Перейти к содержанию

Поиск сообщества

Показаны результаты для тегов 'ЛБП'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип контента


Форумы

  • Вопрос-Ответ. Для начинающих
    • Песочница (Q&A)
    • Дайте схему!
    • Школьникам и студентам
    • Начинающим
    • Паяльник TV
    • Обсуждение материалов с сайта
  • Радиоэлектроника для профессионалов
    • Автомобильная электроника
    • Питание
    • Ремонт
    • Системы охраны и наблюдения. Личная безопасность
    • Роботы и модели на ДУ-управлении
    • Световые эффекты и LED
    • Самодельные устройства к компьютеру
    • Программное обеспечение
    • Металлоискатели
    • Автоматика
    • Электрика
    • Промышленная электроника
    • Измерительная техника
    • Мастерская радиолюбителя
    • КВ и УКВ радиосвязь
    • Радиопередатчики
    • Сотовая связь
    • Спутниковое ТВ
    • Телефония и фрикинг
    • Высокое напряжение
    • Идеи и технологии будущего
    • Справочная радиоэлементов
    • Литература
    • Схемотехника для профессионалов
    • Разное
  • Аудио
    • FAQ, Технологии и компоненты
    • Для начинающих
    • Источники звука
    • Предусилители, темброблоки, фильтры
    • Питание аудио аппаратуры
    • Усилители мощности
    • Акустические системы
    • Авто-аудио
    • Ламповая техника
    • Гитарное оборудование
    • Прочее
  • Микроконтроллеры
    • МК для начинающих
    • Arduino, ESP32, ESP8266, Raspberry Pi
    • AVR
    • STM32
    • PIC
    • ПЛИС
    • Другие микроконтроллеры и семейства
    • Алгоритмы
    • Программаторы и отладочные модули
    • Периферия и внешние устройства
    • Разное
  • Товары и услуги
    • Коммерческие предложения
    • Продам-Отдам, Услуги
    • Куплю
    • Уголок потребителя
    • Вакансии и разовая работа
    • Наши обзоры и тесты
  • Разное
    • Курилка
    • Сайт Паяльник и форум
    • FAQ (Архив)
    • Технический английский (English)
    • Личные блоги
    • Наши проекты для Android и Web
    • Корзина
    • Конкурсы сайта с призами
    • Вопросы с VK
  • Переделки ATX->ЛБП
  • Переделки разные темы
  • Киловольты юмора Юмор в youtube

Блоги

  • Твори, выдумывай, пробуй.
  • fant's блог
  • Ток покоя
  • Где купить велпатасвир, epclusa, velpanat, velasof, софосбувир в России по лучшей цене.
  • Китайские бренды видеокамер
  • Создание Маленькой Мастерской
  • Блог администрации
  • STEN50's блог
  • Изучение, наладка, исследование
  • MiSol62's блог
  • короткие записки по ходу дела
  • Программирование AVR и PIC блог
  • Стабилизированный выпрямитель тока ТЕС 12-3-НТ
  • Блог getshket
  • ТНПА
  • welder's блог
  • blog cheloveka loshadi
  • OPeX3's блог
  • Подводная робототехника
  • Сабвуфер и акустика.
  • Радиоуправляемая машина
  • Консультация психолога сексолога онлайн, психолог онлайн
  • Nokian блог
  • Оповещения Dermabellix Scam !! Не покупайте это !!!
  • Cheerful Boss' блог
  • Cheerful Boss' блог
  • VLAD1996B's блог
  • "Коллективное увеличение продаж"
  • Dudok's блог
  • "Коллективное увеличение продаж"
  • Goluboglazyi's блог
  • Прибор определяющий электролитический конденсатор на работоспособность.
  • Mosfet@'s блог
  • mazzi's блог
  • Лучшие компьютерные игры 2017
  • Marchenkokerya's блог
  • Заметки начинаущего аудиофила
  • Почти бесполезные проги
  • Светлый блог.
  • дядюшка Филин's блог
  • Дневники нуба
  • satyrn's блог
  • Люк. В погреб.
  • Фильм Дом Солнца
  • Светодиодная лента B-LED 2835-120 W белая негерметичная
  • Само-Реплицируещиеся Производственные Системы
  • Блог от Eknous
  • РВС's блог
  • Den_R's blog
  • РВС's блог
  • Чтото крутое и про криворукость
  • ekadom's блог
  • Проектирование любых чертежей
  • Lisovic's блог
  • Блог уже не юного радиогубителя
  • денди
  • eHouse
  • zaregan's блог
  • Схемотехника УНЧ с низковольтным питанием на примере приёмников фирмы Grundig
  • То, что в руки попало.
  • Блок питания водородного генератора и все что с ним связано
  • slava_va@mail.ru's блог
  • Блог alex123al97
  • slava_va@mail.ru's блог
  • параленое соединение КРЕНок или как сделать стабилизатор напряжения 24-12в
  • Свободная генерация Андрея Мельниченко
  • реобас
  • Модернизации системы впрыска на 555
  • помощь
  • Копии схем и печатных плат устройств попавшие ко мне
  • MBM75's блог
  • Буду
  • lagutai's блог
  • Мои проекты.
  • lagutai's блог
  • Трудовик
  • vOVK@'s блог
  • токарь-радиолюбитель
  • azlk3000's блог
  • Коллизия сингулярности
  • SmallAlex's блог
  • Вопрос по Цифровому усилителю мощности звука 2x12 Вт YDA138-E
  • bebulo's блог
  • Простейший макет станка термо-вакуумной формовки
  • Блог им. pryanic
  • peratronika
  • Zer's блог
  • MEDBEDb's
  • Гнездо кукушки
  • hiMiческий блог
  • luna_kamen's блог
  • Изучаем USI на основе сверхэкономичного прототипа
  • Алекс-Юстасу
  • SUBWOOFER.RU
  • kot sansher's блог
  • Поделки стареющего пионера
  • доброжелатель2's блог
  • Grig96. Полезные заметки.
  • Attiny 0-ой и 1-ой серии (Attiny817, 1614 и прочие)
  • pavlo's блог
  • MSP430FR
  • viper2's блог
  • Моя Электро Чинильня
  • Selyk's блог
  • VoltServis.ru
  • kpush's блог
  • OM3 на новых платах.
  • конни's блог
  • Электронный экстазёр "MASHKA".
  • ptimai's блог
  • noc functionalities
  • Sun kapitane's blog
  • ODEON AV-500
  • Sun kapitane's blog
  • Логика на транзисторах,диодах, счетние тригери на транзисторах
  • AleksandrBulchuck's блог
  • Качественные окна от производителя
  • KRALEX's блог
  • Javaman's projects
  • SeVeR36's блог
  • 3232
  • Пять копеек.
  • Az@t's блог
  • Индукционный нагрев
  • Схемы разных устройств
  • Кардшаринг SAT ТВ блог
  • PENTAGRID SAYS
  • Ещо раз о "Кощее 5И"
  • Игровые автоматы на официальном сайте
  • коллекционер
  • дямон's блог
  • Ламповый усилитель и акустика для озвучки семейных мероприятий
  • дямон's блог
  • tiosmutoutrup1971
  • Светомузыкальная установка для новачков
  • Лучшие игры для ПК скачать бесплатно
  • sqait's блог
  • Блокнотик
  • Gubernator's блог
  • Записки электрика
  • Полстакана
  • Vrednyuka
  • Интегральные микросхемы
  • grigorik's блог
  • Интегральные микросхемы
  • VMWare удобство и безопастность
  • Профсоюз обычных пользователей
  • rtfcnf's блог
  • Гидроэнергетика в России: отечественные гидроэлектростанции, типы и характеристики
  • VMWare удобство и безопастность
  • Лайфхаки от Кати
  • Kinh chong anh sang xanh gia re
  • ukabumaga's блог
  • АО "Диполь Технологии"
  • artos5's блог
  • блог
  • Kraftwerk's блог
  • 1
  • Kraftwerk's блог
  • Как выбрать точечный светильник?
  • мастерская ky3ne4ik'а
  • Работа с микроконтроллером Atmega8
  • Aronsky
  • Игорь Камский
  • Диммеры
  • 5В = 1,5+3
  • vitiv' блог
  • Ремонт цифровой панели прибора тойоты марк 100. Замена транзистора 36 ( SOT- 23 )PNP
  • Все СРО России
  • 300writers
  • Металлоискатель Tracker FM-1D3
  • Былое
  • Создание монстра "Blaster 8920"
  • 2Smart Cloud Blog
  • EmmGold's блог
  • 2Smart Cloud Blog
  • ivan15961596's блог
  • Кумир у-001
  • ivan15961596's блог
  • My blog
  • Интернет радио в машину
  • SamON
  • Помогите люди добрые
  • AI
  • Помогите подключить маяк 231 стерео.
  • Гаусс-пушки
  • Название
  • 7400's блог
  • Как я собирал свой первый импульсный источник питания
  • Віталік Приходько_130349's блог
  • Lithium ECAD - российская САПР печатных плат
  • Евгений Малюта's блог
  • ПИшу свои мысли
  • werekpro
  • Venera Electronica
  • afurgon's блог
  • Выбросьте это в парашу!
  • odaplus' блог
  • Zvik's блог
  • Smart overload protection power amplifier «Zita (Z) ThermalTrak™»
  • радиоэлектоника
  • BoBka777's блог
  • МиУЗР - Модернизация и Усовершенствование Звуковой Радиотехники .
  • aleksey9900's блог
  • Лабораторная блок питания
  • Нашел статью о пайке проводов к светодиодов
  • Китайский городовой
  • Костик0's блог
  • УФ лампа для маникюра SK-818
  • 8 Contrasts Between Web Servers and Application Servers
  • Конденсатор
  • Новости, обзоры и другая полезная информация от ИМ "Радиодар"
  • Цветомузыка
  • OPeX3's блог
  • Sem2012's блог
  • это не хлам – это часть моей жизни
  • Контроллер на базе ПК (OS Win LTSC)
  • OdiS' блог
  • Хитрости строителя
  • aleksfil's блог
  • Color Preamp - предусилитель на лампах 12AU7
  • Проблема с зарядкой литиевого аккумулятора для шуруповерта 21 вольт
  • EmmGold's блог; AVR
  • Микроэлектроника
  • З
  • CH32V
  • Блог Плотникова Ильи
  • Бесплатные радиодетали с Алиэкспресс
  • Повышение качества и снижение временных затрат при испытаниях электронных компонентов с помощью отечественного испытательного оборудования
  • Источники питания MEAN WELL
  • Жизнь и рыбалка
  • yureika's блог
  • Глушитель спутникогого интернета
  • Всякая всячина
  • Для начинающих
  • Ignite your senses with the grace and allure of female escorts near Laguna Niguel
  • Fumitox's блог
  • Наш-RXT6 топ-10 на январь 2023: Лучшие сайты онлайн казино в России
  • Лицензионные казино онлайн в 2024 году на реальные деньги
  • Самоделки блог
  • Домашняя автоматика
  • Интересное и полезное
  • Ремонт Амфитон 35у-101с
  • ульян's блог
  • Свет в грузовой газели
  • Блок питания 0-12В для начинающих
  • Dimko's блог
  • Иван Самец's блог
  • SolomonVR's блог
  • gendzz's блог
  • fleh138's блог
  • Электроника forever!
  • aleksejhozhenets' блог
  • aleksejhozhenets' блог
  • diserver блог
  • aleksey290476 блог
  • ВАРГ's блог
  • Люстра Чижевского
  • wanes101's блог
  • voldemar2009's блог
  • Jana's блог
  • Jana's блог
  • Рена Искужин's блог
  • abduraxman7's блог
  • Kuzumba's блог
  • Самопальник
  • заработок через интернет на запчасти!!!
  • electric.kiev's блог
  • lolo's блог
  • leravalera's блог
  • ideomatic's блог
  • приглашаем на работу инженера-радиоэлектронщика
  • FREEMAN_77's блог
  • Блог автоэлектрика
  • Блог начинающего электронщика
  • Dersu's блог
  • Электроэнергия и её экономия!
  • Электроэнергия и её экономия!
  • Семён Ковалёв's блог
  • piligrim-666's блог
  • помогите с партотивной калонкой
  • помогите с партотивной калонкой
  • Музыка в стене.
  • m-a-r-i-k-a's блог
  • cosmos44's блог
  • oyama14's блог
  • блог Виталика!
  • ciornii's блог
  • Великий и Ужастный блог
  • Denis__Ricov's блог
  • Universal12's блог
  • Sprut's блог
  • Alexeyslav's блог
  • cosmosemo's блог
  • Заметки радиолюбителя
  • Falconist. Мемуары
  • Блог MillyVolt
  • усилитель импульсов
  • Panasonic sa-ak 18
  • Простое радиоуправление из того, что было.
  • 35house
  • Блог Радиочайника
  • Блохи iiiytnik'a
  • Хороший сервис- Бяка
  • Аудиолаборатория "Философия Звука"
  • ОколоCADовое
  • Блог KVLADS
  • Короп блог
  • Автоматизация котла Protherm MTV
  • Бложиг Касянича
  • Обо всём
  • Эксперимент
  • No electronics
  • ПРИРОДА СВЕТА и ЕГО ВОЗМОЖНОСТИ
  • Генератор на xr2206
  • HTPOWLASER
  • Когда-то были очень популярны у радиолюбителей
  • AVR - микроконтроллеры
  • Микроконтроллер
  • Самодельный автосимулятор
  • Интернет-магазин керамической плитки «Боярская Плитка»
  • Разработка электронных метрических мишеней IPSC для мягкой пневматики (страйкбол)
  • ,

Поиск результатов в...

Поиск контента, содержащего...


Дата создания

  • Начало

    Конец


Дата обновления

  • Начало

    Конец


Фильтр по количеству...

Регистрация

  • Начало

    Конец


Группа


Skype


ICQ


Интересы


Город


Сфера радиоэлектроники


Оборудование

Найдено: 25 результатов

  1. Схема является результатом опытов над ЛБП Шелестова. Напряжение на выходе до 35 вольт, ток до 2А. Выходное сопротивление примерно 0,002 Ом. Регулирующий транзистор (IRF640 Cinput=1370pF) по схеме с ОИ. Амперметр показывает установленный ток ограничения до подключения нагрузки к выходу ЛБП. Кнопка подключения нагрузки On/Off без фиксации. Схема On/Off из Радио №1 2015. Нагрузка подключается через VT8. Схема работает без возбудов и выбросов на TL072 с выходной ёмкостью 0,1+5 Ом последовательно. Наилучшая переходная характеристика (ПХ) получилась на LM34072. Для исключения выбросов при включении и выключении и полного перфекционизма, блок питания имеет задержку подачи +12 питания ОУ при включении ЛБП ~1секунда и запирает регулирующий транзистор за 5мс при выключении. Для точной оптимизации ПХ при использовании различных полевиков и ОУ и С1 достаточно подстроить Су, R12, и иногда Ст. Су - ускоряющий реакцию ОУ и тем уменьшающий выброс при восстановлении. Ст обычная коррекция ОУ_тока, только с охватом светика. Такое включение уменьшает выброс на шунте. Я использую для Су КПЕ с редуктором. Для настройки на выход ставим минимальную ёмкость, чтобы было лучше видно шероховатости на ПХ. Для получения ПХ на выход ЛБП ставил IRF3205, на затвор которого подавал прямоугольник от ГЗ-106. Всякие самодельные генераторы и компараторы, с драйверами и без, давали далекую от прямоугольника форму на затворе. Рекомендую использовать на выходе ЛБП ёмкость от 10,0. Ставить на выход аналоговых ЛБП и кренок конденсаторы с низким ESR, без последовательных резисторов увеличивающих ESR, нельзя. Светодиод CV можно заменить диодом КД522. При шунте 0,1 Ом максимальный ток ~6A, при большем токе откроется VT4 и ограничит рост тока. На выходе стоит источник тока VT2, VT3, нагружающий ЛБП током ~15mA. R29 в БП настраивается чтобы пила на затворе VT9 не поднималась выше нуля. Хорошо выглядит ПХ для TLE2062. На картинке с TL2062 емкость не 1,0 а 0,1. У меня не хватает знаний, опыта и извилин, чтобы сразу нарисовать идеальную схему, поэтому, я надеюсь, что со схемой еще можно повозиться. Можно для каналов напряжения и тока использовать разные ОУ. По моему опыту, для канала напряжения лучше ОУ помедленнее, а для тока лучше быстрые ОУ. В архиве 2 схемы в Spl7, печать для низковольтного. Печатка в реале не изготовлялась. Для низковольтного ЛБП коммутатор можно взять здесь - https://forum.cxem.net/index.php?/topic/86696-схема-переключения-обмоток-трансформатора-для-лбп/&do=findComment&comment=3252159 LBP-BV.rar При использовании схемы для высоковольтного ЛБП необходимо увеличить R10 пропорционально увеличению выходного напряжения, и составить его из двух резисторов, и изменить напряжение на регуляторе тока R6, чтобы максимальный ток при заданном падении на транзисторе не повысил мощность на корпусе ТО-220 ~25 ватт. Нужно увеличить Rш, при максимальном токе ЛБП, например 200мА, Rш=3 Ома. Можно добавить встречно-параллельные диоды типа КД522 на 3 ногу DA1.1. А также диод последовательно со стабилитроном ~15V на затвор-исток регулирующего транзистора. Так как для ограничения тока использована часть всего диапазона, то возможна градулировка линейного регулятора тока прямо в мА. Для китайских переменных резисторов линейная кривая обзначается B. Максимальное напряжение ЛБП ограничено только Drain-Source Voltage полевика VT1. VT2 и VT8 тоже нужны высоковольтные. Кнопка подключения нагрузки On/Off с фиксацией. Для коммутатора можно использовать унифицированные трансы с вторичками на 28 и 56 вольт. Можно взять схему коммутатора работающего в коде 1-2-4, три реле дают 7 ступеней - https://forum.cxem.net/index.php?/topic/76820-простой-и-доступный-бп-050в/&do=findComment&comment=3239732
  2. Лет 10 назад собрал простой блок питания для простых нужд. Расчетов никаких не производил, просто имел трансформатор с какого-то советского лампового бобинного магнитофона, с которым объединил несколько готовых решений из инета, придумал схему защиты на основе превращения геркона в токовое реле (намотка на герконе токовой обмотки) с действием на шунтирующий цепь управления тиристор, а после взял это все и собрал на скорую руку из подручных материалов в корпусе компьютерного БП АТХ без соблюдения производственной эстетики. Также в БП реализована схема регулирования оборотов кулера в зависимости от температуры общего радиатора, на котором размещены диодный мост и полевой транзистор силовой цепи. При комнатной температуре кулер не вращается. Параметры блока питания: - регулировка напряжения: 0-13,8В; - номинальный ток: до 3,6А (ограничен паспортными данными обмоток трансформатора); - токовая отсечка: 4,7А. БП до сих пор служит верой и правдой. Цель поста - просто поделиться схемой, может кому пригодится.
  3. Понадобилось мне отмакетировать некоторые узлы регулируемого стабилизатора напряжения. Пошарил по сусекам, пооткапывал комплектовку, которая, как чемодан без ручки, валялась без дела, а земноводное крепко держало за руку, стремящуюся их выкинуть. А выяснял я следующие вопросы, взяв за основу схему простейшего стабилизированного параметрического БП: 1) Перемещение датчика тока (ДТ) из общей шины в шину питания с переводом сигнала управления выходными силовыми транзисторами относительно общей шины. Обоснование: а) Падение напряжения на R2, в общей шине после ИОН (VD1) в параметрическом стабилизаторе без ООС ведет к снижению выходного напряжения по мере увеличения выходного тока. Да и вообще, такое включение ДТ мне всегда интуитивно не нравилось, даже в схемах на ОУ. б) Включение ДТ в шину питания требует применения двух транзисторов (p-n-p, который уже управляет n-p-n), коэффициенты усиления которых перемножаются, вследствие чего не исключена возможность развития самовозбуждения. 2) Разницу в работе составных транзисторов двух- и трехтранзисторного состава. 3) Возможность получения максимального выходного напряжения, обеспечиваемого трансформатором, даже без его стабилизации по выходу. Такой вариант применения БП в практике имеет место быть и довольно нередко, например, для запитывания моторчиков, реле и т.п. 4) Последний по порядку, но идущий в первых рядах по значимости вопрос - отсутствие каких-либо выбросов выходного напряжения при включении и выключении БП. В итоге получилась вот такая схема: Варианты двух- и трехтранзисторного выходного повторителя обведены пунктирными рамками. Для трехтранзисторного варианта вместо перемычки J устанавливается резистор R9, резистор R8 исключается, а резистор R10 устанавливается непосредственно между выводами силового выходного транзистора. Транзистор VT7 устанавливается на радиатор с VT6. Конденсатор С5 установлен непосредственно между выходными клеммами. ДТ выполнен на резисторе R6, падение напряжения на котором открывает p-n-p транзистор VT3, который, в свою очередь, управляет n-p-n транзистором VT4, закорачивающим на общую шину управляющий сигнал с движка переменного резистора R3 при превышении максимально допустимого выходного тока (в частности, КЗ по выходу). Опорное напряжение формируется стабилитроном ZD1 на 22 В (Sik!), запитываемым стабилизатором тока на VT1, VT2, который, в свою очередь, питается удвоенным входным напряжением, формируемым удвоителем на конденсаторе C1 и диодах VD1, VD2. Хочу отметить, что выход зашунтирован конденсатором всего-навсего 1 мкФ Печатная плата универсальна для обоих вариантов выходного повторителя (файл в формате *.lay6 приаттачен): К контактам X+ и X- подключено питание 3-разрядного цифрового вольтметра. Его третий сигнальный вход подключен к выходной клемме X9. После прогона работы различных вариантов схемотехники возникла мысля оформить всё это в корпус, поскольку на работе БП мне всё равно нужен. Решено - сделано. Вот что получилось: Внутри "Лицо", вольтметр показывает максимальное выходное напряжение на холостом ходе. Многократное короткое замыкание выходных клемм не приводило ни к каким негативным результатам. Токовая защита честно отрабатывала свои 1,75 А (максимальный ток примененного трансформатора) при номинале токоизмерительного шунта, указанного на схеме. Т.е., порог срабатывания составил около 0,6 В (как в книжке написано). Вводить переключатель порога срабатывания токовой защиты на меньшие значения я посчитал нецелесообразным, хотя, при желании, его можно и ввести. Результаты апробации схемы: 1) Перенос ДТ в шину питания вполне работоспособен, никаких признаков самовозбуждения при его работе не отмечается, а "чистая" (без каких-либо "вставок") нулевая шина обеспечивает достаточно высокую стабильность выходного напряжения для данной простой схемы. Выходное напряжение, выставленное на ХХ на 10 В (по внешнему 4-разрядному тестеру) снижается всего на 0,1 В при токе 1 А (на резисторе номиналом 10 Ом). Результат не идеальный, но вполне приемлемый. Тем более, что БП снабжен вольтметром, по которому всегда можно подкорректировать выходное напряжение при разных токах нагрузки. 2) Особой разницы в работе двух- и трехтранзисторного повторителя лично я не отметил. Снижение выходного напряжения при нагрузке 1 А относительно режима ХХ составило, соответственно, 0,1 и 0,08 В. Коэффициент стабилизации (при колебаниях сетевого напряжения питания) я не измерял ввиду отсутствия ЛАТРа. 4) Никаких выбросов выходного напряжения при включении и выключении БП не наблюдалось. При коротком замыкании выходных клемм наблюдалась слабая искра (что естественно, поскольку разряжался шунтирующий их конденсатор), но отнюдь не дикая искра, как при разряде конденсатора на 2200 мкФ, как рекомендуется многими разработчиками, оказавшимися не в состоянии "победить" самовозбуждение спроектированных ими многокомпонентных "монстров". Выходное стабилизированное напряжение с примененным трансформатором составляет 0...15 В. Максимальное нестабилизированное - 19,5 В. РЕЗЮМЕ: По своим характеристикам данная схема вполне обеспечивает подавляющее большинство запросов начинающего радиолюбителя на лабораторный блок питания начального уровня. Её "сложность" на самом деле кажущаяся, поскольку повторить готовую схему на готовой печатной плате никакой особой проблемы не составляет. P.S. Компоненты использованы самые "бросовые", поскольку если схема работоспособна и на них, то на более качественных точно будет работать, как должно. ЛБП.lay6
  4. Пытаюсь собрать блок питания из ATX блока питания от ПК. Насчет БП ATX всё вроде бы понятно. Беру с этого блока 12V. Дальше подаю на вот такую схему для регулировки напряжения(схема ниже). Номиналы R1 = 100, R2 = 10K. Сначала всё работало. Потом резко напряжение упало до 0. Микросхема стоит на радиаторе с термопастой. Микросхема в корпусе ТО-3. Согласно даташиту от lm338 у меня подключена по такой цоколевке(на картинке). После падения напряжения до 0 пробовал искать неисправность. Оба резистора рабочие, напряжение питания 12V. Все работает. Неужели сгорела микросхема? И второй вопрос: Какие для этой схемы лучше использовать номиналы резисторов? R1 - 120 не было, поставил 100. По моему это не критично.
  5. Я делаю свой ЛБП на базе самодельного DC/DC и блока питания от ноута DELL (выход AC/DC во вход DC/DC). Я решил проверить, работает ли БП Dell, для этого я отрезал штекер, чтобы сверить напряжение мультиметром. Перед включением я проверил провода на КЗ. При включении БП он взворвался, даже дырку в пластиковом корпусе проделал... У меня есть еще один блок питания от той же фирмы и боюсь его подсоединять к DC/DC, вдруг опять взорвётся и заодно убьет мою плату. Вопрос: можно ли и как использовать БП DELL не для зарядки ноутбука, а для других целей? Не помешает ли "умный" чип от Dallas?
  6. Имеется ТН61, трансформатор накальный 4 обмотки по 6.3 вольта также есть 5в отводы. все обмотки по 8 Ампер, кроме 1, которая на 6.1 А. Недавно у меня сгорел мой 1502 покупал неробочий, просто заменил транзистор и он заработал, в этот раз решил его не ремонтировать, т.к рентабельности от его ремонта нету, вольтаж низкий и ток 2 Ампера. Думаю сделать лбп на основе тн61 и повышающе-понижающего дс дс преобразователя на TL494 (схему прикреплю, схема на IRF540 но заменить его не проблема). Вольт на 30-40 и ампер на 5. Как вы думаете, проще будет перемотать какой-то трансформатор и сделать схемку на 324 компараторе или все же сделать так как я планирую. заменил некоторые номиналы для высшего вольтажа и ампеража. sepic.lay6
  7. Данная тема создана для обсуждения схемы ЛИП, описанной в одноименной записи моего блога, чтобы не забивать её флудом. К сожалению, на сегодняшний день схема не испытана "в железе", но я рискнул её выложить по причине проблем со здоровьем, дабы она не ушла вместе со мной "в мир иной", поскольку Собственно схема (минимальная): Расширенная: Печатная плата: Особенности её схемотехники описаны в записи блога, поэтому здесь приводить их посчитал излишним.
  8. Я не любитель выкладывать незавершенные проекты, не апробированные "в железе", поскольку претит "слава" Кашкарова и акаКасьяна. Однако, намедни поимел проблемы со здоровьем (прилег днем отдохнуть, а в сознание пришел уже в больнице), поэтому всё-таки выложу свою разработку, дабы не ушла "в мир иной". Пару слов по поводу терминологии. В заглавие записи вынесено слово "Источник", подразумевающее АВТОНОМНОЕ устройство для вторичного электропитания. Широко распространенный термин "Блок" относится к СХЕМЕ вторичного электропитания, ИНТЕГРИРОВАННОЙ в питаемое от неё устройство, в котором она является неотъемлемым узлом (блоком). В принципе, описываемая ниже схема может быть применена и как "Источник" и как "Блок". Её главным назначением является применимость для начинающих, вследствие своей относительной простоты при одновременно достаточно высоких эксплуатационных параметрах. Существует неплохой в целом трёхвыводный регулируемый стабилизатор LM317 - широко распространенный, дешёвый, с достаточно высоким быстродействием и т.п. Тем не менее, "И на Солнце бывают пятна" (© Козьма Прутков). В частности, относительно малая рассеиваемая мощность. Максимум 20 Вт (на фото слева), но у некоторых производителей - всего 15 Вт (тонкий фланец справа). Иными словами, при токе 1 А между входом и выходом может упасть всего 15...20 В. Встроенная защита от превышения тока срабатывает у них при токе 1,5...2,2 А, чего может быть достаточно, чтобы сжечь в хлам питаемую от него схему (устройство). В даташитах приводится схема лабораторного ИП, выполненного на двух последовательно включенных стабилизаторах, из которых первый работает, как ограничитель тока, а второй - как регулятор напряжения. Как на мой взгляд, схема "монструозная", при том, что требует еще и отрицательного напряжения для обеспечения выходного напряжения от нуля. Хотя, сколько раз я задавал вопрос, что можно питать нулем вольт - никто внятно так и не ответил. Какое-то невнятное блеяние о возможности заряда аккумуляторов или проверки стабилитронов/светодиодов. Возможно. Но нужно ли?.. В даташитах приводится также схема зарядника аккумуляторов с ограничением максимального напряжения. Эта схема "обратима", представляет собой также стабилизатор напряжения с ограничением максимального тока. На её основе еще более 3-х лет назад попытался соорудить ЛИП. Подключил к апробации "в железе" несколько желающих поучаствовать "юных дарований" (ThE_GuDocK, Alekseykk, Ruodo), потом в переписку в личке подтянулись сенька, Dr. West и Владимир65. Суть доработки заключалась в установке между выходом "out" микросхемы и выходом всей схемы на нагрузку стабистора на не менее, чем 1,25 В в виде двух последовательно включенных диодов. Обоснование такой модернизации заключается в том, что при К.З. в нагрузке потенциал управляющего входа "adj" должен быть минус 1,25 В. Однако, при единственном входном напряжении минусу взяться неоткуда, поэтому диодный стабистор должен попытаться "обмануть" её ООС, поддерживая потенциал на выходе самой микросхемы на 1,25 В плюсовее нуля на закороченной накоротко нагрузке, а значит, плюсовее управляющего электрода. сенька такую схему её апробировал, полученный результат приведен ниже на рисунке: К сожалению, в последующем исследованиями Dr. West и Владимир65 выяснилось, что при К.З. выхода ток превышает рассчитанный относительно сопротивления R4 (Rx). Иногда существенно. К сожалению, дальнейшая работа над схемой прервалась из-за моего тяжелого заболевания, потребовавшего длительного лечения, в т.ч. оперативного. И вот только сейчас появилась возможность её возобновить на новом уровне по опыту разработки схемы еще одного ЛИП - на компараторе, запись о котором выложу в ближайшее время. Стало понятным отмеченное выше превышение тока К.З. над расчетным значением. "Дьявол кроется в мелочах". Именно мелкое (на первый взгляд) изменение точки подключения коллектора мощного регулирующего транзистора перевернула всё с головы на ноги. Но об этом - чуть позже, после описания нового варианта схемотехники данного ЛИП. Ревизии был подвергнут сам принцип расположения токоизмерительного шунта в минусовом проводе. Если для измерения тока применяется R2R (хотя бы по минусовому входу, типа LM358/324) то никуда не денешься - по плюсовому проводу его не поставить. А специализированные измерители (типа AD8210, TSC103) во-первых, достаточно дороги, а во-вторых, нелегко доставабельны. Пример монструозненького стабилизатора с токоизмерением СС по минусу из даташита: Ещё одна: В обеих при К.З. в нагрузке ООС стабилизатора начинает "сходить с ума", не "понимая", как ей стабилизировать выходное напряжение. Дополнительным и существенным фактором в пользу предпринятого схемотехнического решения явилась ревизия парадигмы "Стабильного тока" - СС (Constant Current). Для ЛИП такая функция ТОЧНОЙ установки тока К.З. абсолютно бессмысленна. Источник НАПРЯЖЕНИЯ (а именно такова основная функция ЛИП) должен обеспечить питаемую от него схему (устройство) стабильным НАПРЯЖЕНИЕМ и теоретически - ЛЮБЫМ потребным для неё током. Вплоть до бесконечного значения. Повторюсь: "ТЕОРЕТИЧЕСКИ", т.к. практически полыхнет и сам ЛИП и подключенная к нему схема. Поэтому в ЛИП следует применять функцию не СС, а LC - "Limited Current" (ОГРАНИЧЕНИЕ тока)! Не имеет никакого существенного значения, будет ли он ограничен на уровне, допустим, 2,1 А или 1,9 А. С этой задачей прекрасно справляется сенсор на транзисторе с токоизмерительным шунтом, включенным между его эмиттером и базой. Исходя из этой предпосылки была разработана следующая схема (в простейшем варианте!): Токоизмерительным шунтом служит резистор R4, падение напряжения на котором отпирает составной P-N-P транзистор Дарлингтона VT2, который в свою очередь отпирает N-P-N транзистор VT3/4, шунтирующий регулятор выходного напряжения R7. Транзистор Дарлингтона применен для того, чтобы падение напряжения на резисторе R4 превышало 1,25 В, обеспечивая тем самым требуемую разницу потенциалов между выходами "out" и "adj" микросхемы. При его указанном на схеме номинале ток К.З. ограничивается на уровне около 0,3 А. Подключение резисторов R9 или R8 увеличивает его до 1 и 3 А. Принципиально важным отличием данной схемы от приведенной выше (см. схему от сеньки) является подключение коллектора регулирующего транзистора не к выходу на нагрузку, а к выходу "out" микросхемы, благодаря чему при К.З. выхода соблюдается отмеченная выше разность потенциалов между её выводами.Для желающих побаловаться с её симуляцией, приаттачен файл Мультисима. ЛИП на LM317 по плюсу.ms14 . На сегодняшний момент разработана печатная плата А поскольку ассортимент составных маломощных транзисторов Дарлингтона структуры P-N-P - всё-таки, достаточно узок, предусмотрена установка двух дискретных "обычных" транзисторов (VT2 и VT3, из-за чего на схеме такая странная маркировка "VT2/3"). Если всё-таки будет установлен именно составной транзистор, то он ставится на место VT2, а отверстия для базы и эмиттера VT3 перемыкаются перемычкой. "Расширенная" схема, в которой и регулирующий транзистор применен составным по схеме Шиклаи (поскольку ассортимент мощных P-N-P транзисторов тоже не широк), приводится ниже. Кроме составного регулирующего транзистора (VT1VT5) по известной схеме из даташита расширено количество диапазонов ограничения тока вниз (0,1 А - резистор R9) и вверх (3 А - R12). К сожалению, собрать все компоненты воедино и проверить в работе пока не удается по времени. Но в ближайшем будущем соберу и отпишусь. А теперь вернемся к "исходной" схеме с токоизмерением по минусовому проводу. Отличие заключается только в переподключении коллектора регулирующего транзистора VT1 ДО диодного стабистора. Падение напряжения на диодах должно обеспечить такую же разничу потенциалов между управляющим и выходным выводами микросхемы, как и на токоизмерительном резисторе по приведенным выше схемам. Термин "должно" применен потому, что с Мультисиме эта схема упорно не желает симулироваться - выходное напряжение постоянно остается близким к нулю. Тогда, как сенька убедительно продемонстрировал принципиальную работоспособность подобной топологии "в железе". Приаттачиваю файл симуляции для желающих побаловаться с ней. ЛИП на LM317 по минусу.ms14 По поводу выбора параметров ЛИП - см. другую запись в моём блоге: https://forum.cxem.net/index.php?/blogs/entry/493-лабораторный-ип-необходимая-достаточность/ То, что они в данной записи немного "расширены" - исключительно для желающих понабивать шишки на реализации ненужных режимов. P.S. Гложет сомнение, что изложил не всё, что хотел, поэтому, возможно, придется корректировать эту запись. P.P.S. Большая просьба желающим обсудить данную разработку, перенести дискуссию в тему созданную в ветке по аналоговым источникам питания: https://forum.cxem.net/index.php?/topic/226637-лабораторный-источник-питания-лип-на-трехвыводном-стабилизаторе-lm317/
  9. Читая форум, неоднократно поражался повальному стремлению "юных дарований" создать из лабораторного БП своеобразный "мультитул", т.е. нагрузить его кучей самых разных функций, большая часть из которых если и будет когда-либо востребована, то разве что в единичных случаях, причем, вангую, что эти случаи вообще никогда не возникнут. Тут и возможность зарядки аккумуляторов, и проверка маломощных светодиодов и стабилитронов и много чего другого. Хорошо известно, что удобство пользования мультитулом ещё никогда и ни при каких обстоятельствах не превышало удобства пользования набором специализированных инструментов. В этой связи припоминается машина изобретателя Шурупчика (из Змеёвки), описанная в книге Н.Носова "Приключения Незнайки и его друзей": Если боковой ход может пригодиться при парковке в городских условиях (раз-два в месяц), рубка дров и чистка картошки - при поездках на пикник (раз-два в год), а стирка белья - при дальних поездках в отпуск к морю (опять же, раз в два-три года), то для кирпичного производства целесообразен совершенно отдельный специализированный агрегат. Однако, подобные фичи упорно закладываются в конструкцию "городского Е-мобиля" ... Второе удивительное стремление "юных дарований" - к гигантомании. И выходное напряжение чуть ли не до сотни вольт, и выходной ток порядка десятка ампер... Результат - аналогичный описанному выше. А давайте-ка проанализируем, каким же должен быть Лабораторный Блок Питания (ЛБП)! Заранее соглашусь, что многие из высказанных мною положений будут субъективными, но более, чем 40-летний радиолюбительский опыт в радиоэлектронике позволил выкристаллизовать именно их. Сначала определимся с дефинициями (определениями). Что же это такое — «ЛАБОРАТОРНЫЙ» БП. Не путать со СПЕЦИАЛИЗИРОВАННЫМ БП (например, для ремонтов мобильных телефонов)! В отличие от блока питания, интегрированного (встроенного) в общий конструктив питаемого им устройства (как правило, без возможности физического разъединения), ЛБП представляет собой АВТОНОМНЫЙ источник вторичного электропитания, предназначенный для питания стабильным напряжением различных макетируемых устройств. Ключевое слово здесь — именно «макетируемых», поскольку готовые законченные устройства, в подавляющем большинстве случаев, будут снабжены свои собственным, интегрированным в них, БП. Конечно же, вполне нормально питать от ЛБП схемы, требующиеся в редких случаях, к примеру, тестеры стабилитронов и светодиодов, тестеры ОУ и т.п., но это именно исключения, подтверждающие общее правило. Не следует возлагать на ЛБП несвойственные ему функции (к примеру, тестера стабилитронов или микроомметра). Для специфических задач, требующих специфических режимов (к примеру, для тестирования мощных электромоторов постоянного тока), к тому же, не нуждающихся в жесткой стабилизации питающего напряжения, лучше использовать специализированные источники вторичного электропитания. Итак, какими же свойствами должен обладать практичный Лабораторный БП, не содержащий ничего (или минимум) лишнего функционала и в то же время обладающий характеристиками, позволяющими использовать его для обеспечения 99% задач. 1) Количество выходных напряжений: Для начального уровня вполне приемлемым вариантом может оказаться БП с единственным выходным напряжением. Если понравится и будет нужно — можно построить второй такой же. Однако, всё-таки желательно иметь минимум два выходных напряжения, причем, гальванически изолированных одно от другого. Такой ЛБП будет иметь минимум две пары выходных клемм, по две на каждое из напряжений, которые внешними перемычками можно будет коммутировать как угодно, получая либо две полярности (т.е., положительное и отрицательное напряжения относительно объединенных клемм, образующих нулевой прводник), либо два разных напряжения одной полярности. В практике радиолюбительства нередки схемы, требующие двух различных напряжений питания ОДНОЙ полярности, например, +3,3…5 В для питания логики или микроконтроллера и +12…24 В для питания «силовой» части. Стремление построить двухполярный ЛБП со всего лишь тремя выходными клеммами (положительное напряжение, отрицательное и их общая шина), да еще и объединенной регулировкой сразу обоими полярностями, да к тому же еще и гальванически соединенных вместе, не расширяет, а наоборот, сужает его эксплуатационные качества. Парадоксально, но факт! Отсюда следует, что минимально оптимальным вариантом ЛБП является «двойное моно», т.е., два идентичных стабилизатора напряжения в общем корпусе с раздельной регулировкой выходного напряжения и одной парой измерителей выходных напряжения и тока, вручную переключаемых между каналами. Питаться стабилизаторы в таком варианте могут либо от отдельных сетевых трансформаторов, либо от одного с минимум двумя обмотками. А вообще-то, идеальным вариантом было бы «тройное моно», т.е., ЛБП с ТРЕМЯ выходными гальванически развязанными напряжениями, что позволило бы питать смешанные схемы с цифровой частью, требующей однополярного питания и аналоговой, требующей двухполярного питания. Понятно, что такое по силам уже продвинутому радиолюбителю, но держать этот вариант «в уме» все-таки сто́ило бы. Можно несколько упростить третий канал, сделав ему не плавную регулировку, а ступенчатую, к примеру, 3,3-5-9-12-15-24-27 В. Всё равно этот канал опциональный и будет использоваться изредка. 2) Минимальное выходное напряжение: Меня просто шокирует повальное стремление обеспечить регулировку выходного напряжения от нуля. На неоднократно задаваемый мною на форумах вопрос: «Что Вы собрались питать НУЛЕМ вольт?», я НИ РАЗУ не получил аргументированного внятного ответа! Построить такую схему, конечно же, вполне возможно, но она при этом усложняется совершенно непропорционально задаче. В 99,99% случаев достаточно порядка 1…1,2 В. Это напряжение соответствует вдрызг разряженным, соответственно, никелевому аккумулятору и батарейке. Если же вдруг (один-два раза за все время занятия электроникой) придется макетировать устройства с более низким напряжением питания (к примеру, фотоэлементы и т.п.), ничто не мешает подключить к выходу ЛБП дополнительный (временный!) регулируемый стабилизатор такого низкого напряжения на одном транзисторе и переменном резисторе. Тем более, что ток питания таких схем совсем небольшой. 3) Максимальное выходное напряжение: определяется максимально допустимым входным напряжением компонентов, использованных в схеме БП. Для ОУ это, как правило, 32…36 В; для интегральных регулируемых стабилизаторов — чуть больше, до 40 В. Поэтому «гигантомания» в плане желания получить на выходе, к примеру, 50 В стабилизированного напряжения, требует применения компонентов, способных работать при входном напряжении до 60…70 В. Такие, конечно, существуют, но их ассортимент не столь обширен, а стоимость достаточно велика, чтобы заставить задуматься: «А надо ли это мне?» Можно, конечно, собрать БП с таким выходным напряжением и на компонентах широкого применения, но его схема существенно усложнится. Итак, за реально достижимый простыми средствами верхний предел выходного стабилизированного напряжения примем 25…30 В. Если учесть, что в питающей сети допускаются отклонения напряжения в пределах ± 10% от номинальных 230 В, то 36 В выпрямленного и отфильтрованного постоянного напряжения при сетевых 253 В (плюс 10%) можно получить от трансформатора со вторичной(-ыми) обмоткой(-ами) на стандартные 24 В. При 207 В сетевого напряжения (минус 10%) на выходе будет 29 В постоянного напряжения (без учета пульсаций и просадки при максимальных токах нагрузки!). 4) Использование всего диапазона входного напряжения: стабилизированное напряжение всегда меньше входного на величину его падения на регулирующем элементе и амплитуду пульсаций на фильтрующем конденсаторе. Однако, в некоторых случаях из БП желательно "выжать" максимально возможное напряжение, невзирая на его пульсации (к примеру, при ремонте УМЗЧ, обладающих собственным высоким коэффициентом подавления пульсаций питания, либо при прозвонке высоковольтных стабилитронов тестером, фото которого показано выше и стабилизирующим ток, независимо от наличия или отсутствия пульсаций напряжения). Поэтому, нецелесообразно ограничивать выходное напряжение величиной ниже входного напряжения. Если процентов 10 угла поворота ручки переменного резистора и будут неэффективными - не страшно, остальные 90% угла ее поворота позволят регулировать выходное напряжение от минимума до "выше крыши". 5) Максимальный выходной ток: с этим параметром также наблюдается совершенно необоснованная повальная гигантомания. Почему-то многие стремятся соорудить БП с выходным током не менее 5 А, хотя можно заведомо предсказать, что для целей макетирования (а ЛБП, как было выше отмечено, предназначен именно для этого) не только бесполезны, но и вредны. При случайно сбившейся настройке ограничения по току макетируемая схема имеет большой шанс пыхнуть ярким пламенем с испусканием «волшебного дыма». Хорошо, если при этом не случится пожара! Допустим, что БП на такой выходной ток все-таки построен. При 30 В выходного напряжения и токе 5 А от трансформатора будет требоваться мощность не менее 150 Вт. Другой вариант: при 5 В выходного напряжения и токе 5 А, на регулирующем транзисторе при входном напряжении 35 В, рассеются те же 150 Вт. Во-первых, далеко не всякий транзистор такое потянет (а те, что потянут — до́роги), а во-вторых, чтобы рассеять такую мощность, нужен будет либо радиатор размерами с кирпич, либо охлаждение его кулером. И то и другое ведет к необоснованному усложнению и удорожанию устройства. Отсюда следует, что выходной ток можно ограничить значением 2…2,5 А, чего более, чем достаточно для подавляющего большинства задач. При этом и на регулирующем транзисторе рассеется не более 60…90 Вт, что не является какой-то экзотикой (те же «народные» КТ818/КТ819 в металле спокойно «держат» до 100 Вт), и силовой трансформатор нужен вменяемой мощности. 6) Ограничение выходного тока (оно же защита от короткого замыкания выхода) — является обязательным свойством ЛБП. Должно решать двоякую задачу: а) защитить от выхода из строя сам БП; и б) защитить от окончательного выгорания макетируемую схему. Если с первой задачей понятно — максимальный выходной ток определяется максимально допустимыми параметрами трансформатора питания и регулирующего транзистора и составляет упомянутые выше 2…2,5 А, то вторая требует более тщательного анализа. Если питается схема, уже смонтированная на печатной плате, то максимальный ток не должен вызывать разрушения дорожек на ней от перегрева, а также транзисторов средней и (желательно) малой мощности. По собственному опыту (не претендуя на его эксклюзивность) могу сказать, что данная задача решается при ограничении максимального тока уровнем 200...250 мА. Далее. Существует метод выявления коротких замыканий на плате путем питания ее током, еще не разрушающим печатные дорожки, но вызывающим их локальный нагрев. Для этого применяется ограничение тока уровнем порядка 500...600 мА. Такой же максимальный ток является оптимальным при ремонте УМЗЧ, не приводя к выгоранию драйверных и выходных транзисторов уцелевшего плеча. Итого, оптимальными уровнями ограничения выходного тока можно считать три фиксированных ступени: 200...250 мА; 500...600 мА и 2...2,5 А. Плавная установка тока ограничения "крутилкой" не только нецелесообразна, но и даже может быть вредна. Просто потому, что ручку регулировочного резистора можно случайно сбить с установленного значения и пустить на макетируемую схему экстра-ток. Указанные выше три уровня ограничения выходного тока позволят реализовать "боковой ход" машины Шурупчика -- заряжать таким ЛБП кислотно-гелевые аккумуляторы током порядка 0,03...0,15 С. А именно, первым (200...250 мА) -- аккумуляторы от фонариков; вторым (0,5...0,6 А) -- аккумуляторы от ИБП и третьим (2...2,5 А, правда, долгонько) -- автоаккумуляторы. Построить ЛБП с выходным током более 2...2,5 А, конечно же, можно, но это, во-первых, приведет к нерациональному усложнению и удорожанию схемы, а во-вторых, для ЛБП просто избыточно. Я великолепно ремонтировал монструозные эстрадные УМЗЧ на 1...1,5 кВт с помощью двухполярного ЛБП с ограничением выходного тока на уровне 0,5 А и максимальным выходным напряжением 23 В по обеим полярностям (уже нестабилизированным, с пульсациями!). Дело в том, что для окончательной проверки и настройки тока покоя ЛБП уже не нужен -- они выполняются при питании от штатного БП усилителей. 7) Измерители напряжения и тока: вопрос, казалось бы, второстепенный, однако красиво перемигивающиеся циферки цифрового вольтметра на практике, как ни парадоксально, снижают удобство пользования БП. Если уж и применять цифровой вольтметр, то не более, чем 3½-знаковый. Мельтешение цифр в младших разрядах 4-х и более разрядных вольтметров отвлекает от осознавания величины измеряемого напряжения, отнюдь не прибавляя точности. При импульсном характере потребления тока нагрузкой мельтешение цифр будет и в 3½-знаковом вольтметре. Если уж настолько критично выставить стабилизируемое напряжение до единиц-десятков миллиВольт, можно сделать это подключением к клеммам внешнего мультиметра, ибо возникнуть такая задача может примерно с такой же частотой, как рубка дров и чистка картошки в машине Шурупчика. С цифровым амперметром ситуация несколько серьезнее. Во-первых, измерение тока производится на его собственном токоизмерительном шунте, который включается последовательно с токоизмерительным шунтом цепи ограничения тока самого БП, тем самым повышая выходное сопротивление БП и снижая точность поддержания выходного напряжения. Во-вторых, из-за дискретности измерений в большинстве амперметров порядка 1...2 Гц, мгновенные скачки выходного тока (к примеру, при подключении к плате с короткозамкнутыми дорожками) отслеживаются с запозданием, обусловленным как этой дискретностью измерений, так и необходимостью какого-то времени на осознавание измеренной величины тока. Можно, конечно, цифровой амперметр и доработать на использование основного токоизмерительного шунта БП, либо же использовать шунт измерителя тока, но при этом потребуется его перекалибровка. В этом плане стрелочные измерительные головки намного информативнее и удобнее для встраивания и калибровки. Супер-точность измерений не столь важна, на первом месте стоит удобство примерного считывания показаний. 8) Выходное быстродействие на быстропеременную нагрузку: является своеобразным "камнем преткновения" для разработчиков ЛБП. Если питать им устройство с неизменяемым во времени потреблением тока (к примеру, лампочку, электромоторчик, да хоть заряжать аккумулятор), то быстродействие такой схемы может быть сколь угодно малым. Но если подключить импульсную или же аудио-схему, то ситуация кардинально меняется. Для таких потребителей выходное сопротивление ЛБП должно максимально близко приближаться к нулевому, чтобы обеспечить постоянство выходного напряжения независимо от силы тока (естественно, до момента его ограничения!). Нередко разработчик пытается обеспечить такую характеристику установкой на выходе электролитического конденсатора достаточно большой емкости. Такое схемотехническое решение, нередко встречающееся даже в промышленно выпускаемых ЛБП, на самом деле является профессиональным провалом разработчика, т.к. при подключении макетируемой схемы к выходным клеммам такого БП, через нее обязательно произойдет бросок тока, имеющий шанс сжечь схему, а реакция на быстропеременную нагрузку становится совершенно "дубовой". На выходе схемы ЛБП может стоять разве что пленочный конденсатор на 1 мкФ (да и то непосредственно на выходных клеммах), зашунтированный керамикой на 0,1 мкФ исключительно для подавления шумов и импульсных помех, циркулирующих по соединительным проводам от ЛБП к макетируемой схеме и обратно. Всё остальное быстродействие должно быть обеспечено за счет быстродействия и стабильности схемы самого ЛБП. 9) Регулирующий элемент - биполярный транзистор в сравнении с полевым: произведение разницы между входным и выходным напряжениями на силу выходного тока в любом случае должно на чем-то выделиться в виде тепла (увеличив этим энтропию Вселенной). Нет никакой принципиальной разницы, на чем это произойдет -- на коллекторном переходе биполярного транзистора, либо на канале полевого. Выделяющееся тепло в обоих случаях будет одинаковым. Поэтому сравнивать следует другие характеристики полевых и биполярных транзисторов, а именно: Ток управления, который для мощного биполярного транзистора с его невысоким коэффициентом усиления составит порядка 1/10...1/15 выходного тока, против пренебрежимо малого тока управления затвором полевого; Емкость затвора/базы, которая для полевого транзистора составит единицы нанофарад, что всё равно потребует достаточно существенного тока управления затвором при быстропеременных токах нагрузки, иначе БП не обеспечит нужного быстродействия, тогда как для биполярного транзистора -- десятки пикофарад, причем эта емкость мало изменяется с изменениями коллекторного тока. ; Падение напряжения база-эмиттер/затвор-исток, которое для биполярного транзистора составляет всего порядка 0,7 В, и слабо зависит от силы базового тока против 5...8 В для ключевых HEXFET транзисторов, что однозначно делает их практически неприемлемыми для работы в линейном режиме, поскольку совершенно впустую будут недоиспользоваться эти 5...8 В входного напряжения (речь идет о простых схемах ЛБП, с единственным входным напряжением). Если уж без полевых транзисторов ЛБП просто не мыслится, то для такого режима работы предназначены боковые (латеральные) МОП-транзисторы, разработанные для применения в звуковых трактах УМЗЧ. В качестве примера приведу графики передаточной характеристики латерального FET 2SK2220 в сравнении с HEXFET IRFP240. Надеюсь, разница достаточно очевидна. Хотя, всё равно, потеря напряжения (а следовательно, и излишнее тепловыделение) на полевых транзисторах будет больше. Либо же необходимо усложнять схемотехнику БП за счет вольтодобавки ко входному напряжению для управления затворами полевых транзисторов. Тем более, что допустимые токи (десятки Ампер) относятся не к линейному, а к ключевому режиму их работы. В линейном режиме ограничивающим параметром будет максимально допустимая рассеиваемая мощность, которая что у полевых, что у биполярных транзисторов определяется, в основном, типом корпуса, в который упакован кристалл. Учитывая изложенное в предыдущем пункте анализа относительно выходного быстродействия, преимущество полевых транзисторов для ЛБП по сравнению с биполярными становится достаточно сомнительным. 10) Стабильность выходного напряжения в переходных режимах: в ЛБП при его включении и/или выключении ни в коем случае не должно быть выбросов выходного напряжения сверх установленного значения!!! Иначе макетируемой схеме с большой долей вероятности придет белый северный пушной зверек. Требование однозначное и ревизии не подлежит, какой бы "вкусной" схема ЛБП ни была по другим параметрам. В первом приближении это пока что все мои аргументы "за" и "против" тех или иных схемотехнических решений и желаемых параметров ЛБП. В качестве подтверждения сказанному приведу личный пример своего "ветерана", верой и правдой служащего уже 40 (СОРОК!) лет: Верхняя крышка снята, чтобы показать "потрошки". Ни типа, ни марки, кроме надписи на лицевой панели "Блок питания универсальный "Электроника"" нет. Очевидно, "ширпотребовская" продукция какого-то военного завода. Схема, к сожалению, за эти годы тоже утеряна. "Родные" параметры с "родными" регулирующими транзисторами КТ807: 2...15 В / 300 мА. После модернизации (замены на TIP41) поднял ограничение выходного тока до 0,5 А. Четыре левых клеммы - выходы стабилизаторов напряжения. Полностью изолированы один от другого, питаются от отдельных обмоток трансформатора. Платы стабилизаторов стоят вертикально слева. В оригинале стояли по одной слева и справа от центрально установленного трансформатора. Крайние правые клеммы - выходы переменного напряжения, переключаемого пакетником над ними с шагом 3 В. Применяю преимущественно для питания мини-дрели на 27...30 В. На клеммы между стабилизированными и переменным напряжением в оригинале подавалось просто выпрямленное и отфильтрованное конденсатором напряжение. Они задействованы для вывода стабилизированного напряжения от дополнительного более мощного стабилизатора с током до 1,5 А (это уже моя модернизация) на еще К1УТ401Б, размещенного справа от трансформатора. Его регулирующий транзистор вынесен на заднюю стенку. Регулировка выходного напряжения - дискретная (3,3-5-9 В и дальше до 30 В с шагом 3 В), используя тот же пакетник, что и для переменного напряжения. Итого получается "тройное моно", как я и описывал выше, да еще и с каналом переменного напряжения. Второй пример - мощный "монстрик" на двухполярное напряжение без стабилизации (только выпрямленное). Токоограничение выполняется автомобильными лампами накаливания: Поскольку падал, плата выпрямителя и фильтров "сворочена" на сторону. Изготовлен для питания эстрадных усилителей при их ремонтах. Так вот, он НЕ ИСПОЛЬЗОВАЛСЯ НИ РАЗУ!!!
  10. Здравствуйте, уважаемые форумчане! Купил, значит, лбп - всё было хорошо, давал напряжение, ток и т. д. В один момент, после включения, застрял в состоянии регулировки по току (c.c) Дальше, при любых манипуляциях, режим регулировки по напряжению включается после включения самого устройства на доли секунды, после этого только регулировка по току. Подскажите, что делать, пожалуйста! Девайс был в использовании раза 2-3. Не хочется новую вещь выбрасывать(
  11. Дополнил схему Чинайца списком транзисторов. Немного изменил печатку, для уменьшения пульсаций в режиме СС провел для измерительной цепи R6-R7 отдельную дорожку. Cinaec_Bip_4_.lay6
  12. В двух словах :)))))) Нашёл я свинцовый АКБ от ИБП. Живой , не вздутый , напряжение есть ( 9в ) . Ну думаю , заряжу-ка его ! Начал лепить всякие схемки зарядого на тиристорах - ничего не заработало по неизвестным мне причинам . Потом я решил сделать ЛБП на транзисторах , что бы 1 ампер хотя бы держал . Взял современные детали , собрал . Заработал , но ток был мизерный . Решил я нуууу прям оооочень простую схему сделать , ну что бы нигде не налажать , и что бы старые запасы потрусить . Взял я германиевые транзисторы П210 , П216(Вместо п214 ) , МП25А-ОС( особо стабильные , вместо МП26Б ) , П213Э , ГТ328(Не знаю , что мне пришло в голову , но я его в первой "версии" использовал ) . Всё , кроме последнего - чистая военка , все в "медальках" в виде двух ромбов , штампов ОТК и буковок А и ВП в конце ... Ну думаю , а раскачаю-ка я П210 на всю катушку :)))))) Взял стабилитроны , по формуле рассчитал сопротивление для них ( R=V/I если неравильная формула - подскажите правильную , но вроде и с этой стабилитроны хорошо себя чувствовали , напряжение было 18 вольт , стабилитроны д814) .Слепил я при приспособу для подачи опорного напряжения что . Причепил переменник 100к , из расчёта того , что транзистор открывается током , и я думал , что по коефициенту усиления и тока на базе можно рассчитать выходной ток . Ну ток был 0,1 ма , и по моей " сверхформуле " (Коефициент * ток базы = выходной ток ) я на выходе в теории получил 5 мА на выходе ГТ328 , потом это дело пошло на МП25А , усилилось в теории до 50мА , потом на П203Э до 400 мА , потом на П216 до 4А ( в теории ) потом до монстра П210 с коефициентом усиления 3 ) до теоретических 12 ампер . Собрал это чудо , и ток на выходе реально был очень приличный , но вот не регулировался ВООБЩЕ , ну я его к чертям коротнул ( кратковременно ) , он так смачно шмаганул , как будто трансформатор без всего этого барахла коротишь ( трансформатор от ИБП 150 вт должен тянуть , но я собираюсь его менять на большее напряжение ) . Ток оказался приличным , и П210 даже не нагрелся , но какого-то черта не шла регулировка . Выкинул ГТ , поставил переменник 47кОм , не заработало .Я заподозрил П216 , потому что он как честный военный транзистор не захотел просто так проверяться на гражданских приборах ( транзистор тестер за 500 руб ) , дык я его мультиметром , и он был целый . Ну поменял на тот , что был в схеме . И ничего... Поменял П203Э на другой П203Э . Неа ) Плюнул , снял П203Э , подав от эмиттера МП сразу на П216. И, О чудо , он начал регулировать . Я от радости лампочку на 20×6 вт (две нити накала )взял , пихаю - светит , регулирует . Всё классно , чудно , вот только посадка дикая , при переходе с 6 вт до 20 вт - 2 вольта :O :O :O :O :O . Щупаю транзисторы - все холодные . Ставлю обратно П203Э - неа ) на его место между МП и П216 ставлю П213 - не , даже П306 , который даже не германий - никакого толку . Ладно , убираю это безобразие , и ставлю переменник на 4,7 килоом вместо 47, и чудо свершилось , только частично : просадка уменьшилась вдвое ) На радостях поставил АКБ на зарядку , но быстро понял , что это дело гиблое , выставишь 14,5 в на начале зарядки - в конце будешь собирать ошмётки батареи по всей мастерской , ведь упадёт потребление тока - напряжение скакнёт до 15,5 и усё(((.. Вопрос такой : Какого черта при добавлении транзистора между П216 и МП25 пропадает регулировка ( ставил как в схеме ) , и ещё : Почему без резистора R7 на 100 Ом в схеме можно обойтись , зачем он нужен ( Я резистор " подобрал " по напряжению и нужному току (25ом) , и схема на выходе выдавала 0 ) . Если есть формулы , по которым всё правильно можно рассчитать - напишите их пожалуйста , а то я как ёжик в тумане , у себя в голове всё правильно делаю , а на деле это скорее всего не так )
  13. В первый раз в жизни нарисовал примерную схему сборки лабораторного блока питания. На все компоненты оставлю ссылки на aliexpress, чтобы вы понимали о чем я говорю. Критикуйте, надеюсь, что вы поймёте моё чудо. :-D. Говорите свои варианты доработки. Ссылки: Можно ли использовать это чудо?
  14. Второй приборчик тоже решил продать, этот немного другой. Начало здесь: первый продан. Продам новый лабораторный блок питания. Когда-то были закуплены для сервис центра. Из коробки так и не доставались. Отправить могу ТК ПЭК из Новосибирска. Оплатить можно на карту сбера. Цена пусть будет 7500 руб. На вопросы с удовольствием отвечу. Описание из сети: Источник питания HY3005D-2 - двухканальная модель источника с диапазоном установок напряжения от 0 до 30 вольт и тока от 0 до 5 ампер. В этом приборе объединены сразу два независимых источника питания (канала) в одном корпусе. Органы управления прибором позволяют осуществлять параллельное или последовательное включение каналов, что позволяет расширить диапазоны тока и напряжения источника. Лабораторный источник питания HY3005D-2 имеет схему линейного преобразования, что обеспечивает хорошие параметры стабильности, низкий уровень пульсаций и шумов. Источники этой линейки всегда были очень популярны у пользователей, поэтому на протяжении многих лет производитель продолжает выпуск полюбившихся моделей. Если требуется недорогая простая модель источника, то эта модель вполне может быть использована. Однако следует заметить, что использование прибора на максимальных нагрузках продолжительное время может сократить сроки эксплуатации прибора. Индикация Прибора - 3-разрядные LCD -дисплеи для каждого из каналов на ток и напряжение. Предусмотрена работа источника как с изолированным выходом, так и при заземлении клеммы любой полярности. HY3005D-2 имеет защиту от короткого замыкания и переполюсовки. В источниках применена импульсная схема преобразования. При подключении к источнику HY3005D-2 нагрузок работающих с токами большими одного ампера следует принять меры по обеспечению качественного контакта соединительного провода и выходных клемм прибора. Включение и выключение источника HY3005D-2 следует производить при отключенной нагрузке. Так же следует обратить внимание на качество сети переменного тока - перепады в электрической сети могут вывести источник из строя при работе под мощной нагрузкой. Обращаем внимание, что при отключении источника питания HY3005D-2 на клеммах прибора может сохраняться остаточное напряжение, способное вывести из строя внешние подключаемые объекты. При длительной работе HY3005D-2 необходимо обеспечить достаточную циркуляцию и приток воздуха для комфортного теплового режима работы источника постоянного тока. Контроль за выходными значениями тока и напряжения производится с помощью жидкокристаллических индикаторов. В каждом канале блока питания предусмотрены свои раздельные для тока и напряжения индикаторы. Погрешность измерений при измерении выходного напряжения составляет не более 1 % ± 2 единицы, а при измерении тока - не более 2% ± 2 единицы. Характеристики прибора HY3005D-2: 2 независимых регулируемых канала Возможность параллельного или последовательного соединения каналов Выходное напряжение каждого канала: 0~30 В, точность установки 0.1 В Выходной ток каждого канала: 0~5 А, точность установки 0.01 А Малый уровень пульсаций: ≤ 0.5 мВ Малое влияние нагрузки: ≤ 0.01% ±3 мВ Малое влияние сетевого напряжения: ≤ 0.01% ±2 мВ Плавная установка выходных параметров регуляторами Режимы стабилизации тока и напряжения Индикация: 3-разрядные LCD-дисплеи одновременно на ток и напряжение Защита от короткого замыкания Габариты 365x265x164 (мм), вес 10 кг Питание 220 В ±10%
  15. Всем привет) что лучше почитать чтобы научиться делать лбп на 20-30 ампер или есть готовые варианты?
  16. Я еще начинающий радиолюбитель, и это - мой первый лаболаторник, собранный в корпусе от нерабочего компьютерного блока питания. В качестве источника питания - найденный на просторах помоек и подвалов блок питания ноутбука, модель SADP-65KB, способный выдавать при 19 вольтах ток в три с половиной ампера. Регулятор - покупной, построенный на микросхеме XL4005E1, резистор вынесен на проводах. Вольтметр - также покупной. Сделал плату дополнительного питания вентилятора и вольтметра по простой линейной схеме - ток там очень маленький, и транзистор не греется. Напряжение - 5 вольт, вентилятор тихо шуршит. Проблема заключается в том, что при попытке регулировать напряжение блок питания громко пищит, регулировка происходит только от 12 вольт. Я пробовал включить регулятор через фильтр, но это не особо помогло, мучился с этим несколько дней Фото блока питания прилагается.
  17. Здравствуйте, подскажите пожалуйста. Собрал лабораторный блок питания 0 - 20 В, 1 А, с этого сайта: https://www.eleccircuit.com/dc-supply-adjustable-voltage-0-20v-at-1a/ Замена компонентов: 1. Заменил Q1 BD139 на КТ815. 2. Стабилитроны поставил 2 последовательно по 5 В (пока для теста). 3. Переменный резистор VR1 ставил 1 К, ставил 20 К (изменений нет). Не корректно происходит регулировка по напряжению. На выходе от 21.4 - 21.6 В. Заметил что при крайних положениях переменного резистора, в одном ток потребления схемы 20 мА, в другом 120 мА и греется Q1. В чем может быть проблема с регулировкой. На входе 24 В.
  18. всем привет!!!!!. Я начинающий радиолюбитель. Хочу собрать лбп на транзисторе п213 по этой старой схеме, но он очень слаб, но если заменить диоды на более мощьные и трансформатор поставить как минимум 12в 1.5ампер получится ли что-то стоящее
  19. ЗЛОЙ КОТ

    Схемы ЛБП

    Решил собрать как можно больше схем ЛБП и выбрать себе наиболее простую и подходящую.
  20. Продам тороидальный тр-р для лабораторного блока питания или же для других целей. В работе был до 10-ти часов. Можно сказать новый. Данные напряжений и токов ниже на фото. Цена 1200 грн. Отправлю по Украине Новой Почтой. Связь через ЛС.
  21. Всем доброго времени суток! Подскажите пожалуйста проверенную схему импульсного лабораторника с напряжением до 30-40В и током 8-10А+. Нужно, чтобы такой ток мог держаться и при максимуме напряжения. Сам смог найти из более менее подходящего схему на фото (DC-DC преобразователь miandra 2p2). К ней соответсвенно схема на ir2153 или т.п. Может кто собирал, что о схеме скажете? Правильно я понимаю, что для снятия такой мощности такой схемы на ir недостаточно, нужно как минимум добавить драйвера к 740?
  22. доброго времени суток, имею желание сделать линейный лбп, с параметрами до 5 А и до 24В, в наличии из основных комплектующих имею трансформатор 24вольт по переменке, и 8А, и кучку кт819, подкиньте пожалуйста рабочую и стабильную, проверенную схемку
  23. Лабораторный блок питания – один из самых необходимых инструментов в мастерской радиолюбителя. Самый необходимый, но при этом не самый дешевый. Цены на лабораторные блоки питания даже в Китае превышают сумму в 2500 рублей. Мне же, как радиоЛЮБИТЕЛЮ важно сэкономить. Поэтому я решил собрать себе лабораторный БП самостоятельно, из импульсного блока питания (12 вольт 3,5 ампера) и модуля DP30V5A. Заявленные характеристики: Диапазон напряжения на входе: 6 – 40 вольт; Диапазон напряжения на выходе: 0 – 32 вольт; Сила тока на выходе: 0 – 5 ампер; Мощность: 160 ватт; Разрешение установки напряжения: 0,01 вольт; Разрешение установки силы тока: 0,001 ампера; Точность установки напряжения: +/- (0,5% + 1 разряд); Точность установки силы тока: +/- (1% +3 разряда); Пульсации на выходе: 100 mV VPP. Итак, данный модуль позволяет устанавливать напряжение от 0 до 32 вольт с шагом в 0,01 вольт. В инструкции указано, что необходимо, что бы напряжение на входе превышало напряжение на выходе в 1,1 раз. Я подключил этот модуль к БП в 12 вольт. На БП есть подстроечный резистор, при помощи которого можно незначительно изменить напряжение на выходе БП. При помощи него я установил максимально возможное значение в 13,65 вольта. На выходе я смог получить напряжение 13,4 вольта (соотношение 1:1,1 не соблюдается). Но интересно не это, а то, что я могу установить на выходе любое напряжение из диапазона 0 – 32 вольта, но при превышении 13.4 вольт я все равно получаю на выходе 13.4 вольт. Модуль читает напряжение на входе, может отобразить его на дисплее, но при этом не предусмотрена возможность ограничить установку на выходе не выше напряжения на входе. Я не могу это назвать минусом, для меня это скорее нелогичная странность. Силу тока можно устанавливать с шагом в 0,001 ампера. С установкой силы тока всё прекрасно, модуль имеет два режима: установка по напряжению и установка по току. Индикация режимов осуществляется светодиодами CC и CV. Переключение между режимами осуществляется автоматически. Рассмотрим пример. Допустим, я устанавливаю напряжение 10 вольт и силу тока 1 ампер, подключаю резистор в 100 ом. При этом на нижней строке дисплея будет отображена сила тока 0,1 ампер, в соответствии с законом ома, а так же будет гореть светодиод режима CV. Далее я устанавливаю предел силы тока в 0,05 ампера, при этом установленное напряжение остается 10 вольт. В этом случае сила тока составит 50 мА, именно столько, сколько и установлено, а вот напряжение будет равно 5 вольт, опять же в соответствии с законом ома. При этом будет гореть светодиод режима CC. Можно даже установить силу тока 20 мА, напряжение выше 3 вольт и непосредственно к выходу подключить светодиод без резистора. Светодиод будет исправно работать. Управление модулем осуществляется 4 кнопками: -/IN, +/OUT, SET и ON/OFF. Когда модуль выключен, на дисплее отображается надпись OFF. При этом можно осуществить настройку напряжения и силы тока на выходе, либо проверить напряжение на входе нажав кнопку IN (при этом загорится светодиод IN). Для отображения установленных значений необходимо нажать кнопку OUT (при этом загорится светодиод OUT). Настройка осуществляется следующим образом: при нажатии на кнопку SET на дисплее отображаются установленные напряжение и сила тока, при этом начинает моргать одна из цифр на дисплее. Кнопками + и – можно увеличить или уменьшить значение выбранного разряда. Повторное нажатие SET выберет следующий разряд, последовательность такая: 0,01 В – 0,1 В – 1 В– 0,001 А – 0,01 А – 0,1 А – 1 А. Что бы применить установленные значения необходимо прощелкать кнопкой SET все разряды. Если этого не сделать, то через 6 секунд все изменения сбросятся на предыдущие установки. Это немного неудобно, но быстро привыкаешь. Замечен такой положительный момент. Допустим, выбран разряд сотые доли вольта, при переходе через 0 выбранного разряда к следующему разряду добавляется или отнимается 1. То есть 0,49 становится 0,50 когда разряд сотых долей меняется с 9 на 0. Что я не смог проверить. Во-первых, пульсации на выходе, потому что у меня нет осциллографа. Во-вторых, я не смог проверить, как поведет себя модуль при превышении 5 ампер на выходе, как отреагирует на короткое замыкание. Просто потому что мой блок питания 3,5 ватта. Но, тем не менее, модуль был подвергнут жестоким испытаниям, и все-таки не выдержал их. А накрылся потому, что я замкнул питание на входе. Да-да, замкнул на входе, а сгорел модуль. Не знаю почему, но выгорел стабилизатор, питающий микроконтроллер STM. Стабилизатор был заменен другим на 3,3 вольта. Проверка показала, что через него проходит ток 0,5 ампера (сгоревший стабилизатор был рассчитан всего на 30 мА, потому и сгорел). Если проходит такой большой ток, то виновник неисправности должен сильно нагреваться, но нагреваются только стабилизаторы. Вывод такой, используйте по назначению и не допускайте коротких замыканий, тогда он прослужит дольше. Точность настройки и не большая цена (10$ на али) – большой плюс для новичков и любителей. Ссылка на товар : https://ru.aliexpress.com/item/1-piece-Adjustable-Voltage-Step-Down-Module-Voltage-Ammeter-32V5A-160W-NC-DC-Power-Supply-Module/32765288472.html И как обычно, большая благодарность сайту «Паяльник» за предоставленный на обзор модуль.
  24. Скопирую сюда сообщение из фотогалереи блоков питания выдались выходные и решил таки добить "проектик выходного дня" Характеристики скромные. Всего 1А суммарно по каждому полюсу. От -15 до +15 весь стандартный ряд напряжений (5-9-12-15 обоих полярностей). Измеряет ток в каждом из полюсов суммарно. По положительному и по отрицательному. Погрешность измерений (по эталонному прибору) не хуже +/-0,5 деления (реально даже лучше). Обеспечивается идеально подогнанными дифференциальными усилителями на ОУ LT1078 и константановыми шунтами. Выдает по отдельному каналу регулируемое опорное напряжение в диапазоне 0...3,3 вольта с точностью не хуже +/-0,00025 вольта (по эталонному прибору с сертификатом поверки и точностью измерений не хуже 6 знаков после запятой). Управляется энкодером. Шаг установки меняется кнопочкой (нажим на ручку энкодера). Управление охладителем ШИМ (бесшумный), полностью пропорциональный. Дисплейчик COG на контроллере ST7032 с шиной I2C. Трансформатор самопальный на сердечнике от трансформатора тока промышленного. Все управление на STM32F051K6T6. Корпус красил в термокамере. Хрен поцарапаешь. Передняя панель - лазер (черный акрил, резка + гравировка у рекламщиков) Фото кишков ниже Кишочки Все собрано в корпусе БП АТХ первого попавшегося. Радиаторы и вентилятор от того же БП. Под нагрузкой 1А в самом плохом варианте (нагружены стабилизаторы 5В) греется прилично, но без корпуса может работать и без вентилятора. В корпусе уже надо обдувать. Но это на максимуме. В обычной жизни вентилятор еще не включался ни разу. Может он не работает просто? ну и контроллер с дисплеем поближе Для дисплея изготовил платку-прилепыш. Там надо немного рассыпухи разместить для работы внутренних преобразователей напряжения дисплея и пару резисторов для настройки ориентации изображения. Есть такая фишка у этой стекляшки. Ну и подтяжки I2C материалы прокта схема для предварительного ознакомления (узел управления) Здесь все элементарно просто. 2 простых дифференциальных усилителя токоизмерительных шунтов. Резисторы для них подбирал вручную и согласовывал. На выходах диодные ограничители и легенькие интеграторы, которые по итогу я даже не впаял. Обвязка контроллера стандартная для работы без кварцевого резонатора и без схемы ручного перезапуска. Разъем внутрисхемного программирования как положено. Питание блока ШИМ вентилятора берется с отдельной обмотки и по максимуму отвязано от схемы, чтобы избавиться от помех от этого узла. Все таки милиамперметр чувствителен к этому делу. Датчик температуры простейший LM35 с аналоговым выходом и RC фильтром на выходе. Для DAC выполнен буфер на ОУ. Просто повторитель, ничего особенного с компенсацией токов утечки. Основная схема питания слеплена из того что было под рукой. Стабилизатор 5 вольт выдран с платы APC (SO8 букашка), 3.3 вольта тоже откуда то отковырен. Можно любые применить. Схема запитки AVсс не совсем обычная, но так тоже работает силовая часть Тоже ничего особенного. Гармошкой по 4 стабилизатора на разные напряжения. В связи с особенностями планируемого использования посчитал такое решение наиболее целесообразным по сочетанию простота/выхлоп. И не ошибся в общем то, как показала практика использования прибора. схемы в DipTrace + дополнительные документы (разведено под стандартный 1602!) финиш.zip исходный код прошивки, проект Keil MDK ARM (вывод на дисплей под ST7032! I2C). Мне переписывать было уже некогда, поэтому расскажу как вернуть назад. Любой кто хоть раз писал под STM32 справится. Надо всего лишь переписать библиотечную функцию вывода на экран не через I2C, а по 4-х проводному параллельному интерфейсу, а все что касается I2C (инитка, дискриптор и резерв GPIO) вырезать к чертям Discrete_power_unit.zip Ну вот пожалуй все материалы. Будут вопросы, задавайте Дальше документалистика процесса для того чтобы закрепить плату контроллера припаял к ней стойки латунные от креплений материнских плат компьютера. Отлично паяются, отлично держатся трансформатор вот намотал из сердечника от старого трансформатора тока промышленного (взят из электрохлама) и катушки запасной от пускателя ПМА. Провода на ней ровнехонько на первичку. Просто взял и перемотал с одного на другое. Изоляция межслойная - пакеты для запекания нарезанные лентой. Бирка от лени написана вручную, все равно смотреть никто не будет Что такое ТСП-40? Очень просто. Трансформатор СамоПальный. Цифра от балды для красоты. Закрепил на плате каким то болтом, куском резины вырезанным из МБС техпластины и шайбой от переходников сноубордических креплений TECHNINE на BURTON. Эта шайба - самая дорогая деталь в устройстве! Те крепы мне обошлись аж в 400 зеленых. Вот шайбочки от переходников остались лишними. Долго не решался использовать, но видимо их черед пришел. тесты под нагрузкой перед сборкой На внешний вид электронной нагрузки не смотрите, это ужасный прототип. Внутри она вполне себе на уровне, но нужно чуть допилить конструктив холодильника. Все руки не доходят немного в процессе разработки контроллера ВНИМАНИЕ! Дисплей мне пришлось заменить. Плата изначально разрабатывалась под обычный WH1602 и первоначально работала с ним. (Поменять прошивку не составит труда для обратной замены, там все предельно ясно и заменена только библиотека дисплея). Дело в том, что стандартный 1602 в корпус не влезал по высоте и мне пришлось заказать сверхминиатюрное исполнение COG 1602. Но он оказался вовсе не тем, что я ожидал. Имел шину управления I2C и немного не похожую систему команд. Пришлось наскоро поправить прошивку под это дело. Дисплей встал на место энкодера (так как на этих ногах I2C и живет), а энкодер перекочевал на место старого дисплея. Пришлось разрезать одну дорогу и припаять +3.3 вольта к одной из ног разъема энкодера (PВ5) и землю на одну из ног разъема дисплея (5-я снизу) для того чтобы старую фишку энкодера не перепаивать. Регулировку констрасности демонтировал.
  25. Westus

    Westusblog

    Всем привет. Я новичок в области схемотехники, но знаком с базовыми понятиями и умею работать паяльником. Так же есть видео версия этого блога, но отснятого материала пока недостаточно для монтажа. Хочу начать свой блог с создания лабораторного блока питания. Как говорится с нуля в глубокий и тернистый мир. Почитал я немного форум, посмотрел много различных видео и пришел к выводу, что самое больное место всех ЛБП это корпус! Поэтому я зайду немного издали к этой теме и для начала выберу подходящий корпус. Мне довольно хорошо повезло и в мусоре я нашел ЛБП TEC88. Он в ужасном состоянии, но все самое нужное в нем уже есть. Как вы видите в нем есть 3 больших радиатора (вероятно четвертый отлучился по делам). Вольтметр, амперметр и 3 рабочих регулятора (думаю и четвертый можно оживить). Это довольно удачная находка. Корпус явно не самое больное место моего ЛБП. Дале нужно выбрать схему управления. Мне приглянулась схема: Простой И Доступный Бп 0...50В. Но в теме неясно какую же именно схему лучше использовать. Единственно, что понятно из первой страницы, что идеальная схема выглядит так: Далее все интересней и между критикой на второй странице темы появляется вторая версия схемы. Из последних страниц стало ясно, что версий уже как минимум 16, а то и больше. Причем неясно чем лучше последние версии. Меня ждет 331 страница крайне уныло чтива. Без этого не разобраться совсем. Я постараюсь выписать самые важные моменты из этой эпопеи «Простого ЛБП» и вкратце их пересказать в следующей статье. Возможно это кому-то пригодится и сэкономит время. Но вернемся к нашим пчелам. Я уже предпринимал попытки создать свой ЛБП на основе других корпусов. К примеру мне попался этот старый военный БП: Корпус очень толстый, герметичный и тяжелый. Внутри я ожидал увидеть мамонта большой трансформатор, но не повезло. Такой корпус крайне тяжело будет переделать под свои нужды. Его я выброшу или подарю, если кому он нужен. Дальше от него мне понадобиться только трансформатор. На сегодня все, пошел курить схемы.
×
×
  • Создать...