы обеспечить постоянство выходного напряжения независимо от силы тока (естественно, до момента его ограничения!). Нередко разработчик пытается обеспечить такую характеристику установкой на выходе электролитического конденсатора достаточно большой емкости. Такое схемотехническое решение, нередко встречающееся даже в промышленно выпускаемых ЛБП, на самом деле является профессиональным провалом разработчика, т.к. при подключении макетируемой схемы к выходным клеммам такого БП, через нее обязательно произойдет бросок тока, имеющий шанс сжечь схему, а реакция на быстропеременную нагрузку становится совершенно "дубовой". На выходе схемы ЛБП может стоять разве что пленочный конденсатор на 1 мкФ (да и то непосредственно на выходных клеммах), зашунтированный керамикой на 0,1 мкФ исключительно для подавления шумов и импульсных помех, циркулирующих по соединительным проводам от ЛБП к макетируемой схеме и обратно. Всё остальное быстродействие должно быть обеспечено за счет быстродействия и стабильности схемы самого ЛБП. 9) Регулирующий элемент - биполярный транзистор в сравнении с полевым: произведение разницы между входным и выходным напряжениями на силу выходного тока в любом случае должно на чем-то выделиться в виде тепла (увеличив этим энтропию Вселенной). Нет никакой принципиальной разницы, на чем это произойдет -- на коллекторном переходе биполярного транзистора, либо на канале полевого. Выделяющееся тепло в обоих случаях будет одинаковым. Поэтому сравнивать следует другие характеристики полевых и биполярных транзисторов, а именно: Ток управления, который для мощного биполярного транзистора с его невысоким коэффициентом усиления составит порядка 1/10...1/15 выходного тока, против пренебрежимо малого тока управления затвором полевого; Емкость затвора/базы, которая для полевого транзистора составит единицы нанофарад, что всё равно потребует достаточно существенного тока управления затвором при быстропеременных токах нагрузки, иначе БП не обеспечит нужного быстродействия, тогда как для биполярного транзистора -- десятки пикофарад, причем эта емкость мало изменяется с изменениями коллекторного тока. ; Падение напряжения база-эмиттер/затвор-исток, которое для биполярного транзистора составляет всего порядка 0,7 В, и слабо зависит от силы базового тока против 5...8 В для ключевых HEXFET транзисторов, что однозначно делает их практически неприемлемыми для работы в линейном режиме, поскольку совершенно впустую будут недоиспользоваться эти 5...8 В входного напряжения (речь идет о простых схемах ЛБП, с единственным входным напряжением). Если уж без полевых транзисторов ЛБП просто не мыслится, то для такого режима работы предназначены боковые (латеральные) МОП-транзисторы, разработанные для применения в звуковых трактах УМЗЧ. В качестве примера приведу графики передаточной характеристики латерального FET 2SK2220 в сравнении с HEXFET IRFP240. Надеюсь, разница достаточно очевидна. Хотя, всё равно, потеря напряжения (а следовательно, и излишнее тепловыделение) на полевых транзисторах будет больше. Либо же необходимо усложнять схемотехнику БП за счет вольтодобавки ко входному напряжению для управления затворами полевых транзисторов. Тем более, что допустимые токи (десятки Ампер) относятся не к линейному, а к ключевому режиму их работы. В линейном режиме ограничивающим параметром будет максимально допустимая рассеиваемая мощность, которая что у полевых, что у биполярных транзисторов определяется, в основном, типом корпуса, в который упакован кристалл. Учитывая изложенное в предыдущем пункте анализа относительно выходного быстродействия, преимущество полевых транзисторов для ЛБП по сравнению с биполярными становится достаточно сомнительным. 10) Стабильность выходного напряжения в переходных режимах: в ЛБП при его включении и/или выключении ни в коем случае не должно быть выбросов выходного напряжения сверх установленного значения!!! Иначе макетируемой схеме с большой долей вероятности придет белый северный пушной зверек. Требование однозначное и ревизии не подлежит, какой бы "вкусной" схема ЛБП ни была по другим параметрам. В первом приближении это пока что все мои аргументы "за" и "против" тех или иных схемотехнических решений и желаемых параметров ЛБП. В качестве подтверждения сказанному приведу личный пример своего "ветерана", верой и правдой служащего уже 40 (СОРОК!) лет: Верхняя крышка снята, чтобы показать "потрошки". Ни типа, ни марки, кроме надписи на лицевой панели "Блок питания универсальный "Электроника"" нет. Очевидно, "ширпотребовская" продукция какого-то военного завода. Схема, к сожалению, за эти годы тоже утеряна. "Родные" параметры с "родными" регулирующими транзисторами КТ807: 2...15 В / 300 мА. После модернизации (замены на TIP41) поднял ограничение выходного тока до 0,5 А. Четыре левых клеммы - выходы стабилизаторов напряжения. Полностью изолированы один от другого, питаются от отдельных обмоток трансформатора. Платы стабилизаторов стоят вертикально слева. В оригинале стояли по одной слева и справа от центрально установленного трансформатора. Крайние правые клеммы - выходы переменного напряжения, переключаемого пакетником над ними с шагом 3 В. Применяю преимущественно для питания мини-дрели на 27...30 В. На клеммы между стабилизированными и переменным напряжением в оригинале подавалось просто выпрямленное и отфильтрованное конденсатором напряжение. Они задействованы для вывода стабилизированного напряжения от дополнительного более мощного стабилизатора с током до 1,5 А (это уже моя модернизация) на еще К1УТ401Б, размещенного справа от трансформатора. Его регулирующий транзистор вынесен на заднюю стенку. Регулировка выходного напряжения - дискретная (3,3-5-9 В и дальше до 30 В с шагом 3 В), используя тот же пакетник, что и для переменного напряжения. Итого получается "тройное моно", как я и описывал выше, да еще и с каналом переменного напряжения. Второй пример - мощный "монстрик" на двухполярное напряжение без стабилизации (только выпрямленное). Токоограничение выполняется автомобильными лампами накаливания: Поскольку падал, плата выпрямителя и фильтров "сворочена" на сторону. Изготовлен для питания эстрадных усилителей при их ремонтах. Так вот, он НЕ ИСПОЛЬЗОВАЛСЯ НИ РАЗУ!!!
  23. 2 points
    Обратился ко мне за помощью коллега (стоматолог), перешедший на работу под оптическим увеличением бинокулярной налобной лупой. Для комфортной работы ему необходимо достаточно яркое освещение рабочего поля. К сожалению, вся медтехника (кстати, аналогично автотехнике), раз в 5, если не больше, дороже, чем точно такая же техника бытового назначения. Поэтому он начал приспосабливать более-менее бюджетные фонарики под свою задачу. При этом столкнулся с гроздью проблем, среди которых было отсутствие плавной регулировки яркости светодиода, очень быстрое исчерпание энергии повербанков на два параллельных аккумулятора по 2,2 А*ч, применяемых для питания осветителя с быстрым снижением яркости освещения (приходилось их подзаряжать до нескольких раз в течение одного рабочего дня) ну и, наконец, быстрый выход из строя светодиодов. Я проникся его проблемами и начал с ними разбираться. Начал с вышедших из строя светодиодов. Оказалось, что они фирмы Cree, типа таких: но из четырех нерабочих ТРИ кристалла банально отвалились с подложки!!! Перегрева не было, т.к. питались они от платки фонарика, откуда были взяты, так что, по-видимому, причина в бессвинцовой пайке. Подложка нагревалась на корпусе (нагревателе) паяльника и после расплавления припоя кристалл пинцетом помещался на свое место. Еще в одном оторвались площадки для подпайки проводников. Были подпаяны прямо к к зачищенным от краски дорожкам. В итоге были восстановлены ВСЕ ЧЕТЫРЕ светодиода. Рачал разбираться с повербанками. Выполнены они были на микросхемах HT4921 (два в одном), содержащих как драйвер заряда аккумуляторов так и импульсный повышающий преобразователь в 5 В. Если с первой задачей эти микросхемы справлялись, то узел повышающего преобразователя "приказал долго жить": При 3,9 В на аккумуляторе на выходе было только 3,5 В. Стало понятно, почему повербанки так быстро истощались. "Родные" платы были выкинуты и поставлены на драйверах TP4056. А теперь перейдем к главному вопросу, а именно, проклятой проблеме стабилизации тока мощного белого светодиода на 3 Вт, питаемого от ОДНОГО литиевого аккумулятора. Суть проблемы заключается в том, что падение напряжения на светодиоде (до 3,3...3,4 В) находится в диапазоне колебаний напряжения на аккумуляторе (4,2...2,75 В - https://ru.wikipedia.org/wiki/Литий-ионный_аккумулятор ). Обойти ее можно несколькими путями: 1) Применением импульсного преобразователя: а) SEPIC; б) Step Up/Down; в) Inverting 2) Применением линейного стабилизатора с недоиспользованием заряда аккумулятора. По размышлению было решено пойти по второму пути. Основным аргументом в его пользу явилось даже не то, что импульсные преобразователи сложнее по схеме, а то, что светодиод - источник света безинерционный и как ни фильтруй выходное напряжение, но пульсации все равно будут присутствовать. Для глаза, примерно половину рабочего времени подвергающегося воздействию пульсирующего света (пускай даже высокочастотного), это зерр шлехт. Глаза - тоже "рабочий инструмент" и беречь их надо не менее тщательно, чем руки. Для линейного стабилизатора необходимо было обеспечить минимально возможное падение напряжения на регулирующем транзисторе, чтобы "высосать" из аккумулятора максимум запасенной в нем энергии. Этого можно, в принципе, достичь использованием полевого регулирующего транзистора в "классической" схеме стабилизатора тока на ОУ. Ан нет! В действительности все не совсем так, как на самом деле . Даже с применением LogicLevel полевика напряжение на его затворе должно быть порядка 2,5...3 В, что потребовало бы применение неоправданно дорогих Rail-to-Rail ОУ. Выход был найден путем использования нового класса биполярных транзисторов, т.н. BISS. Пошарив по Интернету нашел подходящий: PBSS4540X с током коллектора 4 А, рассеиваемой мощностью более 1 Вт и эквивалентным сопротивлением коллектор-эмиттер порядка 40 мОм. В управление к нему выбрал одиночный низковольтный LMV321. Схема получается вот такая: Но пока заказанные "блошки" ехали с отдаленного склада, покопался у себя в загашниках и нашел близкие по параметрам (напряжение насыщения - порядка 0,35 В) транзисторы PBSS4540X в корпусе DPAK. К ним поставил ширпотребовскую LM358, "заглушив" ОУ, выходящий на ножки с меньшими номерами. Получилось вот что: Делитель R2R3R4 формирует на верхнем выводе переменного резистора R5 напряжение, которое может изменяться от 30 до 70 мВ подстроечным резистором R3, определяя максимальный выходной стабилизируемый ток. С его движка задается падение напряжения на эмиттерном резисторе R6, обеспечивая регулировку выходного тока от нуля до максимального. Яркость визуально не изменялась при снижении питающего напряжения до 3,55 В. Просто, как угол дома. Печатка: Выполнена под корпус (а не наоборот!!!). Изготовлено два таких стабилизатора. Один - под повербанки (оставшиеся от прежней конструкции, на фото виден на затылке): И второй - под одиночный аккумулятор (расположен с другой стороны наголовника относительно корпуса собственно стабилизатора тока): Большая белая кнопка включения подсветки расположена так, чтобы можно было включать/выключать ее либо тылом кисти, либо предплечьем. Хотя стерильность рук стоматолога и относительна, но лазить пальцами после рта или чисто вымытыми по кнопкам - не есть гут. Освещенность рабочего поля более, чем достаточна: Полной зарядки одного аккумулятора хватало, чтобы без снижения яркости отработать ДВЕ полных рабочих смены. Т.е., принятое "командирское" решение относительно применения именно линейного стабилизатора тока было верным. И начхать на неполное использование заряда аккумулятора. Всё равно литиевые аккумуляторы "эффекта памяти", как у никелевых, не имеют. Клиент остался доволен результатом, как слон после водопоя ...Я - тоже. 2SD1802.pdf P.S. На следующей странице я отписался о стабилизаторе тока для налобного фонарика на 10 обычных белых светодиодах, выполненном на компараторах LM393.
  24. 2 points
    Первый акт Марлезонского балета Меня очень давно интересовал вопрос, каково все же значение амплитуды выходного сигнала электретного микрофона и от чего оно зависит. К глубокому удивлению, в Интернете об этом хранится почти гробовое молчание. Удалось найти единственный ресурс, где приводятся их параметры: http://ra4a.narod.ru/Spravka4/d54.htm Поэтому решил выполнить небольшую лабораторную работу. Достал из загашника три валявшихся в нем микрофона: XF-18D и SG высотой по 5 мм и диаметром 10 мм а также J60 высотой 7,5 мм и диаметром тоже 10 мм . Слепил по-быстрому такую вот схемку: Измеритель тока - тестер Mastech MY68 на диапазоне мкА; постоянное напряжение на микрофоне измерял тестером DT832 на диапазоне 20 В и амплитуду сигнала с выхода - осциллографом Rigol DS1052E в режиме закрытого входа. Источником звука была моя "пищалка", расположенная на расстоянии 100 мм от микрофона. Мысля, положенная в основу этого эксперимента, была проста, как угол дома: изменяя сопротивление цепочки переменных резисторов R1 и R2, получить график зависимости амплитуды выходного сигнала от тока через микрофон, по которому определить оптимальный ток (оптимальный номинал нагрузочного сопротивления). Однако, реальность жестоко обломала все предварительные предположения. Оказалось, что амплитуда выходного сигнала действительно возрастает при увеличении тока от 100 до 247 мкА. Но при дальнейшем уменьшении сопротивления цепочки R1R2 ток через микрофон НЕ УВЕЛИЧИВАЛСЯ(!!!) Он так и оставался таким до близкого к нулевому сопротивлению резисторов. Амплитуда выходного сигнала тоже практически не изменялась во всем диапазоне стабильного тока через микрофон. А вот напряжение, падающее на микрофоне, увеличивалось с примерно 0,1 В при максимальном сопротивлении цепочки резисторов, т.е. около 50 кОм до 4,7 В при минимальном сопротивлении. Амплитуда выходного сигнала при этом составила порядка 50 мВ от пика до пика. Естественно, при данной конкретной громкости звукового излучателя! Такое поведение лично для меня объяснило, почему никто, нигде и никогда не применял для электретного микрофона генератор тока вместо банального нагрузочного резистора. Сам микрофон, оказывается, является генератором стабильного тока. Разве что один "шибко вумный знаток" с "Радиокота" предложил такое подключение: http://radiokot.ru/forum/viewtopic.php?f=1&t=51784&hilit=генератор+тока&start=20 с битием себя пяткой в грудь, что оно якобы хорошо работает. Быстренько попробовал микрофон J60 - получил значение "плато" тока, равное 270 мкА. Оставшийся микрофон (SG) уже и не "пытал". Вывод из этого эксперимента очень простой. Номинал нагрузочного резистора должен быть таким, чтобы он обеспечивал ток через микрофон, не менее, чем значение "плато" его стабильного значения для данного типа микрофона. А вот с падением напряжения на микрофоне возможны варианты. Дабы чрезмерно не грелся полевик, находящийся внутри микрофона, номинал резистора должен соответствовать началу "плато". При напряжении питания 5 В (как в эксперименте) и токе 0,25 мА, сопротивление должно быть около примерно 15 кОм. При этом падение напряжения на микрофоне составит порядка 1...1,2 В. На некоторых схемах я видывал и 47 кОм при таком же напряжении питания, что очевидно нерационально. При таком сопротивлении ток через микрофон составляет менее 100 мкА, что недостаточно для нормального режима его работы. Если же предвидится большая громкость аудиосигнала, то падение напряжения на микрофоне можно поднять и до половины напряжения питания. Номинал нагрузочного резистора при этом будет составлять порядка 10 кОм. Зато перегрузочная способность будет максимальной. Как видите, экономичность схемы сильно не упадет, зато головной боли с верным воспроизведением аудиосигнала тоже не предвидится. Еще один интересный результат этого эксперимента (правда, я его наблюдал еще 25 лет назад). В пищалке стоит релаксационный генератор, фактически подающий на излучатель импульсное напряжение. Однако, сигнал с выхода микрофона имеет практически синусоидальную форму. Т.е., воздух хорошо демпфирует несинусоидальные сигналы. Второй акт Марлезонского балета При проведении экспериментальной части (предыдущий "акт") изменение амплитуды сигнала с микрофона при изменении сопротивления нагрузочного резистора все-таки наблюдалось. Не столь выраженное, как ожидалось, но было. Поэтому была проведена вторая часть эксперимента - симуляционная. С использованием Мультисима 14-й версии. Принципиально важным вопросом для этого был выбор адекватной модели электретного микрофона. То угребище, которое было использовано в статье ( http://cxem.net/sound/amps/amp221.php ), соответствует динамическому микрофону, но никак не электретному. А коль скоро неверна предпосылка, то неверны и все истекающие из нее выводы. Поэтому моя модель основывалась на схеме встроенного в микрофон предусилителя на полевом транзисторе с p-n переходом. Взят был первый попавшийся из библиотеки Мультисима. Истоковый резистор R1 предназначался для подгонки тока стока под значение, близкое к измеренному в предыдущем исследовании. За точностью сильно не гнался - важнее было получить качественный результат. Мультиметр ХХМ1 показывал ток стока (как постоянный, так и переменный), а ХХМ2 - переменное напряжение на стоке полевого транзистора (на "микрофоне"). Генератор сигнала V3 выдавал синусоиду с амплитудой 10 мВ пик-пик и частотой 1 кГц. Источник питания выдавал те же 5 В, как и в экспериментальном исследовании. На "осциллограмме" в качестве примера показаны выходной сигнал (красный) и ток через нагрузочный резистор (синий) Измерения проводились через каждые 5% сопротивления нагрузочного резистора R2 (от 0 до 30 кОм - больше не увидел смысла). Результаты измерений приведены в экселевской таблице (для недоверчивых) и сведены на графике в Экселе же: Принципиальное (и единственное) отличие полученных результатов от экспериментальных заключалось только в том, что чувствительность (амплитуда выходного сигнала) линейно нарастала при увеличении номинала нагрузочного резистора от нуля до 17,5 кОм. А дальше - было полное совпадение с описанными в предыдущем посте результатами. При сопротивлении R2 более 20 кОм выходная амплитуда резко падала. Что совершенно естественно - генератор стабильного тока на полевом транзисторе вышел из режима стабилизации тока. Электрет_модели.rar Третий акт марлезонского балета Любые теоретические построения подтверждаются или опровергаются экспериментом. Поэтому разыскал у себя в загашниках шесть электретных микрофонов, сгреб все свои рабочие тестеры и собрал вот такую измерительную схему: Небольшие пояснения к ней. Переменный резистор R6 - сдвоенный. Одна его часть регулирует ток через микрофон, а вторая измеряется омметром (дабы не было никакого влияния на первую часть). То, что обе части не полностью согласованы по сопротивлениям в данном случае не важно, т.к. "вылизывать" данные до сотых посл запятой не вижу никакого смысла. Переменное напряжение с микрофонов под воздействием пищалки (показанной на схеме в первом "акте" выпрямлялось активным выпрямителем на ОУ DA1 и измерялось стрелочным мультиметром с целью интегрирования "скачущих" значений. К сожалению, даже на самом чувствительном пределе постоянного тока 0,3 В, амплитуда сигнала была довольно малой и точность таких измерений невысока. Кто пожелает - может перемерить. Питание осуществлялось от 12-вольтового аккумулятора от ИБП для исключения любых наводок и пульсаций по питанию. Первые два микрофона (XF-180 и J60) тестировались с шагом изменения резистора по примерно 2,5 кОм. Остальные 4 микрофона (34J9E, XL-R и два SG) - с шагом около 5 кОм. По результатам измерений в Экселе построены графики. По оси "Х" отложено сопротивление резистора R6, зеленый трек - падение на микрофоне по постоянному току (в вольтах), красный трек - ток через микрофон (в мкА) и синий трек - напряжение с выхода выпрямителя (в мВ). Итак, графики: Как видно, характеристики всех микрофонов индивидуальны, даже у двух однотипных SG. Основное отличие от результатов, полученных при симулировании - "горб" чувствительности, достаточно точно соответствующий падению постоянного напряжения на микрофонах (около 6 В - зеленый трек), равному половине напряжения питания (12 В). Хотя можно отметить, что наибольшее усиление электретных микрофонов соответствует "плато" тока через них. Что важно для практического применения. Кстати, это полностью соответствует первому прикидочному наблюдению за поведением электретных микрофонов, не выявившему линейного нарастания усиления при увеличении сопротивления нагрузочного резистора. Тем не менее, можно отметить и общие для всех микрофонов закономерности. Во-первых, это близкое к линейному падение напряжения на микрофонах, обратно пропорциональное сопротивлению нагрузочного резистора. Во-вторых, достаточно выраженное "плато" тока через микрофоны, мало зависящее от сопротивления нагрузочного резистора (в определенных пределах, конечно). Оба эти момента подтверждают то, что встроенный в микрофоны усилитель на ПТ представляет-таки собой генератор тока. Не идеальный, конечно. Никто не знает, какое гуано ставят им вовнутрь дядюшки Ляо. Sapienti sat. Feci quod potui, faciant meliora potentes.
  25. 2 points
    Скопирую сюда сообщение из фотогалереи блоков питания выдались выходные и решил таки добить "проектик выходного дня" Характеристики скромные. Всего 1А суммарно по каждому полюсу. От -15 до +15 весь стандартный ряд напряжений (5-9-12-15 обоих полярностей). Измеряет ток в каждом из полюсов суммарно. По положительному и по отрицательному. Погрешность измерений (по эталонному прибору) не хуже +/-0,5 деления (реально даже лучше). Обеспечивается идеально подогнанными дифференциальными усилителями на ОУ LT1078 и константановыми шунтами. Выдает по отдельному каналу регулируемое опорное напряжение в диапазоне 0...3,3 вольта с точностью не хуже +/-0,00025 вольта (по эталонному прибору с сертификатом поверки и точностью измерений не хуже 6 знаков после запятой). Управляется энкодером. Шаг установки меняется кнопочкой (нажим на ручку энкодера). Управление охладителем ШИМ (бесшумный), полностью пропорциональный. Дисплейчик COG на контроллере ST7032 с шиной I2C. Трансформатор самопальный на сердечнике от трансформатора тока промышленного. Все управление на STM32F051K6T6. Корпус красил в термокамере. Хрен поцарапаешь. Передняя панель - лазер (черный акрил, резка + гравировка у рекламщиков) Фото кишков ниже Кишочки Все собрано в корпусе БП АТХ первого попавшегося. Радиаторы и вентилятор от того же БП. Под нагрузкой 1А в самом плохом варианте (нагружены стабилизаторы 5В) греется прилично, но без корпуса может работать и без вентилятора. В корпусе уже надо обдувать. Но это на максимуме. В обычной жизни вентилятор еще не включался ни разу. Может он не работает просто? ну и контроллер с дисплеем поближе Для дисплея изготовил платку-прилепыш. Там надо немного рассыпухи разместить для работы внутренних преобразователей напряжения дисплея и пару резисторов для настройки ориентации изображения. Есть такая фишка у этой стекляшки. Ну и подтяжки I2C материалы прокта схема для предварительного ознакомления (узел управления) Здесь все элементарно просто. 2 простых дифференциальных усилителя токоизмерительных шунтов. Резисторы для них подбирал вручную и согласовывал. На выходах диодные ограничители и легенькие интеграторы, которые по итогу я даже не впаял. Обвязка контроллера стандартная для работы без кварцевого резонатора и без схемы ручного перезапуска. Разъем внутрисхемного программирования как положено. Питание блока ШИМ вентилятора берется с отдельной обмотки и по максимуму отвязано от схемы, чтобы избавиться от помех от этого узла. Все таки милиамперметр чувствителен к этому делу. Датчик температуры простейший LM35 с аналоговым выходом и RC фильтром на выходе. Для DAC выполнен буфер на ОУ. Просто повторитель, ничего особенного с компенсацией токов утечки. Основная схема питания слеплена из того что было под рукой. Стабилизатор 5 вольт выдран с платы APC (SO8 букашка), 3.3 вольта тоже откуда то отковырен. Можно любые применить. Схема запитки AVсс не совсем обычная, но так тоже работает силовая часть Тоже ничего особенного. Гармошкой по 4 стабилизатора на разные напряжения. В связи с особенностями планируемого использования посчитал такое решение наиболее целесообразным по сочетанию простота/выхлоп. И не ошибся в общем то, как показала практика использования прибора. схемы в DipTrace + дополнительные документы (разведено под стандартный 1602!) финиш.zip исходный код прошивки, проект Keil MDK ARM (вывод на дисплей под ST7032! I2C). Мне переписывать было уже некогда, поэтому расскажу как вернуть назад. Любой кто хоть раз писал под STM32 справится. Надо всего лишь переписать библиотечную функцию вывода на экран не через I2C, а по 4-х проводному параллельному интерфейсу, а все что касается I2C (инитка, дискриптор и резерв GPIO) вырезать к чертям Discrete_power_unit.zip Ну вот пожалуй все материалы. Будут вопросы, задавайте Дальше документалистика процесса для того чтобы закрепить плату контроллера припаял к ней стойки латунные от креплений материнских плат компьютера. Отлично паяются, отлично держатся трансформатор вот намотал из сердечника от старого трансформатора тока промышленного (взят из электрохлама) и катушки запасной от пускателя ПМА. Провода на ней ровнехонько на первичку. Просто взял и перемотал с одного на другое. Изоляция межслойная - пакеты для запекания нарезанные лентой. Бирка от лени написана вручную, все равно смотреть никто не будет Что такое ТСП-40? Очень просто. Трансформатор СамоПальный. Цифра от балды для красоты. Закрепил на плате каким то болтом, куском резины вырезанным из МБС техпластины и шайбой от переходников сноубордических креплений TECHNINE на BURTON. Эта шайба - самая дорогая деталь в устройстве! Те крепы мне обошлись аж в 400 зеленых. Вот шайбочки от переходников остались лишними. Долго не решался использовать, но видимо их черед пришел. тесты под нагрузкой перед сборкой На внешний вид электронной нагрузки не смотрите, это ужасный прототип. Внутри она вполне себе на уровне, но нужно чуть допилить конструктив холодильника. Все руки не доходят немного в процессе разработки контроллера ВНИМАНИЕ! Дисплей мне пришлось заменить. Плата изначально разрабатывалась под обычный WH1602 и первоначально работала с ним. (Поменять прошивку не составит труда для обратной замены, там все предельно ясно и заменена только библиотека дисплея). Дело в том, что стандартный 1602 в корпус не влезал по высоте и мне пришлось заказать сверхминиатюрное исполнение COG 1602. Но он оказался вовсе не тем, что я ожидал. Имел шину управления I2C и немного не похожую систему команд. Пришлось наскоро поправить прошивку под это дело. Дисплей встал на место энкодера (так как на этих ногах I2C и живет), а энкодер перекочевал на место старого дисплея. Пришлось разрезать одну дорогу и припаять +3.3 вольта к одной из ног разъема энкодера (PВ5) и землю на одну из ног разъема дисплея (5-я снизу) для того чтобы старую фишку энкодера не перепаивать. Регулировку констрасности демонтировал.
  26. 1 point
    Продолжение описания ПЛК. В данный момент я буду писать об использовании ПЛК в виде микросхемы, поскольку такой вариант дешевле и я способен сам добавить нужную периферию для нормального функционирования устройства. Схема по которой я первоначально собрал устройство привожу ниже. В схеме я использую внешний кварцевый генератор собранный на микросхеме 74HC04. Допустимо подключать кварцевый резонатор непосредственно к выводам X1..X2, но у меня не заработал такой вариант. Возможно кварц не такой и я не долго думая собрал генератор с которым всё уверенно зашевелилось. Номинальная тактовая частота ПЛК 16 мегагерц. Для "разгона" я пробовал использовать другие кварцы и работоспособность сохранялась до 24 мегагерц, правда при этом обмен по последовательному интерфейсу пропорционально меняет свою скорость и я отказался от этого трюка. Хотя для случая, когда уже программа отлажена, это наверное допустимо. Нужно будет пробовать. Как вы можете видеть, на схеме есть три вывода RxD, TxD и DIR. Они предназначены для обмена с компьютером последовательными данными на скорости 9600 бод, 8 бит, 1 стоповый, без контроля чётности. RxD - вход для последовательных данных, TxD - выход для последовательных данных, DIR - направление передачи последовательных данных для работы в полудуплексном режиме, например при работе с RS-485. Уровни сигналов TTL. Я пробовал работать подключив непосредственно к последовательным линиям микросхему ADM485 что позволяет настраивать ПЛК управляя им по витой паре на расстоянии 1000 метров. Я считаю, что это весьма недурно для такой крошки. К тому же встроенный сторожевой таймер избавляет от необходимости выдвигаться в место расположения ПЛК в случае его зависания. Кстати, зависания ещё ни разу не наблюдал. Для обмена я использую стандартную программу Гипертерминал. Далее я проиллюстрирую сеанс работы с его помощью. Продолжение следует. Голосуйте за мой блог и получите скидку на приобретение данного ПЛК. В случае победы в конкурсе обещаю подарить трём самым активным участникам моей поддержки по 1 штуке ПЛК в виде микросхемы.
  27. 1 point
    Добрый день. Долго время на работе пылилась парочку плат Honeywell CS0162E-LS Rev.B от котлов Baxi или Westen Quasar подходят они друг к другу. Но так как платы уже были до меня раздербанены я решил создать схему на плату, так как на форумах ей не делятся. Так-же был установлен котел на работе с данной платой управления, поэтому двойной стимул на ее создание, ее ремонтировать все равно придется мне когда-то. Так-же мне было любопытно сравнить ее с Bertelli кто как реализовывал свои идеи. При создании схемы понравилось не которые реализации, а не которые я так и не смог понять, как они работают. В ступор меня вгоняло некоторое подключения транзисторов. Данная плата является фазазависимая. Внимание: на схеме есть диоды MELF с D13 по D23 среди них есть полюбому стабилитроны, но они все выглядят одинаково и где какой номинал я без понятия. На плате производитель оставил один "подарочек", а именно разъем CN2 имеет зеркальный порядок выводов разъема, не по путайте. SMD детали не имели шелкографии поэтому порядковые номера я ставил произвольно для ориентировки по схеме и плате. Так-же меня удивило большое количество контрольных точек. Когда рисовал схему я понял, что из-за большего количества SMD надобность в них все же есть, так как они стоят в ответственных узлах. Плата сделана на гетинаксе, но довольно качественная, хотя со временем ее повело не много. Плата очень легко распаивалась и все дорожки остались на месте. Вся мелочевка была посажена еще и на фиксирующий клей. Как всегда целый пакет файлов, схема как в картинке, так и в Pdf и DipTrace. Печатная плата в Lay6. Список деталей в Excel 2010. Так-же добавил сканы самой платы, если кому-то они понадобятся. Пока котел в работе мне не дадут с ним поиграть, поэтому описание запуска платы на столе пока не будет. Удачных Вам ремонтов. Honeywell CS0162E-LS Rev.B DipTrace.rar Honeywell CS0162E-LS Rev.B Схема.pdf Honeywell CS0162E-LS Rev.B.lay6 Список деталей EXCEL 2010.rar Honeywell_CS0162E-LS_Rev.B_сканы_платы.rar
  28. 1 point
    Вопрос, неоднократно поднимаемый на форумах: есть схема ключевого каскада. Если с номиналом базового (токоограничительного) резистора (в данном случае R3) особых проблем не возникает, для ключевого режима он должен обеспечивать базовый ток не меньше, чем коллекторный (через резистор R1), деленный на коэффициент усиления (h21, бета) данного транзистора (хотя это "не меньше" должно быть НАМНОГО не меньше, что будет показано ниже), то с номиналом базо-эмиттерного резистора R2 возникают существенные непонятки не только у "юных дарований", но даже у казалось бы грамотных и квалифицированных инженеров. Нередки рекомендации ставить его в диапазоне 10...100 кОм (искать ссылки несколько лениво, прошу поверить на слово). Либо вообще не ставить. Последнее наиболее часто можно наблюдать в буржуинских схемах. Поэтому давайте в конце концов разберемся, зачем этот резистор вообще нужен и каким должен быть его номинал. У биполярного транзистора существует такой паразитный параметр, как неуправляемые коллекторный и базовый токи. Их величина зависит от материала (у германиевых они примерно на порядок больше, чем у кремниевых) технологии (качества изготовления), мощности и т.п. При определенных сочетаниях режимов работы транзистора (высокое напряжение между коллектором и эмиттером, повышенная температура, влияние импульсных помех и др.) эти неуправляемые токи могут привести к самопроизвольному (при)открыванию транзистора с дальнейшим переходом в лавинный режим работы и соответствующими печальными результатами. Чтобы такого не произошло, между базой и эмиттером ставится внешний резистор, через который этот неуправляемый базовый ток и закорачивается. Для кремниевого транзистора такого резистора, как правило, достаточно. Для германиевого - обычно было недостаточно и приходилось подавать через него небольшое запирающее напряжение. Сейчас, поскольку германиевые транзисторы применяются разве что в экзотических схемах, этот момент для них стал неактуален. С назначением базо-эмиттерного резистора вроде понятно. Так каким же должен быть его номинал? Дома у меня лежат пара бумажных справочников по транзисторам: 1. Транзисторы для аппаратуры широкого применения: Справочник / К.М.Брежнева и др.; Под ред. Б.Л.Перельмана.- М.: Радио и связь, 1981.- 656 с. 2. Мощные полупроводниковые приборы. Транзисторы: Справочник / Б.А.Бородин и др.; Под ред. А.В.Голомедова.- М.: Радио и связь, 1985.- 560 с. Приведенный ниже сканы взяты из первого из них. Во втором эти данные тоже есть. Давайте внимательно посмотрим в разделе "Максимально допустимые параметры" на такой параметр, как постоянное напряжение коллектор-эмиттер UКЭ max, а именно, условие его измерения - номинал базового резистора RБ (обведено красной рамкой). для маломощного транзистора КТ104 RБ = 10 кОм. Для транзистора средней мощности КТ611 RБ = 1 кОм. Для транзистора большой мощности среднечастотного КТ803 RБ = 100 Ом. Для транзистора большой мощности высокочастотного КТ913 RБ = 10 Ом (!!!) А-ФИ-ГЕТЬ!!! Разброс на ТРИ порядка! От 10 кОм до 10 Ом. Конечно же, для каждого типа транзистора значения свои. Так, для ГТ109 его номинал равен 200 кОм; для КТ630 - 3 кОм. Для ГТ122 он равен нулю. И т.д. и т.п. А для МП39...МП42, МП111...116, да и для немалого количества других типов транзисторов (особенно маломощных) его номинал вообще не приведен. Но суть не в этом, а в том, что чем больше мощность транзистора, тем меньший номинал базо-эмиттерного резистора гарантирует, что при любых температурных (и прочих) условиях транзистор самопроизвольно не откроется. Кстати, пересмотрел десятка два даташитов на буржуинские биполярные транзисторы - ни в одном из них (в разделе Absolute Maximum Rating) не нашел даже упоминания о таком резисторе. В первом приближении можно принять зависимость между мощностью и номиналами RБ, приведенную выше на сканах: 10 кОм для маломощных, 1 кОм - средней мощности и 100 Ом - для мощных транзисторов. Кроме того, чем выше граничная частота работы данного типа транзистора, тем меньше должен быть номинал RБ. Естественно, такая зависимость не является догмой. Каждый может сам для себя выбирать, что ему по вкусу. Но именно сам для себя, когда "выбирающий" и отвечает за работоспособность устройства. Если же устройство должно выполнять какие-то критические функции, то выбор "с потолка" становится уже неприемлемым. В действие вступает правило: "Не делайте тяп-ляп. Делайте хорошо. Плохо само получится"! IMXO, спасибо за наводку. Очень даже похоже на истину. Только почему-то очень мало кто использует этот параметр для расчета. Лепят отсебятину кто во что горазд. Не сложно ли будет пояснить, откуда взялась цифра 0,1 В? Отсимулировал этот каскад при отключенном Rб. Вот что получилось. Выходит, что транзистор начинает открываться при напряжении на базе, равном 425 мВ (канал "С", красная вертикальная метка Т1). Но это при температуре 20оС! Если она повысится до предельно допустимой (как это сделать в Мультисиме, пока не знаю), скажем, до 150оС, то учитывая, что напряжение на р-п переходе снижается на 2...2,5 мВ/град. получается как раз около 0,1 В. А теперь я увеличил чувствительность трека "В" (красный), показывающего базовый ток до 50 мВ/дел. В точке начала открывания транзистора (Т1) его величина составляет 224 нА (коэффициент преобразования датчика тока составляет 1 В/мА). Еще увеличил чувствительность (до 1 мВ/дел). Переместил маркер Т2 в точку, где базовый ток начинает отклоняться от нуля. Она соответствует базовому напряжению 225 мВ. Делим на 2 (для надежности) - получаем этот самый 0,1 В.
  29. 1 point
    Добрый вечер. Нашел у себя в загашнике парочку плат HDIMS04-TH01, обе не рабочие по своему. Так как в сети на данные платы инфы практически ноль, решил сделать на нее схему и заодно вторую плату поднять, запчасти уже есть, с первой . Плата двухсторонняя на без свинцовой пайке, пришлось свои стратегические запасы легкоплавкого припоя использовать, для разбавления. По поводу самой пайке на плате, две платы одна 12 года, вторая 15 года выпуска, с 12 года плата пайка была полностью разрушена (в платы никто не лазел), буквально за 6 лет припой разрушился, на сканах это хорошо видно. Плата 15 года, пайка пока целая вся, но очень мягкая, буквально обычным щупом мультиметровским оставляю впадины на пяточках. Видимо припой со времени становится хрупким, но очень тугоплавкий, пока не разбавишь его компоненты практически не выпаять, да еще и двухсторонка. Не очень хороший они выбрали припой. Вот на Dims01-Th01, это прошлая версия данной платы, использовали припой свинцовый и платы по 15 лет выглядят очень хорошо, а тут всего 5 лет и капец. Производителю видней. Очень понравилась реализация обратной связи реле вентилятора и газового клапана, в Dims01-Th01 использовался электролит (не скажу что это плохо, судя на то что плата работает уже 15 лет 24/7), но тут все-же данный вариант выглядит лучше. В Dims01-TH01 импульсами управлялось только одно реле, газового клапана, а на этой плате производитель решил усложнить процесс включения сразу двух реле, вентилятора (К4) и газового клапана (К2). Если честно, я так и не смог понять, как эти два реле включаются. Так-же мне не очень понравилась идея с включение реле К4, а именно: после того как оно включилось на обмотку газового клапана поступает Нейтраль, к стати данная плата является фазазависимой, вроде не сильно критично, но в Dims01-Th01 использовалось реле с двумя не зависимыми контактами для газового клапана и напряжение поступало на арматуру после всех проверок. Я не придираюсь, но данное решение не похоже на Bertelli. Видимо экономия заставляет производителя ити на жертвы, хотя данные платы не дешевые. Данная плата очень универсальная, работать как Турбированный вариант, так и Атмосферный. Только режим отопления, а может еще и на ГВС. Плата сделана на текстолите, а не на гитинаксе, как dims01-Th01, хотя иногда и проскакивали платы на текстолите. Если удаться поднять вторую плату, сделаю описание запуска платы на столе, с имитацией всех датчиков. Хотя все-таки есть некоторые сложности с трансформатором розжига, на его концы почему-то нужно подключать провода, в разрыв которых стоят резисторы 1к 3Ватт, у меня пока в наличии только один такой шнурок, но сделать не проблема. Управления данной платой осталось таким-же как и на Dims01-Th01, это безусловно плюс, хотя на переучивании персонала пришлось бы потратить не мало средств, а так оп и вроде все уже знают, как ими управлять. Хотя производитель сделал не которые изменения в управлении, разделил его на два уровня, в второй уровень можно войти только зная пароль, там находятся более гибкие настройки работы платы. Пароля я не знаю. А теперь сами файлы, схема в картинке *jpg 1000 dpi, Pdf с возможностью поиска, DipTrace. Печатная плата в Lay6. Список компонентов в Excel 2010. Так-же добавил сканы самой платы. Фото самой платы Bertelli & Partners HDIMS04-TH01 схема DipTrace.rar HDIMS04-TH01 Печатная плата.lay6 Автоматика HDIMS04-TH01 схема.pdf Список деталей HDIMS04-TH01 Excel 2010.rar HDIMS04-TH01_сканы_платы_в_Pdf.rar
  30. 1 point
    Добрый день. Понадобилось мне сделать автоматическую (ручная тоже должна быть опция) регулировку разрежения котлом Е1/9. Несколько лет назад, как всегда зимой, вышел из строя на котле блок регулировки разрежением. Подвели к котлу и поставили перед фактом, чтобы через час он был в работе, а на улице -10. Снял с котлов, настенных двух, прессостаты и сварганил игрушку, так появилась первая версия данного устройства, она и по сей день исправно работает. Все было хорошо, жил не тужил. Месяц назад сгорел (трансформатор) второй блок управления разрежение Р25.1.1, на втором котле. Подвели к котлу, как и в прошлый раз, чтобы сделал как и на первом котле. Тут мне повезло, так как времени было много, пару месяцев, начал думать над схемой, более совершенную, так как нужно несколько вариантов иметь в запасе. Так появилась данная схема, вторая версия данного устройства. Цель была, как и прежне, чтобы была возможность автоматического регулирования и ручного. Показания текущего разряжения снимались с Тягонапоромера. Так как мне нужно одно значение разрежения, проблем со составлением схемы у меня не возникло. Также огромная благодарность форумчанину, разрешения на его упоминание я не спрашивал, за некислый подгон, безвозмездно, реле и колодок Finder, целая коробка. Выручила она меня кардинально. Поэтому было решение сделать схему на реле Finder, так появилась данная схема. Что умеет устройство: 1. Имеет световую индикацию Сеть, Открыть, Закрыть. 2. Возможность работать, как в автоматическом режиме, так и в ручном. 3. Защита от включения двух сразу реле. 4. Защита контактов прессостата, так как нагрузка вся проходит через реле. 5. Калибровка прессотатов на нужное значения с помощью колесика с цифровой шкалой. Она практически соответствует действительность, но все рекомендуется выставлять значение по тягометру эталонному. 6. Поддержание в автоматическом режиме необходимого значения разрежения (Только одно настроенное значение). 7. Защита от скачка напряжения до 270В/380В. 8. Очень простая наладка и калибровка устройства. 9. Высокая точность поддержания разрежения, применены очень качественные прессостаты, ели достали их. Точно такие-же прессотаты работают на котлах уже 15 лет. 10. Легкость сборки и хорошая взаимозаменяемость компонентов. Фоточки собранного девайса. Все прекрасно разместилось в старом корпусе от регулятора Р25.1.1, максимально использовал все, что там было. Свой экземпляр настроил на поддержания 75 Па. Также приложил схему в Spl7. Теплой зимушки. Схема контроля разрежения.spl7
  31. 1 point
    Добрый вечер. При подготовке оборудования к зиме, был снят, на ревизию, Блок розжига и контроль пламени Immergas SKG EN298. Было принято решение создать на него схему, в сети на данный блок информации вообще не смог найти. Производитель не поскупился нанести шелкографию на плату, поэтому включен поиск в PDF. Плата на гетинаксе, поэтому без надобности паяльником не лазте. Кому будет интересно, с данной схемы можно вытянуть Контроль пламени, Ионизации, на реле. У меня на данный момент деталей нет, чтобы его собрать и погонять на котле. Плата фазазависимая. Единственно, не смог найти документацию на деталь SI1 (SI1 = PK6 R60095 (ON Semiconductor) 0307), переписал все что смог разглядеть. Как всегда прикладываю все файлы: Схема *jpg 1000 dpi, DipTrace, PDF 720dpi (с возможностью поиска внутри документа), печатная плата в Lay6, список деталей Excel 2010, сканы в PDF 800 dpi (из-за ограничения на форуме, поместил в следующее сообщение). Фото платы Immergas SKG EN298 схема DipTrace.rar Immergas SKG EN298 схема.pdf Immergas SKG EN298.lay6 Список деталей Immergas SKG EN298 Excel 2010.rar
  32. 1 point
    Получил свой заказ из Китая. Размер 40х55 мм (примерно). Себестоимость с учетом доставки 107 руб/штука.
  33. 1 point
    Решил немного вспомнить былое и продолжить работать над старым проектом композитного усилителя на основе TPA6120. На этот раз для обкатки кое-каких идей, которые будут использоваться в другом проекте решил попробовать сделать вариант с регулятором громкости на основе перемножающего ЦАП. На данный момент планируется использовать 12 битный ЦАП AD5449, что даст максимальное ослабление в 72 db, чего для этого применения более чем достаточно. Попутно осваиваю новую САПР KiCad.
  34. 1 point
    Итак, у вас есть паяльник, ваш стол завален электронными компонентами, вы всегда в поисках самого лучшего в мире усилителя, вы умеете рассчитывать каскады с общей базой и даже моргать светодиодом при помощи МК PIC. Внезапно или не очень, вы решаете работать в ОС Debian. Я хотел бы рассказать, чем можно заменить любимый софт для Windows, как его установить и решить возникающие в процессе установки проблемы. Будем считать, что ваш дистрибутив - это Debian 9 «Stretch» 64 (скорее всего все описанное подойдет и для *buntu, Kali) Перед установкой программ из репозиториев (командой apt-get install) обновите списки репозиториев командой sudo apt-get update! Подобрал следующий список: 1. Черчение принципиальных схем и проектирование печатных плат — KiCad 2. Эмулирование схем — Qucs 3. Генератор сигналов с звуковой карты — Audacity 5. Среда для разработки под PIC — MPLAB X (IDE) продолжение следует 1. KiCad — в представлении давно не нуждается. Описание: http://cxem.net/software/kicad.php Установка: Для установки этой штуки, нам необходимо просто ввести в терминале: sudo apt-get install kicad и подтвердить установку. Проблем с зависимостями быть не должно. Начало установки: 2. Qucs — Quite Universal Circuit Simulator - достаточно известный аналог Proteus. Описание: http://cxem.net/software/qucs.php Установка: Скачиваем .deb пакет с официальной странички проекта на ланчпэде: wget https://launchpad.net/~qucs/+archive/ubuntu/qucs/+build/6316232/+files/qucs_0.0.18-2_amd64.deb Установим пакет стандартными средствами: cxemnet@debian:~$ sudo dpkg --install qucs_0.0.18-2_amd64.deb Начало установки: Как видим — ошибка. Пробуем запустить и видим еще одну ошибку: cxemnet@debian:~$ qucs qucs: error while loading shared libraries: libQtCore.so.4: cannot open shared object file: No such file or directory Необходим qt4. Пробуем установить: cxemnet@debian:~$ sudo apt-get install qt4-default Неудача: Пользуемся советом и набираем: cxemnet@debian:~$ sudo apt --fix-broken install Видим следующее: Все получилось, снова попробуем запустить qucs и видим, что все хорошо, можно работать. Бонусом можно добавить модели русских (советских) компонентов, сделанных добрыми дядями. Скачиваем архив в текущую папку: wget https://github.com/ra3xdh/qucs-rus-complib/archive/master.zip Разархивируем его в текущую папку: unzip master.zip перенесем в папку с библиотеками: cd qucs-rus-complib-master sudo mv * /usr/share/qucs/library/ Заходим в программу и видим наши библиотеки. 3. Audacity - аудиоредактор. Нам интересен тем, что с его помощью можно генерировать сигналы на выход звуковой карты. Описание: Будет. Установка: К счастью, установка вполне стандартна и доступна из репозиториев. sudo apt-get install audacity Процесс установки: 4. MPLAB - среда разработки для PIC. Описание: http://cxem.net/software/mplab.php Установка: скачиваем файл установки в текущую папку с официального сайта: wget http://ww1.microchip.com/downloads/en/DeviceDoc/MPLABX-v4.10-linux-installer.tar распакуем в текущую папку: tar -xvf MPLABX-v4.10-linux-installer.tar дадим права на исполнение sudo chmod +x MPLABX-v4.10-linux-installer.sh выполним установку sudo ./MPLABX-v4.10-linux-installer.sh Получаем ошибку о желании 32битных библиотек: Добавим поддержку: sudo dpkg --add-architecture i386 обновим список репозиториев sudo apt-get update установим нужные пакеты, но уже с указанием требуемой архитектуры: sudo apt-get install libc6:i386 libdlib-data:i386 libstdc++6:i386 libexpat1:i386 libx11-6:i386 libxext6:i386 пробуем еще раз: sudo ./MPLABX-v4.10-linux-installer.sh видим, что процесс прошел без ошибок и перед нами появилось окно установщика, далее просто следуем подсказкам инсталяционного меню (можно путь установки поменять) Все, среда разработки установлена! Осталось добавить компилятор, но это уже другая история...
  35. 1 point
    Добрый день. Попалась ко мне в руки плата SIT BIC Automatik 0.580.228 (или второе название SIT LA PRECISA 7530171_01). Плата довольно компактная, и маленькая. БП импульсный, трансформатор всего с двумя обмотками, первичка и вторичка, есть "обратная связь" за напряжением БП, есть даже контроль на наличие низкого напряжения выполненного на OPT1. Данную опцию часто встречаю в импульсных БП, в трансформаторных вариантов пока не видел, или это тенденция современных плат. Все разъемы и переходные отверстия позолочены, довольно жирно для такой платы. Пайка на бесвинцовом припое, очень твердый и крепкий. Выводные компоненты разбавлял легкоплавким припоем, а SMD просто с помощью флюса сразу выпаивал феном. Плата очень качественная. Правда производитель "за жадничал" нанести шелкографию для SMD, поэтому порядковые номера я ставил самостоятельно и в произвольном порядке, но он мне дал другой бонус. Трассировка платы выполнено очень качественно, хотя на данный момент для меня эталон Bertelli, но тут тоже не плохо все сделано. При создании схемы меня всегда интересует, кто и как реализуют схемы включения реле газового клапана. Я до сих пор пока не могу вникнуть в этот процесс, пока мне поддался только один вариант, на DIMS-TH01. Производителям респект за вклад в безопасность работы газового оборудования.. В данной схеме производитель не пожалел диодов и стабилитронов, прям от души их "насыпал". Из-за них я так и не смог понять, как работают некоторые узлы на плате. Но теперь у меня есть схема запуска трансформатора розжига, замечательно. Дефицитных деталей на плате нет, но кроме "прошивки". Не на все детали я смог найти документацию, стабилитроны (D9-11) и супрессоры (D3), диод (D4), RV3-4 (1206) это варисторы, но какие я без понятия. Емкость С42 я не смог замерить своими приборами. Схемы на модуль дисплея не будет, потому что он у меня всего один и рабочий. Схема нарисована полностью, с учетом всех деталей, чтобы были на плате, деталей которые не были на плате, (от производителя) в схему не переносил. Как всегда целый пакет файлов: Печатная плата в Lay6, схема в DipTrace и PDF, так-же в картинке *jpg в 1000 Dpi. Список деталей в Excel 2010 и сами сканы платы, может кому-то пригодятся. Схему желательно распечатывать на А3 или делать склейку из двух А4. Модели котлов в которых стоит данная автоматика: Фото самой платы Удачных ремонтов. Sit Bic Automatik 0.580.228 печатная плата.lay6 Sit_Bic_Automatik_0_580.228_сканы_платы_в_PDF.rar SIT BIC Automatik 0.580.228 Список деталей Excel 2010.rar Sit Bic Automatik 0.580.228 схема DipTrace.rar SIT BIC Automatik 0.580.228 схема.pdf
  36. 1 point
    Добрый день. Попался ко мне данный блок питания в руки, решил сделать печатную плату с него и схему, для последующего ремонта. Да и руки с головой нужно было размять. Схему сделал в Spl7 а плата в Lay6. Трансформатор не разбирал, так как блок питания новый и поэтому о намотке не в курсе, но снял параметры железа. Плата компактная 67*37 мм. трансформатор, по размерам, можно взять с БП компа, размеры подходят, только вторичку перематать на 12В. Пришлось только после китайцев пропаять некоторые выводы оптопары, не понимал, почему напряжение плавает. 1А держит, мне больше не нужно. Удачного дня. Блок питания 12В 2А.lay6 Блок питания 12В 2А.spl7
  37. 1 point
    Наткнулся на схемку в сети AVR JTAG ICE и решил её повторить. Дабы не тратить время на изготовление печатной платы решил предварительно собрать сей девайс "на соплях", вернее на беспаечной плате. Вот так у меня это всё получилось. Залил прошивку из статьи собрал схему с процом который будет целевым, соединил всё с COM портом и начал пытаться запустить всё из под CVAVR. Не заработало. Тогда попробовал из под Atmel Studio 4 и у меня всё получилось. Следующим этапом решил попробовать будет ли это всё работать через USB. И оказалось, что да, работает вполне хорошо. Нужно ещё попробовать из под последней Atmel Studio, но пока не на чем. Мне она не нравится из-за своей громоздкости и поэтому я ей не пользуюсь. Можно резюмировать, что схема по ссылке вполне пригодная, но использование её ограничено софтом. Для не слишком требовательных юзеров вполне годится. Буду рад любым комментариям, если что-то непонятно, спрашивайте, отвечу на ваши вопросы. Все материалы из вышеуказанной статьи выкладываю здесь, если кто захочет повторить, пожалуйста. mc85_AVR-JTAG-ICE.zip
  38. 1 point
    Для удобства сопряжения транспорта Combo384 со своим ЦАПом Mercury был разработан и заказан вот такой мелкий адаптер: Кроме перехода с 20-выводного разъема транспорта на разъем с распиновкой ЦАПа он имеет индикацию включения Combo384, частоты дискретизации, включения и режима DSD, режима MUTE. Также выведены пины 3,3В для чего-либо. Печатная плата не имеет ограничений в использовании. Combo384 to Mercury DAC Adapter.lay6
  39. 1 point
    Набор STEP-моделей прямоугольных конденсаторов фирмы EPCOS. Межвыводные расстояния в 5, 7.5, 10, 15, 22.5, 27.5, 37.5, 52.5 мм. Все модели именованы согласно рекомендациям стандарта IPC-7351. Охвачены следующие серии: MFP B32682..B32686 MKP B32620..B32621 MKP B32651..B32656 MKP B32671L..B32672L MKP B32671P..B32673P MKP B32671Z..B32673Z MKP B32674..B32678 MKP B32774..B32778 MMKP B32641B..B32642B MKT B32520..B32529 MKT B32932..B32934, B32936 X1 B32911..B32916 330V X1 B32911..B32918 530V X2 B32921..B32928 X2 B32922HJ..B32926HJ Y1 B81123 Y2 B32021..B32026 … т.е все конденсаторы в Radial Boxed исполнении у EPCOS. Даже 12-ногие есть Ножки подрезаны с учетом толщины платы в 1,5 мм. Всего 86 конфигураций. Скачать
  40. 1 point
    После того, как жена третий раз ночью ударила пальцы на ноге о край кровати, мне был выдвинут ультиматум: "Хочу ночник!" А поскольку зеленое пупырчатое сдавило горло покупать эту фиговину за примерно $2, порылся по сусекам, откопал 6 светодиодов (по два RGB), не так чтобы сверъяркие, но достаточно яркие, основание от совейской круглой вилки, контактные штыри, конденсатор, пару резисторов, выпрямительный мостик, конденсатор фильтра. Жена презентовала крышку от духов в качестве рассеивателя. Для светодиодов просверлил отверстия в теле крышки, посадил их на циакриновй клей. Светодиоды соединены в цепочку из 6 штук. Схема наипримитивнейшая, поскольку в габариты основания ничего больше не влазило: Расчетный ток через светодиоды составил 16 мА. Резистор R1 распаян непосредственно на контактах конденсатора С1. Вытравил платку и распаял её: При разводке промахнулся, на фото ниже нет резистора R3. Чертеж платы выше и в аттаче уже исправлен. Доработал основание вилки (поубирал приливы), подпаял к платке рассеиватель со светодиодами. Соединил всё это винтом. Результат со вспышкой: В темноте: Цветопередача на фото, конечно, совершенно "левая". Зеленые светодиоды (те, что по горизонтали) всё-таки оказались слабоватыми. Пожлобился поставить сверхъяркие . Mea culpa... Немного бьет по глазам, наверное, надо будет пройтись наждачной шкуркой, чтобы заматировать рассеиватель. А может, и так сойдет. Ночник.lay6
  41. 1 point
    Забыл модель сушилки с которой была снята плата. Данное устройство не имеет гальванической развязки с сетью, поэтому будьте очень аккуратны при работе с печатной платой. Схема в Spl7 Pcb Lay6 Сушилка рук.rar
  42. 1 point
    Попросили знакомые сделать схему БП на TH2167.1 с домофона. Найти документацию на микросхему мне не удалось, даже общаясь с разработчиками данной микросхемы, они ее не дали, наверное только компаниям предоставляют, но благо данную микросхему можно заменить на UC3842, как утверждают на форумах. Данный БП на 15В 2А. Количество витков на трансформаторе мне не известно. Данный материал предоставлен исключительно в ознакомительных целях. Схема в Spl7, Pcb Lay6. БП на TH2167.1.rar
  43. 1 point
    Сваял для жены комбинированный блок для аквариума, объединяющий светодиодную подсветку и термостабилизатор. По большому счету, ничего особенного, представляющего какую-то схемотехническую новизну, в нем нет. Отписываюсь о нем только потому, что в явном виде реализована схема диммируемого (методом ШИМ) аналогового стабилизатора тока для соединенных последовательно трех мощных одиночных 5-ваттных светодиодов, оставшихся от сценических осветителей (верхний "этаж"): Максимальный ток через светодиоды выбран величиной 1 А. Его среднее значение (а, соответственно, и яркость свечения светодиодов) плавно регулируется от максимума до едва видимой засветки, т.к. в крайнем левом положении движка резистора остается генерация коротких импульсов. Это получился уже третий вариант данного устройства. Первые два, с самодельной схемой терморегулятора, закончены так и не были. Первый - потому, что содержал только терморегулятор, с датчиком, требующим индивидуальной настройки. Без подсветки, с питанием от маломощного ИИП. Второй - с датчиком, допускающим взаимозаменяемость без дополнительной подстройки, но, поскольку питание осуществлялось от одного трансформатора с подсветкой, проявилось паразитное влияние ее димирования на срабатывание компаратора терморегулятора. Вместо четкого переключения получалась пачка импульсов. А тут буквально вдруг обнаружил готовый терморегулятор для инкубатора W1209, с точностью 0,1°С, укомплектованный термодатчиком и стоимостью всего-навсего $2,40 прямо в Киеве. Кроме собственно терморегуляции, если не подключать нагреватель (летом), показывает актуальную температуру воды. Только выкорчевал из него реле, клеммник, разъем (остались, как дополнительный бонус), снабберный диод для обмотки реле и заменил SMD-светодиод на 3-мм выводной. На коммутацию сетевого напряжения для нагревателя поставил бесконтактный симисторный узел (симистор из загашников + MOC3043). Корпус, конечно, оказался великоват, но он остался от предыдущей версии и я не стал его переделывать. На задней стенке выведен также сетевой разъем для компрессора, чтобы можно было на ночь отключить все это хозяйство одним сетевым выключателем. Светодиоды были прикреплены к радиаторам от северных мостов старых материнок, установленных на крышке: Изнутри светодиоды защищены от брызг воды, образуемых компрессором, плексигласовой пластинкой. Без такой защиты светодиодные ленты, используемые ранее, буквально "сгорали" всего за месяц-полтора. Микробрызги воды перемыкали на них дорожки с выгоранием светодиодов. Размеры радиаторов для синего и зеленого светодиодов оказались все-таки маловаты. При максимальном токе через них греются до температуры, с трудом терпимой пальцами. Красный светодиод греется, естественно, меньше. При этом радиатор регулирующего транзистора генератора тока, площадью 100 кв.см - чуть теплый. Ну и, полученный результат. К сожалению, на фото так и не удалось получить реальных цветов. Слева - синий, по центру - красный и справа - зеленый. Аквариум на 24 литра. Освещенности вполне достаточно. Даже с учетом того, что световой поток цветных светодиодов в 3...5 раз меньше, чем белых аналогичной мощности. Скажем, синие дают всего 60...70 Лм. Радиаторы, скорее всего, придется менять. Хотя при примерно половинной яркости (вполне достаточной для освещенности) их нагрев умеренный. P.S. Не, менять точно не буду! С этим освещением и нагреватель оказался не нужен. Сегодня, за день непрерывной работы, вода нагрелась с 22,6° утром до 24,7° к вечеру. А надо бы 24°. Но для гуппешек это тоже нормально. Добавлено. Через пару недель эксплуатации в аквариуме начала расти "борода" - нитевидные водоросли черного цвета на камнях, стенках и т.п. Аквариумисты утверждают, что причиной ее роста является избыток сине-зеленой полосы спектра в освещении. Поэтому синий и зеленый светодиоды поменял на 2-ваттные теплые белые. Кроме того, что бело-красное освещение оказалось не очень приятным для глаз, так еще и светодиоды плохо совместились друг с другом по параметрам или просто новые белые оказались никудышного качества, в общем, один из них через неделю тупо сгорел с обрывом, Поэтому все они были заменены на 9-ваттные 10-вольтовые матрицы теплого белого света, включенные параллельно, чтобы не переделывать питание. Три точки свечения - потому что одна тозе не очень комфортно выглядела. Получился явный недогруз по току (всего чуть больше, чем по 100 мА на каждую матрицу), но яркость свечения на максимуме (при коэффициенте заполнения 100%) вышла даже больше нужной, так что всё так и было оставлено.
  44. 1 point
    Время от времени на форуме периодически возникают подобные темы. Ну, то, что "юные дарования" не пользуются поиском по форуму - это их горе, но схема, в принципе, мною была разработана, неоднократно повторена как мною, так и другими. В данном посте хотелось бы обобщить различные варианты ее построения и закрыть этот вопрос на обозримое будущее. Итак. Условия: На входе появляется какой-то сигнал. Это может быть аудиосигнал или постоянное напряжение - неважно. Схема должна в момент его появления/исчезновения включить/выключить исполнительное устройство и удержать его в этом состоянии какое-то время. Для решения подобной задачи существует специализированная микросхема M51957/M51958. Её внутренняя структура из даташита: Как видно их принципиальной схемы, M51957 формирует высокий выходной уровень при превышении входным сигналом фиксированного порога срабатывания, а M51958 - соответственно, низкий. К сожалению, эти микросхемы уже давно устарели и найти их весьма сложно. Кроме того, уровень срабатывания задается внутренним источником опорного напряжения = 1,2 В, что требует применения предусилителя при работе с низкоуровневыми входными сигналами (например, аудио по уровню минус 10...20 Дб). Да и выходной вытекающий ток у них всего 25 мкА. Некомильфо, однако. Поэтому внутренняя структура была повторена на широко распространенном сдвоенном компараторе LM393 с небольшой обвязкой. Рассмотрим подробно один из вариантов построения схемы для задачи включения светодиода при появлении звукового сигнала. Для начала следует отметить, что выход компаратора LM393, в отличие от ОУ (имеющих полноценный двухтактный выходной каскад), выполнен с открытым коллектором. Поэтому он может только принимать ток (втекающий) от шины питания на общую. Без нагрузочного резистора, подключенного между выходом и шиной питания, на выходе будет напряжение, близкое к нулевому, независимо от состояния входов. Вытекающего тока на общую шину он обеспечить не способен в принципе!!! Входные каскады выполнены на p-n-p транзисторах и способны работать не только от уровня потенциала общей шины, но даже "минусовее" её на 0,3 В. При наличии выходного резистора ничего плохого со входами не случится и при превышении этого значения, т.к. всего-навсего откроется в прямом направлении коллекторный переход входного транзистора, ток которого будет ограничен этим самым входным резистором. Итак, первый каскад представляет собой обычный компаратор DA1.2, на инвертирующий вход которого подано небольшое опорное напряжение, заведомо ниже предполагаемого уровня входного сигнала. В случае аудиосигнала оно может составлять 30...50 мВ. Можно и меньше. Минимальный уровень этого опорного напряжение определяется уровнем шумов на входе и должен их превышать. На неинвертирующий вход поступает входной сигнал. Поскольку он стерео, то на входе стоит примитивный микшер из резисторов R1R2, суммирующий сигналы правого и левого каналов. Если предполагается моно-сигнал, один из резисторов можно исключить. На "всякий пожарный" сигнальный вход зашунтирован германиевым диодом VD1, предотвращающим появление на нем отрицательного напряжения более -0,3 В. Гистерезис в данном каскаде не предусмотрен специально, поскольку нужно обеспечить его высокую чувствительность к изменениям входного сигнала. В отсутствие входного сигнала потенциал инвертирующего входа больше, чем неинвертирующего и на выходе - низкий уровень. Выходной транзистор компаратора шунтирует базо-эмиттерный переход транзистора VT1 и на его коллекторе - высокий уровень. Времязадающий конденсатор С2 заряжается через резистор R7 до уровня, превышающего второе опорное напряжение, сформированного делителем R8R9, поступающего на инвертирующий вход второго компаратора DA1.1. Между его выходом и неинвертирующим входом включен резистор R10, обеспечивающий гистерезис переключения данного каскада. Выход подтянут резистором R11 к шине питания и на нем присутствует низкий уровень сигнала. Такой вариант можно использовать, если предусматривается управление электромагнитным реле. При этом схема дополняется выходным ключевым транзистором, подключенным аналогично аналогично VT1. При низком уровне выходного сигнала компаратора DA1.1 его базо-эмиттерный переход будет шунтироваться выходным транзистором компаратора, а сам дополнительный выходной транзистор - заперт и реле обесточено. Если нужно, чтобы выходной сигнал в отсутствие входного имел высокий уровень, входы второго компаратора DA1.1 нужно поменять местами. Такой вариант применяется для световой индикации появления сигнала. Тогда последовательно с резистором R11 включается светодиод, который не будет светиться, пока не появится входной сигнал. Дроссель L1 и конденсаторы C3C4 образуют фильтр по питанию. Собственно, дроссель является опциональным (необязательным) элементом и его можно исключить. Но лучше оставить, если ток потребления реле будет достаточно большим, а источник питания этой схемы - маломощным. При появлении входного сигнала первый компаратор DA1.2 будет срабатывать всякий раз, как его уровень превысит уровень первого опорного напряжения. На его выходе при этом периодически будет появится высокий уровень, транзистор VT1 будет открываться и разряжать конденсатор C2. На выходе второго компаратора DA1.1 появится высокий синал, также открывающий дополнительный выходной транзистор (не показан). Реле сработает. Собственно, всё это показано на эпюрах под схемой. В таком состоянии схема будет находиться всё время, пока входной сигнал не пропадет и вновь не зарядится конденсатор С2 до уровня, превышающего второе опорное напряжение. При данном соотношении R7C2 это время составляет около 5...10 с (зависит от тока утечки конденсатора С2 и значения второго опорного напряжения). Устройство световой индикации аудиосигнала выполнено на печатной плате. Красным обведены дорожки, подведенные к обеим входам второго компаратора. Ненужные следует пересечь. "Ненужность" определяется необходимым уровнем выходного сигнала, который следует получить. Дополнительного ключевого транзистора и реле на плате нет, их нужно доразвести. Переключатель SA1 обеспечивает два времени задержки отключения: около 5 с для настройки (при разомкнутом переключателе) и около 30 с (при замкнутом) - для штатной работы. Гистерезис во второй компаратор не введен, т.к. он обеспечивается за счет небольшой просадки питающего напряжения при зажигании светодиода. Общий вид готовых устройств. Питается оно от китайского зарядника для мобилок. Что осталось непонятно - спрашивайте. Индикатор.lay
  45. 1 point
    Уже много лет пользуюсь звуковым пробником-прозвонкой. Подробно описан тут: http://forum.cxem.ne...140#entry414343 Добавить к написанному нечего. А седни релил сваять еще одну схему, разработанную NOPROBLEM (с "Казуса"). Также подробно описана тут: http://forum.cxem.ne...40#entry1785037 Собственно, схема: Добавлен конденсатор по питанию, выключатель и светодиодный индикатор включенного состояния, т.к. схема постоянно потребляет ток от источника питания и требует отключения в нерабочем состоянии. Изменен номинал резистора R (увеличен до 680 Ом), т.к. частота при К.З. щупов оказалась слишком большой, а звук из динамичка - слишком тихим. При этом существенно снизилась чувствительность к большим сопротивлениям (при номинале 100 Ом замыкание просто пальцами давало треск с частотой около 30...40 Гц). Однако, для практических целей всё равно достаточна. Печатка: Фото (первый вариант печатки, менее удачный на мой взгляд, чем выложенный выше, но рабочий): Сейчас у меня она на тестовом прогоне (испытаниях). Первое впечатление - хорошее. Прозвонка.lay6
  46. 1 point
    Выловил меня намедни мой старинный приятель - инженер студии звукозаписи с предложением сваять ему десяток активных микрофонных модулей на электретных микрофонах. Нужно это ему для озвучивания очередной церкви (меня всегда удивляла прижимистость батюшек, не желающих заплатить за промышленно выпускающееся оборудование, ну да Бог им судья). В качестве основных требований было: а) Два электретных микрофона параллельно; б) Дифференциальный (парафазный выход для работы на длинный кабель до пульта). в) Питание от фантомного напряжения +48 В, поступающего с микшерного пульта. Хозяин - барин. Хочет "белый верх, черный низ" - пожалуйста. Любой каприз за его деньги. На первый взгляд задача тривиальна, но она заинтересовала меня двумя моментами: 1) Микширование двух и более электретных микрофонов по входу предусилителя (законченной рабочей реализации такого нигде не встречал, хотя на форуме несколько раз появлялись темы по подключению двух электретных микрофонов); 2) Возможность реализации своей старой задумки, заключающейся в дифференциальном включении электретного микрофона. Приятель настаивал на "классической" схеме, в которой предусиление с микрофона осуществляется на одном ОУ, а второй ОУ инвертирует выходной сигнал первого для подачи в двухпроводную дифференциальную линию. Я решил сильно не спорить, а сваять две схемы - "классическую" и свою "дифференциальную". "Классическая" схема: отличается от известных разве что суммирующим включением двух микрофонов через цепочки C1R3 и C2R4 к инвертирующему входу ОУ DA1.2. В качестве ОУ предполагался TL062, как имеющий очень низкий собственный ток потребления (менее 0,5 мА), что существенно для питание от фантомного напряжения, которое не может выдать ток более 7 мА по каждому проводу. Однако, из-за того, что, модули нужны были, как всегда, "на вчера", поставил JRC4885 (3,5 мА типовых). Печатка: Параллельно была отсимулирована в Мультисиме схема дифференциального включения электретного микрофона, подтвердившая свою принципиальную работоспособность: Эквивалентная схема электретного микрофона - Q1V3. Теперь надо было решить задачу микширования сигналов с двух дифференциально включенных микрофонов. За основу был взят первый каскад инструментального усилителя (без третьего ОУ). Поскольку для адекватного микширования требуется минимальное входное усиление микширующего каскада (чтобы максимально развязать источники сигналов), сигналы были поданы на инвертирующие входы, тогда как на неинвертирующие - "искусственная средняя точка". Эпюры напряжений: относительно общего провода по переменному напряжению: Дифференциальный сигнал между выходами ОУ: Окончательная схема: Полярность включения C1C2 и C3C4 ПРАВИЛЬНАЯ! Резистор R12 нужен! При его номинале 10 кОм появлялись ВЧ шумы. При снижении до 2 кОм - НЧ шумы. Диоды VD1-VD4 на обеих схемах защищают выходы ОУ от бросков напряжения при подаче фантомного питания. Печатка: Фото собранного модуля: Второй модуль просто не фотографировал (есть же печатка - и достаточно). Обе собранные платы были оттарабанены на студию и подключены к пульту. Обе заработали сразу же. Поэтому режимы не измерял. К "классической" плате были подключены новые микрофоны, а к "дифференциальной" - Б/У от Панасоника. "Классика" при прослушивании на "уши" выдала "бубнение" по низам, а "дифференциальная" - отличны прозрачный звук. На положение крутилки Gain внимания не обратил, но фейдер в положении минус 12 дБ обеспечил полное зажигание линейки уровня сигнала. На расстоянии 1...1,5 м ото рта говорящего, при спокойном, не форсированном разговоре! Для чистоты эксперимента микрофоны поменяли местами. Теперь "забубнила" "дифференциалка", а "классика" показала отличный результат. Иными словами, существенной разницы между схемами на слух выявлено так и не было. "Грязь" выдавали сами микрофоны. С "классики" (с микрофонами от Панасоника) сняли частотку при воздействии шумового сигнала. Делалось это на компьютере с помощью какой-то дорогой приставки. Поскольку все делалось в темпе "давай-давай!" я нюансами не интересовался. При следующей встрече, если будут вопросы, уточню. Существенной разницы между формой кривой со звуковой карты и ответкой с микрофона выявлено не было (менее 0,5 дБ). Итак, схема дифференциального включения электретного микрофона продемонстрировала свою принципиальную работоспособность, однако существенных преимуществ перед "классической" схемой с инвертированием сигнала первого ОУ не показала.
  47. 1 point
    Что меня поражает: схемы ЛБП традиционно выполняются на ОУ. И настолько этот постулат въелся в сознание, что другое даже себе не представляется. Я не имею в виду дискретные компоненты! Именно интегральные микросхемы. А задумывался ли кто-нибудь о быстродействии ОУ, да еще при их последовательном включении? Видимо, нет. А я вот задумался и щас кого-то, наверное, очень сильно удивлю. Так что крепче держитесь за стул. Не так давно я макетировал схему терморегулятора и прифигел от результатов. Повторил в симуляторе (Мультисим) - получил то же самое. Поэтому иллюстрации к данному посту выполнены в виде "осциллограмм" из Мультисима. Не вижу смысла гонять паяльник, если результат практически один-в-один. Итак, давайте сравним самые банальные микросхемы - ОУ LM358 и компаратор LM393. Их внутренняя структура приведена на рисунке ниже: Как видим, за исключением двухтактного выходного каскада (обведено рамкой) и некоторых различий в токах, формируемых генераторами тока, обе микросхемы очень похожи (НЕ идентичны, а именно похожи). В Мультисиме включил их параллельно в режиме компаратора. Для выхода LM393 подключил нагрузочный резистор 2 кОм. На вход подал прямоугольный сигнал частотой 5, 50 и 500 кГц. И вот что получил на выходе. Красный трек - "осциллограмма" с выхода ОУ LM358, синий - компаратора LM393. Частота 5 кГц: Компаратор формирует четкие прямоугольные импульсы. С выхода ОУ фронты завалены. Частота 50 кГц. Компаратор формирует четкие прямоугольные импульсы. С выхода ОУ - хиленький треугольник. Частота 500 кГц (!!!) Компаратор формирует прямоугольные импульсы со слегка заваленными фронтами. С выхода ОУ - фиг знает что. Это я специально взял отнюдь не самые лучшие приборы! Токмо чтобы показать разницу в работе.
  48. 1 point
    Для сборки НЧ генератора синуса и меандра потребовалась мне резистивная оптопара (АОР124). В магазинах не нашел, поэтому заказал десяток фоторезисторов GL5549 и купил в местном магазине белые яркие светодиоды - решил "сколхозить" оптопару. Для трубки, в противоположные концы которой будут вставлены светодиод и фоторезистор, я взял корпус от старого конденсатора БМТ-2, спилив его торцы. Далее на ножки светодиода и фоторезистора надел уплотнительные резинки, которые стояли в том же конденсаторе, и вставил в трубку. Немного обжал концы трубки пассатижами, одел в термоусадку и промаркировал. Оптопара готова!
  49. 1 point
    Понадобилось мне отобрать парочку трансформаторов из кучки, выпаянных из дежурок. Причем, в эту кучку я их сбрасывал не глядя, так что скорее всего, какие-то могли попасть и с короткозамкнутыми витками. Да и с вторичными обмотками разобраться надо было точно. Какое выходное напряжение и какой полярности. Поэтому быстренько слепил на макетке обычный блокинг-генератор на высоковольтном транзисторе (! КТ805Б пробился через пару секунд работы!). Такой себе "мини-генерототтор". А потом опять-же по-быстренькому слепил печатку размером 25 х 40 мм, распаял ее, апробировал и закинул в коробку с подобными "простыми схемами". Входов у схемы четыре: два - для подключения 220 В и два - плюс и минус 56 В (столько у меня выдает ЛБП). Если схема заводится от 56 В, то подключение ее к 220 В является только контрольным тестом. Ну, и проверить, какой номинал резистора смещения (составленного из двух последовательно - постоянного R1 и переменного R2) будет нужен для надежного запуска. К выходам подпаяны 4 многожильных проводочка с однополюсными мини-разъемами для подключения к выводам трансформатора. Взяты от комплекта соединительных проводов от старого компьютерного корпуса. С помощью этого приспособления за час проверил больше десятка трансформаторов, нашел один, не работающий ни при каких подключениях к первичным обмоткам (пойдет на перемотку), отобрал подходящие и определился с разводкой вторичных обмоток для разводки ПП. Контроль осуществлял осциллографом. Вроде бы и всё.
  50. 1 point
    1. Знаешь, что ничего не знаешь. И это действительно так. 2. Уверен, что знаешь всё и "держишь Бога за бороду". Еще называется "звездная болезнь". 3. Понимаешь, что действительно ничего не знаешь. 4. Убедился, что ничего таки не знаешь, но УЧИТЬСЯ, ОКАЗЫВАЕТСЯ, БОЛЬШЕ НЕ У КОГО!..
×
×
  • Create New...