Перейти к содержанию

Поиск сообщества

Показаны результаты для тегов 'LED-драйвер'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип контента


Форумы

  • Вопрос-Ответ. Для начинающих
    • Песочница (Q&A)
    • Дайте схему!
    • Школьникам и студентам
    • Начинающим
    • Паяльник TV
    • Обсуждение материалов с сайта
  • Радиоэлектроника для профессионалов
    • Автомобильная электроника
    • Питание
    • Ремонт
    • Системы охраны и наблюдения. Личная безопасность
    • Роботы и модели на ДУ-управлении
    • Световые эффекты и LED
    • Самодельные устройства к компьютеру
    • Программное обеспечение
    • Металлоискатели
    • Автоматика
    • Электрика
    • Промышленная электроника
    • Измерительная техника
    • Мастерская радиолюбителя
    • КВ и УКВ радиосвязь
    • Радиопередатчики
    • Сотовая связь
    • Спутниковое ТВ
    • Телефония и фрикинг
    • Высокое напряжение
    • Идеи и технологии будущего
    • Справочная радиоэлементов
    • Литература
    • Схемотехника для профессионалов
    • Разное
  • Аудио
    • FAQ, Технологии и компоненты
    • Для начинающих
    • Источники звука
    • Предусилители, темброблоки, фильтры
    • Питание аудио аппаратуры
    • Усилители мощности
    • Акустические системы
    • Авто-аудио
    • Ламповая техника
    • Гитарное оборудование
    • Прочее
  • Микроконтроллеры
    • МК для начинающих
    • Arduino, ESP32, ESP8266, Raspberry Pi
    • AVR
    • STM32
    • PIC
    • ПЛИС
    • Другие микроконтроллеры и семейства
    • Алгоритмы
    • Программаторы и отладочные модули
    • Периферия и внешние устройства
    • Разное
  • Товары и услуги
    • Коммерческие предложения
    • Продам-Отдам, Услуги
    • Куплю
    • Уголок потребителя
    • Вакансии и разовая работа
    • Наши обзоры и тесты
  • Разное
    • Курилка
    • Сайт Паяльник и форум
    • FAQ (Архив)
    • Технический английский (English)
    • Личные блоги
    • Наши проекты для Android и Web
    • Корзина
    • Конкурсы сайта с призами
    • Вопросы с VK
  • Переделки ATX->ЛБП
  • Переделки разные темы
  • Киловольты юмора Юмор в youtube

Блоги

  • Твори, выдумывай, пробуй.
  • fant's блог
  • Ток покоя
  • Где купить велпатасвир, epclusa, velpanat, velasof, софосбувир в России по лучшей цене.
  • Китайские бренды видеокамер
  • Создание Маленькой Мастерской
  • Блог администрации
  • STEN50's блог
  • Изучение, наладка, исследование
  • MiSol62's блог
  • короткие записки по ходу дела
  • Программирование AVR и PIC блог
  • Стабилизированный выпрямитель тока ТЕС 12-3-НТ
  • Блог getshket
  • ТНПА
  • welder's блог
  • blog cheloveka loshadi
  • OPeX3's блог
  • Подводная робототехника
  • Сабвуфер и акустика.
  • Радиоуправляемая машина
  • Консультация психолога сексолога онлайн, психолог онлайн
  • Nokian блог
  • Оповещения Dermabellix Scam !! Не покупайте это !!!
  • Cheerful Boss' блог
  • Cheerful Boss' блог
  • VLAD1996B's блог
  • "Коллективное увеличение продаж"
  • Dudok's блог
  • "Коллективное увеличение продаж"
  • Goluboglazyi's блог
  • Прибор определяющий электролитический конденсатор на работоспособность.
  • Mosfet@'s блог
  • mazzi's блог
  • Лучшие компьютерные игры 2017
  • Marchenkokerya's блог
  • Заметки начинаущего аудиофила
  • Почти бесполезные проги
  • Светлый блог.
  • дядюшка Филин's блог
  • Дневники нуба
  • satyrn's блог
  • Люк. В погреб.
  • Фильм Дом Солнца
  • Светодиодная лента B-LED 2835-120 W белая негерметичная
  • Само-Реплицируещиеся Производственные Системы
  • Блог от Eknous
  • РВС's блог
  • Den_R's blog
  • РВС's блог
  • Чтото крутое и про криворукость
  • ekadom's блог
  • Проектирование любых чертежей
  • Lisovic's блог
  • Блог уже не юного радиогубителя
  • денди
  • eHouse
  • zaregan's блог
  • Схемотехника УНЧ с низковольтным питанием на примере приёмников фирмы Grundig
  • То, что в руки попало.
  • Блок питания водородного генератора и все что с ним связано
  • slava_va@mail.ru's блог
  • Блог alex123al97
  • slava_va@mail.ru's блог
  • параленое соединение КРЕНок или как сделать стабилизатор напряжения 24-12в
  • Свободная генерация Андрея Мельниченко
  • реобас
  • Модернизации системы впрыска на 555
  • помощь
  • Копии схем и печатных плат устройств попавшие ко мне
  • MBM75's блог
  • Буду
  • lagutai's блог
  • Мои проекты.
  • lagutai's блог
  • Трудовик
  • vOVK@'s блог
  • токарь-радиолюбитель
  • azlk3000's блог
  • Коллизия сингулярности
  • SmallAlex's блог
  • Вопрос по Цифровому усилителю мощности звука 2x12 Вт YDA138-E
  • bebulo's блог
  • Простейший макет станка термо-вакуумной формовки
  • Блог им. pryanic
  • peratronika
  • Zer's блог
  • MEDBEDb's
  • Гнездо кукушки
  • hiMiческий блог
  • luna_kamen's блог
  • Изучаем USI на основе сверхэкономичного прототипа
  • Алекс-Юстасу
  • SUBWOOFER.RU
  • kot sansher's блог
  • Поделки стареющего пионера
  • доброжелатель2's блог
  • Grig96. Полезные заметки.
  • Attiny 0-ой и 1-ой серии (Attiny817, 1614 и прочие)
  • pavlo's блог
  • MSP430FR
  • viper2's блог
  • Моя Электро Чинильня
  • Selyk's блог
  • VoltServis.ru
  • kpush's блог
  • OM3 на новых платах.
  • конни's блог
  • Электронный экстазёр "MASHKA".
  • ptimai's блог
  • noc functionalities
  • Sun kapitane's blog
  • ODEON AV-500
  • Sun kapitane's blog
  • Логика на транзисторах,диодах, счетние тригери на транзисторах
  • AleksandrBulchuck's блог
  • Качественные окна от производителя
  • KRALEX's блог
  • Javaman's projects
  • SeVeR36's блог
  • 3232
  • Пять копеек.
  • Az@t's блог
  • Индукционный нагрев
  • Схемы разных устройств
  • Кардшаринг SAT ТВ блог
  • PENTAGRID SAYS
  • Ещо раз о "Кощее 5И"
  • Игровые автоматы на официальном сайте
  • коллекционер
  • дямон's блог
  • Ламповый усилитель и акустика для озвучки семейных мероприятий
  • дямон's блог
  • tiosmutoutrup1971
  • Светомузыкальная установка для новачков
  • Лучшие игры для ПК скачать бесплатно
  • sqait's блог
  • Блокнотик
  • Gubernator's блог
  • Записки электрика
  • Полстакана
  • Vrednyuka
  • Интегральные микросхемы
  • grigorik's блог
  • Интегральные микросхемы
  • VMWare удобство и безопастность
  • Профсоюз обычных пользователей
  • rtfcnf's блог
  • Гидроэнергетика в России: отечественные гидроэлектростанции, типы и характеристики
  • VMWare удобство и безопастность
  • Лайфхаки от Кати
  • Kinh chong anh sang xanh gia re
  • ukabumaga's блог
  • АО "Диполь Технологии"
  • artos5's блог
  • блог
  • Kraftwerk's блог
  • 1
  • Kraftwerk's блог
  • Как выбрать точечный светильник?
  • мастерская ky3ne4ik'а
  • Работа с микроконтроллером Atmega8
  • Aronsky
  • Игорь Камский
  • Диммеры
  • 5В = 1,5+3
  • vitiv' блог
  • Ремонт цифровой панели прибора тойоты марк 100. Замена транзистора 36 ( SOT- 23 )PNP
  • Все СРО России
  • 300writers
  • Металлоискатель Tracker FM-1D3
  • Былое
  • Создание монстра "Blaster 8920"
  • 2Smart Cloud Blog
  • EmmGold's блог
  • 2Smart Cloud Blog
  • ivan15961596's блог
  • Кумир у-001
  • ivan15961596's блог
  • My blog
  • Интернет радио в машину
  • SamON
  • Помогите люди добрые
  • AI
  • Помогите подключить маяк 231 стерео.
  • Гаусс-пушки
  • Название
  • 7400's блог
  • Как я собирал свой первый импульсный источник питания
  • Віталік Приходько_130349's блог
  • Lithium ECAD - российская САПР печатных плат
  • Евгений Малюта's блог
  • ПИшу свои мысли
  • werekpro
  • Venera Electronica
  • afurgon's блог
  • Выбросьте это в парашу!
  • odaplus' блог
  • Zvik's блог
  • Smart overload protection power amplifier «Zita (Z) ThermalTrak™»
  • радиоэлектоника
  • BoBka777's блог
  • МиУЗР - Модернизация и Усовершенствование Звуковой Радиотехники .
  • aleksey9900's блог
  • Лабораторная блок питания
  • Нашел статью о пайке проводов к светодиодов
  • Китайский городовой
  • Костик0's блог
  • УФ лампа для маникюра SK-818
  • 8 Contrasts Between Web Servers and Application Servers
  • Конденсатор
  • Новости, обзоры и другая полезная информация от ИМ "Радиодар"
  • Цветомузыка
  • OPeX3's блог
  • Sem2012's блог
  • это не хлам – это часть моей жизни
  • Контроллер на базе ПК (OS Win LTSC)
  • OdiS' блог
  • Хитрости строителя
  • aleksfil's блог
  • Color Preamp - предусилитель на лампах 12AU7
  • Проблема с зарядкой литиевого аккумулятора для шуруповерта 21 вольт
  • EmmGold's блог; AVR
  • Микроэлектроника
  • З
  • CH32V
  • Блог Плотникова Ильи
  • Бесплатные радиодетали с Алиэкспресс
  • Повышение качества и снижение временных затрат при испытаниях электронных компонентов с помощью отечественного испытательного оборудования
  • Источники питания MEAN WELL
  • Жизнь и рыбалка
  • yureika's блог
  • Глушитель спутникогого интернета
  • Всякая всячина
  • Для начинающих
  • Ignite your senses with the grace and allure of female escorts near Laguna Niguel
  • Fumitox's блог
  • Наш-RXT6 топ-10 на январь 2023: Лучшие сайты онлайн казино в России
  • Лицензионные казино онлайн в 2024 году на реальные деньги
  • Самоделки блог
  • Домашняя автоматика
  • Интересное и полезное
  • Ремонт Амфитон 35у-101с
  • ульян's блог
  • Свет в грузовой газели
  • Блок питания 0-12В для начинающих
  • Dimko's блог
  • Иван Самец's блог
  • SolomonVR's блог
  • gendzz's блог
  • fleh138's блог
  • Электроника forever!
  • aleksejhozhenets' блог
  • aleksejhozhenets' блог
  • diserver блог
  • aleksey290476 блог
  • ВАРГ's блог
  • Люстра Чижевского
  • wanes101's блог
  • voldemar2009's блог
  • Jana's блог
  • Jana's блог
  • Рена Искужин's блог
  • abduraxman7's блог
  • Kuzumba's блог
  • Самопальник
  • заработок через интернет на запчасти!!!
  • electric.kiev's блог
  • lolo's блог
  • leravalera's блог
  • ideomatic's блог
  • приглашаем на работу инженера-радиоэлектронщика
  • FREEMAN_77's блог
  • Блог автоэлектрика
  • Блог начинающего электронщика
  • Dersu's блог
  • Электроэнергия и её экономия!
  • Электроэнергия и её экономия!
  • Семён Ковалёв's блог
  • piligrim-666's блог
  • помогите с партотивной калонкой
  • помогите с партотивной калонкой
  • Музыка в стене.
  • m-a-r-i-k-a's блог
  • cosmos44's блог
  • oyama14's блог
  • блог Виталика!
  • ciornii's блог
  • Великий и Ужастный блог
  • Denis__Ricov's блог
  • Universal12's блог
  • Sprut's блог
  • Alexeyslav's блог
  • cosmosemo's блог
  • Заметки радиолюбителя
  • Falconist. Мемуары
  • Блог MillyVolt
  • усилитель импульсов
  • Panasonic sa-ak 18
  • Простое радиоуправление из того, что было.
  • 35house
  • Блог Радиочайника
  • Блохи iiiytnik'a
  • Хороший сервис- Бяка
  • Аудиолаборатория "Философия Звука"
  • ОколоCADовое
  • Блог KVLADS
  • Короп блог
  • Автоматизация котла Protherm MTV
  • Бложиг Касянича
  • Обо всём
  • Эксперимент
  • No electronics
  • ПРИРОДА СВЕТА и ЕГО ВОЗМОЖНОСТИ
  • Генератор на xr2206
  • HTPOWLASER
  • Когда-то были очень популярны у радиолюбителей
  • AVR - микроконтроллеры
  • Микроконтроллер
  • Самодельный автосимулятор
  • Интернет-магазин керамической плитки «Боярская Плитка»
  • Разработка электронных метрических мишеней IPSC для мягкой пневматики (страйкбол)
  • ,

Поиск результатов в...

Поиск контента, содержащего...


Дата создания

  • Начало

    Конец


Дата обновления

  • Начало

    Конец


Фильтр по количеству...

Регистрация

  • Начало

    Конец


Группа


Skype


ICQ


Интересы


Город


Сфера радиоэлектроники


Оборудование

Найдено: 9 результатов

  1. Занимаюсь экспертизой импульсных источников питания. Готов ответить на ваши вопросы, а также разобраться, если тема окажется для меня неизученной.
  2. Сегодня поговорим о вопросах отделения света от тьмы с помощью СИДа. Это не ленивец из «Ледникового периода», а не менее известный всем и уже давно ставший обыденностью светоизлучающий диод, он же СИД, он же светодиод или LED. Казалось бы, какие могут быть вопросы? Все, что нам нужно для изготовления светодиодного светильника – взять в нужном количестве светодиоды необходимой цветовой температуры, мощности и обеспечить им питание. Да, это именно так, но без понимания, что такое светодиод, как он работает, какими особенностями должен обладать его источник питания, мы в лучшем случае получим недолговечную и неэкономичную «лампочку», которая не будет так хороша, как хотелось бы. Однако штудировать курс радиоэлектроники тоже нет необходимости - вполне достаточно тех знаний, которые преподаются в обычной средней школе и иногда застревают в голове. А все, что вышло за их рамки, взяли на себя инженеры тайваньской компании MEAN WELL. Чтобы грамотно воспользоваться плодами их трудов, нам осталось лишь немного разобраться в некоторых терминах и особенностях светодиодного освещения. Начнем, конечно, с главного. Что такое светодиод Энциклопедическое определение светодиода, а в англоязычном варианте - LED (Light-Emitting Diode, светоизлучающий диод), заставляет опять обратиться к школьным урокам физики, вспоминая, что такое полупроводник, p-n-переход и диод. Как вы помните, диод, а точнее полупроводниковый диод, это компонент (в технической литературе используется термин «прибор»), который проводит электрический ток только в одном направлении (отсюда и половина проводимости). Это в полной мере относится и к светодиоду, с тем отличием, что проходящий через него постоянный ток вызывает свечение, притом очень эффективное. Характеристики светодиода позволяют ему превзойти все остальные источники света. Он компактный, долговечный, энергии в свет уходит больше чем в тепло, практически отсутствует инерция (что важно для некоторых применений), спектр достаточно непрерывный, и он экологичный, поскольку легко утилизируется после окончания срока службы. Есть лишь небольшая проблема - отсутствие белого свечения. Рис. 1. Светодиод белого свечения «в разрезе» Да, если говорить именно о полупроводниковом кристалле, то заставить его светиться белым излучением – проблема. Кристалл светодиода дает очень узкий спектр цвета, например, красный, желтый, зеленый или синий. То есть спектр от красного до фиолетового и за их пределами, где глаз человека уже не воспринимает излучение. Для создания необходимого белого света используется кристалл синего излучения и покрывается специальным люминофором (рис. 1), который под воздействием синего света начинает тоже светиться, но уже желтым. Часть синего излучения проходит через люминофор и смешивается с его желтым излучением, спектр светодиода становится таким, как на рис. 2, а наш глаз считает такое излучение белым светом. Люминофор может использоваться и для получения синего свечения: в этом случае излучение кристалла смещается в ультрафиолетовую зону (это и более эффективно). Меняя состав люминофора, можно в итоге получить свет, наиболее приближенный к естественному (солнечному). Регулировать соотношение желтого и синего излучений технологически не представляет особого труда, что позволяет производить светодиоды различной температуры свечения: «теплого», где преобладает желтое излучение люминофора, и «холодного», в котором больше синего. Рис. 2. Спектр излучения одного из вариантов светодиода белого свечения Электрические параметры светодиода сравнимы с обычным: такая же параболическая вольт-амперная характеристика (ВАХ), или, иными словами, зависимость значения тока от напряжения, и такая же ее зависимость от температуры (рис. 3). Рис. 3. ВАХ мощного белого светодиода в зависимости от температуры Почему ВАХ СИДа важна? Как уже говорилось выше, светодиод начинает светиться, когда через него проходит электрический ток. Именно значение тока является определяющим параметром для яркости свечения. На рис. 4 график такой зависимости выделен оранжевым цветом. При проектировании светодиодного светильника необходимо обеспечить стабильное значение тока, а не напряжения. Если посмотреть на рис. 3, то можно заметить сильное изменение ВАХ при различной температуре. Она может варьироваться в широких пределах из-за окружающей среды и нагрева светодиода в процессе работы. Поэтому если наш светильник подключен к хорошему стабилизированному, но обычному источнику питания, например, напряжением 3,1 В, то пока температура светодиода 40°С, через него проходит ток около 100 мА. Но в процессе работы температура изменилась, поднявшись до 80°С, и ток, соответственно, вырос до 200 мА. Даже если игнорировать очевидный факт, что с ростом тока будут повышаться потери, то есть светодиод нагреется еще больше, и в конечном итоге это может привести к выходу его из строя, яркость при таком изменении тока по графику на рисунке 4 изменится с 30% до 60% и больше. Рис. 4. Графики зависимость яркости светодиода от значений прямого тока (оранжевый) и температуры (синий) Кроме того, даже хорошо стабилизированное напряжение имеет пульсации, и любое колебание напряжения тут же станет усиленным колебанием тока (график на рис. 3 выделен зеленым цветом), что заметно отразится на яркости свечения. Вряд ли кто-то захочет пользоваться светильником, который самопроизвольно меняет яркость. И даже если преодолеть эти две трудности, построить идеальные блок питания и систему охлаждения, то никуда не денется третья: производить абсолютно одинаковые светодиоды невозможно, даже в одной партии у двух светодиодов будут различаться ВАХ, а если и партии разные, то такое несоответствие может быть еще больше. Еще одно физическое свойство, которое «не любят» светодиоды – высокая температура. При ее критичных значениях деградация кристалла ускоряется, поэтому при разработке светодиодного светильника необходимо продумать охлаждение, и тогда (соблюдая, конечно, и остальные требования) срок службы светодиода в 50 тысяч и более часов будет обеспечен, а это свыше 5 лет непрерывного круглосуточного свечения! Небольшое примечание: когда вы придете в магазин, продавец может спросить, какие необходимы светодиоды: на 3, 6, 9 или более В. Это не означает, что продавец не знает про все вышесказанное, просто в светодиодах в одном корпусе может быть как один кристалл, так и два, три и более, соединенных последовательно. И так как в среднем у кристалла светодиода белого свечения падение напряжения составляет немного более 3 В при номинальном токе, а последовательное соединение суммирует напряжение, то их могут так и группировать: на 3, 6, 9 В и выше. Итак, теперь мы знаем, что есть только один способ сделать хороший светильник – обеспечить питание светодиодов стабильным значением тока. Это также упрощает создание цепочек светодиодов (рис. 5), ведь если опять вспомнить школьные уроки, значение тока для каждого участка (в данном случае светодиода) последовательной цепи одинаково, что нам и нужно. Рис. 5. Подключение цепочки последовательных светодиодов к источнику тока Некоторые читатели могут заметить, что я умолчал о двух способах, когда светодиод все же можно подключить к обычному источнику напряжения: с использованием токоограничительного резистора или стабилизатора тока, как показано на рисунках 6 и 7. Рис. 6. Использование токоограничительного резистора Рис. 7. Использование стабилизатора тока Да, это работающие и удобные решения с низкой стоимостью. Однако КПД у них тоже ниже, ведь на резисторе или стабилизаторе тока неизбежно будут потери, и чем мощнее светильник – тем они больше. Такое решение в итоге выйдет дороже. А зачем платить больше, если производители выпускают LED-драйверы с высоким КПД, сравнимые по стоимости с источником напряжения? К тому же некоторые модели имеют дополнительный функционал, специально рассчитанный под системы освещения. А если глянуть на многообразие LED-драйверов, выпускаемых компанией MEAN WELL, то становится ясно: вероятность того, что среди них не окажется нужного, крайне мала. Главное – уметь в них ориентироваться, то есть знать ответы на еще несколько вопросов. Начнем с подключения к сети переменного тока. Что такое корректор коэффициента мощности и зачем он нужен Любой электроприбор для своей работы тратит некое количество энергии, называемое активной мощностью, а его потребление от электросети - полной мощностью. Разница между полной мощностью и активной называется реактивной мощностью. Реактивная мощность бесполезна, она создает лишнюю нагрузку на электросеть и в итоге рассеивается в виде тепла на проводах. Отношение активной мощности к полной – коэффициентом мощности. В некоторых случаях, когда, например, ток имеет форму синусоиды, но сдвинут относительно напряжения, его также называют «косинусом фи» (cos ϕ) и могут обозначить символом «лямбда» (λ). Так что если вы на корпусе устройства увидите надпись «λ = 0.98», то это именно он - коэффициент мощности. Идеальное значение коэффициента – единица, и к ней можно приблизиться, если нагрузка носит резистивный характер (например, обычный ТЭН), и при этом форма тока совпадает как с формой, так и с фазой напряжения (рис. 8). Если форма тока (на рис. 8 осциллограмма красного цвета) не совпадает с формой напряжения, то коэффициент мощности меньше единицы, и чем он ниже, тем больше реактивная мощность. Рис. 8. Зеленый цвет на осциллограмме обозначает напряжение, красный – ток без ККМ, желтый – с ККМ Действующие нормы и правила запрещают такой неэкономичный подход, и, если у электроприбора коэффициент мощности слишком мал, придется это исправить с помощью корректора коэффициента мощности – ККМ (Power Factor Correction, PFC). Для LED-драйверов ККМ не обязателен, если их мощность не более 25 Вт. Однако отсутствие ККМ – это еще и помехи из-за искаженной формы тока. Поэтому при выборе LED-драйвера надо помнить, что мощные модели (25 Вт и более) обязаны иметь ККМ, и его наличие уменьшает генерацию светильником помех в электросети. Cold Start - первое включение Термин Cold Start («холодный пуск») означает первое включение LED-драйвера MEAN WELL, когда его температура равна окружающей и все его конденсаторы разряжены, а значит, при включении они вызовут кратковременный скачок тока (сопротивление разряженного конденсатора крайне мало и увеличивается лишь в процессе зарядки). Величина такого скачка в спецификации названа Inrush Current («пусковой ток»). Почему в начале этого абзаца я акцентировал внимание на LED-драйвере производства именно MEAN WELL? Разве в других устройствах не возникает такое явление? Конечно же, возникает. Даже обычная лампочка накаливания при первом включении имеет состояние холодного пуска, отличающееся от рабочего режима, как и практически любой иной электроприбор. Все дело именно в LED-драйверах и их производителях: компания MEAN WELL обоснованно считает, что холодный пуск – это первое включение устройства (любого), а другие производители могут считать, что это включение именно LED-драйвера в условиях пониженных температур. И такая трактовка термина уже приводит к иному поведению прибора: вспомним, что у ВАХ холодного светодиода необходимое значение тока соответствует более высокому напряжению, чем у горячего светодиода. Значит, пока светильник не прогреется, для удержания заданного тока надо повышать выходное напряжение драйвера, а это уже не совсем хорошо, так как вызывает перегрузку по мощности. Разумеется, инженеры MEAN WELL в курсе этого явления, но функцию, которая его компенсируют, они называют «Environment Adaptive Function» (адаптация к окружающей среде). Такая функция реализована в LED-драйверах серии HLG-C: как только выходное напряжение становится на 20% больше максимального, значение тока уменьшается. В итоге выходные характеристики драйвера находятся в некой зоне адаптации, показанной на рис. 9, до тех пор, пока светильник не сможет войти в рабочий режим постоянного тока (Constant Current, CC). Рис. 9. Адаптивная функция LED-драйвера HLG-C Удержание тока и напряжения в определенных пределах, чтобы не превысить мощность драйвера, называют режимом постоянной мощности (Constant Power, CP). Осталось вспомнить про напряжение и получим троицу постоянных, а лучше сказать «стабилизированных» режимов: CC, CP и CV (Constant Voltage - постоянное напряжение). Рассмотрим их немного подробнее. Режимы работы CC, CP и CV Знания о том, что такое режимы работы LED-драйвера, да и вообще любого источника питания, позволяют не только выбрать правильный драйвер для определенного светильника, но и понять поведение выхода такого ИП в зависимости от ситуаций. Например, обычный стабилизированный блок питания работает в своем обычном режиме CV, и это стандартно. Но, предположим, что производитель снабдил его защитой от перегрузки, которая не отключает выход, а переводит в режим CC, не позволяя току расти. Если не обратить на это внимания и не знать, что ограничивать ток нагрузки блок питания будет посредством уменьшения напряжения, можно столкнуться с неожиданным поведением запитываемых устройств, для которых включение/выключение – нормально, а вот постепенное снижение напряжения вплоть до срабатывания следующего уровня защиты – уже не очень хорошо. Или возьмем зарядные устройства для различных аккумуляторов: там режимы CC и CV могут чередоваться по определенному алгоритму, и, понимая это, нам не составит труда разобраться в их работе. А каким образом режим CV относится к светодиодам, если я уже неоднократно говорил, что светодиоду нужен стабилизированный ток, то есть режим CC? Давайте вернемся немного назад, к рисункам 6 и 7, где в качестве источника тока используется резистор или отдельная схема стабилизации тока. Как уже говорилось, это вполне рабочие и недорогие решения. И если мощность невысока, то и потери будут небольшие, и ими можно пренебречь в угоду простоте. Светодиодные ленты – именно тот самый случай. Просто и удобно: несколько светодиодов и резистор. Такие цепочки подсоединены к общей шине питания и требуют блока питания с фиксированным напряжением, например, 12 В (наверное, самое популярное значение для лент). То есть нужен драйвер с режимом CV. Пользователю достаточно лишь запомнить, что для одного метра достаточно простого блока питания, а для километра уже нужны источники помощнее и притом несколько, распределенных по всей ленте. Разумеется, компания MEAN WELL не оставила в стороне такие способы построения освещения и предлагает драйверы с режимом CV. И все же режим CC – это де-факто стандарт для LED-драйверов. Полагаю, уже понятно, что в этом случае стабилизируется именно значение тока. Но одна особенность этого режима, определяемая драйвером, нуждается в особом внимании - диапазон выходных напряжений. В пределах этого диапазона (в документации он указывается как «Constant Current Region») ток стабилен, а вот за его границами (та самая ситуация с холодными светодиодами) драйвер уже не может справиться и будет принимать какое-то решение: ограничить мощность или просто оставить нас в темноте. Кроме того, этот диапазон определяет, сколько светодиодов в последовательной цепи можно поставить, ведь их напряжения суммируются. Итак, CC и CV - почти одинаковые, но противоположные режимы. При использовании CC в цепи светодиодов ток будет постоянным, а напряжения светодиодов необходимо суммировать. Для СV уже наоборот: напряжение постоянное, а суммировать надо значение тока параллельных цепочек в ленте. Все просто и, как я и обещал, не выходит за рамки школьной программы. Теперь давайте посмотрим на режим CP - постоянной (стабилизированной) мощности. В качестве примера выступит драйвер XLG-75-H, чья работа показана на рис. 10. Рис. 10. Режим CP LED-драйвера XLG-75-H У режимов CC и CV зависимости тока и напряжения прямо пропорциональны, то есть если надо увеличить ток, приходится увеличивать напряжение, и, соответственно, если надо повысить напряжение – повышают ток. А поскольку мощность – это произведение тока и напряжения, то она точно так же прямо пропорционально меняется. Поэтому у режима CP все наоборот: нагрузка требует больше тока? Уменьшим напряжение! И если посмотреть на левую границу заштрихованной области на рис. 7, то можно посчитать мощность в верхней точке: Pв = 0,65 А * 56 В = 36,4 Вт, и в нижней: Pн = 1,3 А * 27 В = 35,1 Вт. Как видим, мощность при таких существенных изменениях значений тока и напряжения изменилась не особо: можно считать, что с некоторой погрешностью она стабилизирована. Для LED-драйвера XLG-75-H можно задать значение мощности с помощью встроенного переменного резистора (примерно до 75 Вт), поэтому график имеет не одну линию, а некую область. Легко заметить, что правый нижний угол «обрублен» – это результат работы защиты по току, больше 2,1 А драйвер выдать не может. (Подобные графики очень удобны для понимания работы устройства и часто гораздо нагляднее чем числа в таблицах. Если производитель не поленился поместить их в документацию, настоятельно рекомендую с ними ознакомиться.) Итак, три режима работы стали понятны, а значит, можно разобраться и с комбинированным режимом CV + CC (рис. 11), который тоже имеется у ряда источников питания MEAN WELL. Рис. 11. Комбинированный режим источника питания ELG-75-48 Работа комбинированного режима не более сложна, чем все они по отдельности: когда выходной ток ниже заданного значения, работает режим CV, но как только значение тока стало равно заданному, источник питания переключается в режим CC. На рис. 11 видно, что внизу график опять ведет себя «не по правилам» – это тоже результат действия защиты, которая срабатывает, если в режиме CC напряжение падает ниже 24 В. Итак, вы узнали больше о режимах работы источников питания, уже выбрали какой-то из них для своей системы освещения, и вам не терпится приобрести соответствующий драйвер? Не вижу причин препятствовать этому порыву и, всячески приветствуя его, предлагаю ознакомиться с LED-драйверами производства компании MEAN WELL, сгруппированными по режимам работы. Однако все же рекомендую дочитать статью до конца, ведь не зря светодиодный светильник был назван «системой освещения». Режим CV: o APV-8, APV-12, APV-16, APV-25, APV-35, APV-8E, APV-12E, APV-16E; o LPL-18, LPH-18, LPV-20, LPV-35, LPV-60, LPV-100, LPVL-150, LPV-150. Режим CC: o APC-8, APC-12, APC-16, APC-25, APC-35, APC-8E, APC-12E, APC-16E; o ELG-75-C, ELG-100-C, ELG-150-C, ELGT-150-C, ELG-200-C, ELG-240-C; o HLG-60H-C, HLG-80H-C, HLG-120H-C, HLG-185H-C, HLG-240H-C, HLG-320H-C, HLG-480H-C; o LDH-25, LDH-45(DA), LDH-65; o LDD-L, LDD-H, LDD-H-DA, NLDD-H, LDDS-H; o LCM-25-IoT, LCM-40-IoT, LCM-60-IoT; o LPHC-18, LPC-20, LPC-35, LPC-60, LPC-100, LPC-150; o LPF-16D, LPF-25D, LPF-40D, LPF-60D, LPF-90D; o XLG-20. Режим CP: o ELGC-300; o XLG-25, XLG-50, XLG-75, XLG-100, XLG-150, XLG-200, XLG-240, XLG-320. Комбинированный режим CV+CC: o ELG-75, ELG-100, ELG-150, ELG-200, ELG-240, ELG-300; o HLG-40H, HLG-60H, HLG-80H, HLG-100H, HLG-120H, HLG-150H, HLG-185H, HLG-240H, HLG-320H, HLG-480H, HLG-600H; o LPF-16, LPF-25, LPF-40, LPF-60, LPF-90; o SLD-50, SLD-80. Как изменять яркость светильника Система освещения – это один или несколько светильников, состоящих из набора светодиодов и драйвера + управление. Управление может осуществляться обычным выключателем или диммером, позволяющим регулировать яркость (а также это можно сделать через цифровой интерфейс, но об этом чуть позже). Если двухступенчатое изменение яркости в стиле «светится – не светится» не совсем то, что хочется для комфортной работы или отдыха, то достаточно установить диммер (Dimmer – «затемнятель») - устройство, задающее яркость светильника. От его названия произошел и термин «димминг» - управление яркостью. В случае со старыми лампами накаливания это достигалось за счет небольшой схемы с симистором, монтируемой вместо выключателя. Нашему светильнику с LED-драйвером MEAN WELL такой не нужен: практически во всех моделях функция управления яркостью уже присутствует, притом предлагаются целых три варианта. Достаточно выбрать один из них и подключиться к контактам драйвера DIM+ и DIM-. Рис. 12. Регулировка яркости с помощью напряжения На рис. 12 показан первый вариант регулировки яркости – постоянным напряжением в диапазоне 0…10 В. Для цифровых систем управления, например, микроконтроллером с собственной программой, предлагается второй вариант (рисунок 13), где яркость управляется сигналом с широтно-импульсной модуляцией (ШИМ, PWM). Рис. 13. Изменение яркости с помощью ШИМ-сигнала И самый простой вариант – посредством обычного переменного резистора (рис. 14). Нужно лишь учесть, что его сопротивление должно быть 100/N кОм, где N – количество одновременно регулируемых драйверов. Рис. 14. Изменение яркости с помощью переменного резистора Одновременная регулировка яркости общим сигналом – это очень полезное свойство драйвера, позволяющее упростить управление яркостью нескольких светильников. Как изменять яркость светильника с умом, или что такое Smart Timer Dimming Вспомним старый анекдот: «Электрик плавно тянет вилку из розетки, и свет в кинозале медленно гаснет». Точно такой же «электрик» находится в драйверах MEAN WELL с системой Smart Timer Dimming. Если нет возможности управлять яркостью светильника обычным образом или вам просто лень подходить к выключателю каждое утро и вечер либо вы хотите создать освещение по определенному сценарию – LED-драйверы серий ELG, ELG-C, HLG и HLG-C созданы для вас! Если, конечно, в окончании их наименования есть суффикс “D2”, что означает наличие в них программируемой функции Smart Timer Dimming. Она запоминает сценарий и, согласно определенному времени, указанному в нем, управляет яркостью светильника, притом можно задать плавный переход от одной яркости к другой. Время того, как долго «электрик» будет «тянуть вилку», в этом случае тоже настраивается. Помимо выполнения основной программы, Smart Timer Dimming следит за деградацией светодиодов в процессе их старения, автоматически компенсируя потерю яркости. Для программирования потребуется компьютер с ОС Windows и специальный программатор SDP-001 для LED-драйверов. Может ли система освещения быть еще умнее? Сохраним интригу для следующего раздела. Можно ли подключить LED-драйверы к цифровой сети Конечно! Но только те, у которых есть один из интерфейсов: DALI (или DALI2), созданный специально для систем освещения, что и отражено в его полном названии - Digital Addressable Lighting Interface (цифровой интерфейс освещения с адресацией). Этот интерфейс позволяет управлять каждым светильником отдельно или сразу группой. Он есть в LED-драйверах MEAN WELL серий LDD-DA, LCM-DA, LCM-U-DA, ELG и ELG-C. KNX – для систем умного дома. Компания MEAN WELL предлагает с этим интерфейсом пока одну серию - LCM-KN, в которой есть две модели драйверов мощностью 40 и 60 Вт. Bluetooth, Wi-Fi и другие беспроводные интерфейсы могут присутствовать в сериях для IoT (Internet of Things, Интернет вещей): LCM-25-IoT, LCM-40-IoT и LCM-60-IoT. Какой именно интерфейс устанавливается в конкретной модели, необходимо уточнять при заказе. На момент написания этого поста предлагались варианты с Bluetooth и управлением для программ от Сasambi, Tuya и Silvair, но MEAN WELL упоминает и о других вариантах беспроводной связи. Цифровые интерфейсы двунаправленны, то есть можно не только управлять системой освещения, но и мониторить ее состояние. Это удобно, ведь обычное управление сохраняется. Более того – у драйверов, оснащенных цифровым интерфейсом (в том числе беспроводным), есть возможность управлять яркостью одной кнопкой, точнее различной длительностью ее нажатия. Включить освещение можно, не обращаясь к сети, а центральный пульт это «увидит» и проконтролирует как действия человека (не забыл ли он выключить свет), так и состояние светильника, например, его температуру. Далее ответим на еще один вопрос: как комфортность освещения влияет на нас с вами (скорее всего, и на наших братьев меньших, но они свои претензии пока не предъявляли). Что такое “Flicker Free” Этот термин можно перевести с английского как «без мерцания». Где-то в самом начале статьи я упомянул, что у светодиодов нет инерции. Вот у лампочки накаливания она была просто огромная за счет сохранения температуры спирали, и увидеть ее моргание с частотой сети 50 Гц было достаточно сложно. А вот если цепочку светодиодов напрямую включить в обычную сеть (разумеется, предприняв хотя бы минимальные действия, чтобы не вышли из строя), то они будут успевать включиться и выключиться 50 раз в секунду. У нашей зрительной системы (глаз и мозга) тоже есть инерция, называемая персистенцией. Благодаря ей мы не только не видим мерцания света, если его частота как раз около 50 Гц и более, но и можем смотреть видео именно как видео, а не как набор быстро сменяющихся кадров. А вот наше подсознание «видит» мерцания с частотой до 300 Гц, и они нехорошо влияют на нашу мозговую деятельность. LED-драйверы MEAN WELL свободны от мерцания. Схемы преобразователя и стабилизатора режима работы созданы с учетом максимального соответствия самым жестким нормативам. Остался последний вопрос, который имеет отношение к выбору производителя LED-драйверов. Почему MEAN WELL Потому что это надежный производитель добротных источников питания, которые по достоинству оценили пользователи. Конечно, MEAN WELL - не единственный представитель на рынке ИП, но мало кто с ним может сравниться по совокупности всех характеристик, притом не только технических параметров и качества изготовления, которые у MEAN WELL на высоте, но и таких как стоимость, поддержка, документированность, гарантия (нередко достигающая 5, а иногда даже 7 лет!) и ассортимент (более 10 тысяч наименований). Компания занимается источниками питания, успешно работает в этой области уже более 40 лет, и это говорит о многом.
  3. В последнее время концепт умного дома стал очень популярным. В это понятие входят и вопросы автоматизации зданий, поскольку там также используются охранные и пожарные сигнализации, СКУД, светодиодное освещение и т.д. Далее я хотел бы поговорить об источниках питания, которые используются в этих системах, поскольку там есть множество нюансов, неочевидных на первый взгляд. Источники питания для данной сферы можно разделить на две группы: базовые и специализированные. От первых требуется лишь обеспечивать надежное питание устройства стабилизированным напряжением с возможностью его подстройки, во втором же случае изделия должны обладать некоторым дополнительным функционалом: возможностью работы с шиной KNX, которая используется для управления умным домом, и с шиной DALI для управления освещением. Классические источники питания есть у многих производителей, а специализированные встречаются существенно реже. Проще всего об этом говорить на конкретных примерах. В качестве такого примера для рассмотрения я хотел бы взять номенклатуру, пожалуй, самого известного азиатского производителя различных источников питания и светодиодных драйверов, компании MEAN WELL. Поскольку речь идёт об эксплуатации изделий внутри помещений, то имеет смысл начать рассмотрение со стандартных изделий для монтажа на DIN-рейку. У MEAN WELL это изделия семейства HDR – унифицированные источники питания (DIN 43880) шириной 1SU…6SU и мощностью 15, 30, 60, 100, либо 150 Вт., которые легко монтируются в неглубокие щитки и соответствуют 2 классу электробезопасности (UL508, EN61558-2-16, IEC62368-1) – изоляция между входом и выходом составляет 4 кВ, защитное заземление не требуется. Выходное напряжение – стандартное: 5, 12, 15, 24 или 48 В (в зависимости от мощности), температурный диапазон -30…+70°C. Дополнительно есть функция ручной подстройки выходного напряжения, индикация наличия выходного напряжения, защита от короткого замыкания и от превышения выходного напряжения. Хотел бы обратить внимание на то, что у MEAN WELL есть две очень похожие серии источников питания: HDR-100 и HDR-100/N. Однако их параметры немного различаются. Серия HDR-100 имеет некоторые ограничения по выходной мощности и диапазону подстройки выходного напряжения. Это сделано для их соответствия стандарту IEC 62368-1. Серия HDR-100/N этих ограничений не имеет. В этом вся разница. Производитель дает гарантию 3 года на изделия этих серий. Шина KNX Ранее я упоминал про шину KNX. Хотел бы остановиться на ней более подробно, а точнее – на источниках питания для устройств, которые к ней подключаются. Как и в случае со светодиодами, обычный источник питания тут не подойдёт, т.к. это может привести к выходу из строя всех устройств, подключённых к шине. MEAN WELL выпускает три модели источников питания, которые могут работать с шиной KNX. По сути, разница лишь в выходной мощности и немного различающихся наборах дополнительных функций, как в случае с моделями KNX-40E-1280 и KNX-40E-1280D (см. рисунок 1). Рис. 1. Внешний вид источников питания серий KNX-20E-640 и KNX-40E-1280(D) Основные технические параметры источников питания KNX-20E-640 и KNX-40E-1280/D для шины KNX Выходная мощность: KNX-20E-640 – 19,2 Вт, KNX-40E-1280/D – 38,4 Вт; Выходное напряжение: 30 В; Выходной ток: KNX-20E-640 – 640 мА, KNX-40E-1280/D – 1280 мА; КПД: 86%; Количество устройств на шине (макс.): KNX-20E-640 – 64; KNX-40E-1280/D – 256; Ширина, SU: KNX-20E-640 – 3, KNX-40E-1280/D – 4; Функциональные особенности: KNX-20E-640 – стандарт, KNX-40E-1280/D – стандарт/диагностика. Во всех изделиях имеется встроенный дроссель для разделения управляющих сигналов шины. Однако источники питания имеют дополнительный выход напряжения до встроенного дросселя, который можно использовать для питания устройств, подключенных к шине, для чего данные ИП можно включать по одной из предлагаемых в документации схем. Главное, чтобы суммарный ток (I1+I2) не превышал значение максимально допустимого значения тока источника (640 или 1280 мА). В случае превышения этих значений светодиодная индикация просигнализирует об этом. DLP-04R(L) – источник питания для шины DALI (управление освещением) В системах автоматизации зданий для управления светодиодным освещением используется шина DALI (Digital Addressable Lighting Interface), которой также необходим собственный источник питания с определенными параметрами. MEAN WELL выпускает источники питания для шины DALI в двух конструктивных вариантах исполнения: на DIN-рейку (модель DLP-04R) и на шасси (модель DLP-04L). Типовая схема подключения источника питания к шине с внешними устройствами приведена на рисунке 2. Максимальный выходной ток источника питания 240 мА при том, что интерфейс управления DALI обычно потребляет ток порядка 2 мА. Учитывая, что к одной шине может быть подключено не более 64 устройств, суммарный ток составит порядка 128 мА. Запас в 112 мА нужен, чтобы при необходимости запитать некоторые элементы управления шины, не имеющие собственного источника питания. Рис. 2. Схема подключения ИП DLP-04R(L) к шине DALI Что касается габаритов DLP-04R, они полностью соответствуют габаритам источников семейства HDR, а гарантийный срок эксплуатации составляет 3 года. Об унификации управления В системе умного дома обычно используется две линии: KNX для исполнительных устройств и DALI – для освещения. На рынке есть широкий выбор LED-драйверов, управляемых по протоколу DALI, чего не скажешь о драйверах, которые бы управлялись по протоколу KNX. MEAN WELL имеет в своей номенклатуре LED-драйверы, управляемые по протоколу KNX. Это серии LCM-25KN, LCM-40KN и LCM-60KN на мощность 25, 40 и 60 Вт, соответственно (рисунок 3). Драйверы имеют в своём составе ККМ, функцию димминга, обладают крайне низким уровнем пульсаций. На этих драйверах можно реализовать систему освещения, используя только одну линию KNX, хотя для шины DALI также есть варианты: LCM-25DA, LCM-40DA, LCM-60DA. Кроме того, совсем недавно MEAN WELL выпустила модель LCM-40TW с функцией Tunable White с управлением по шине DALI. Рис. 3. LED-драйвер семейства LCM (внешний вид) Дополнительные модули для управления по KNX/DALI и повышения качества питающего напряжения Со специальными источниками питания и LED-драйверами для шин KNX и DALI всё более-менее понятно. Однако не стоит забывать, что система умного дома состоит не только из источников питания и управляемых светодиодных драйверов. В подобных системах широко применяются: актуаторы (исполнительные устройства), шлюзы, роутеры, изоляторы между шинами, контроллеры и преобразователи интерфейсов (KNX/DALI) и т.д. Каждое из этих устройств заслуживает отдельной статьи, и сейчас мы не будем на них останавливаться. Всю информацию можно посмотреть на сайте MEAN WELL. Рассматривая импульсные источники питания, мы не упоминали о таком важном параметре, как пусковой ток (Inrush Current). Высокое значение пускового тока при включении – это, пожалуй, главный недостаток импульсных источников электропитания. Это явление возникает из-за заряда ёмкости, установленной после выпрямительного моста. Величина пускового тока может достигать 40…70 А. Хотя длительность этого импульса довольно коротка, но если одновременно включается сразу несколько источников питания, суммарный импульс может вызвать срабатывание автоматического выключателя. Чтобы решить эту проблему, компания MEAN WELL предлагает использовать ограничители пускового тока 16R(L) или ICL-28R(L) (рисунок 4). Эти модули ограничивают пусковой ток, и к ним можно подключить сразу несколько источников питания. Рис. 4. Ограничители пускового тока ICL-16R(L) Ограничители пускового тока выпускаются в двух вариантах: под монтаж на DIN-рейку (окончание наименования R) и под монтаж на шасси (окончание L). Рассчитаны они на токи 16 и 28 А, соответственно. Типовая схема подключения ограничителей пускового тока показана на рисунке 5. Рис. 5. Типовая схема включения ограничителя пускового тока ICL-16/28 Как рассчитать максимальное количество источников питания, которое можно подключить к одному ограничителю тока? Рассмотрим этот вопрос на примере ограничителя тока ICL-16 и источника питания HDR-100. Максимальная величина постоянного тока ICL-16 составляет 16 А, а максимальное значение ёмкости нагрузки – 2500 мкФ. В техническом описании источника питания HDR-100 параметр AC Current имеет значение 1,6 А/230 В. Отношение 16/1,6 = 10. Таким образом, можно подключить группу из десяти источников питания HDR-100. Чуть ранее я упоминал про максимальную ёмкость (не более 2500 мкФ). Как понять, какой конденсатор установлен в источнике питания? Следует зайти на сайт производителя и найти информацию там, ориентируясь на конкретный артикул. В данном случае (HDR-100) это будет 180 мкФ/420 В. Таким образом, в нашем случае имеется единственное ограничение по потребляемому току, т.к. 10 шт х 180 мкФ =1800 мкФ, что меньше, чем допустимая максимальная ёмкость 2500 мкФ. Если бы емкость этого конденсатора оказалась бы более 250 мкФ, то максимально возможное количество подключённых изделий определялось бы именно параметром ёмкости. Данные ограничители пускового тока можно использовать и с источниками питания других производителей. Ограничители пускового тока, монтируемые на DIN-рейку, имеют точно такие же размеры, как и источники питания семейства HDR. Заключение Мы рассмотрели некоторые группы изделий компании MEAN WELL для применения с шинами DALI и KNX. Все они предназначены для эксплуатации в помещениях, безопасны и легко монтируются в эргономичные щитки управления. Продукция MEAN WELL давно присутствует на российском рынке и хорошо зарекомендовала себя, а главное – изделия до сих пор доступны.
  4. Сегодня речь пойдет о LED-драйверах MEAN WELL популярных семейств APC, PLD, PCD, LDC и LCM, которые оптимальны для выполнения наиболее распространенных задач светодиодного освещения в различных областях и условиях эксплуатации. Замена старых светильников на LED – вопрос времени. Сегодня мощные белые светодиоды являются лучшими источниками света и обладают такими преимуществами, как долговечность, компактность, светоотдача, спектр излучения и экономичность, что гарантирует LED-светильникам перспективность применения в энергосберегающих технологиях. Однако светодиод как светоизлучающий компонент нуждается в особом «отношении»: ему необходимо питание постоянным током стабильного значения, а падение напряжения на одном его кристалле - всего несколько вольт. Это вызывает необходимость использования в светильниках специального драйвера для светодиодов – как правило, импульсного источника питания (ИИП), отвечающего таким требованиям, как: пульсации светового потока в пределах требований СанПиН и СНиП (отсутствие инерции у светодиода вызывает мгновенное изменение свечения из-за пульсаций источника питания); высокий КПД преобразования, обеспечивающий энергосбережение; регулировка драйвера для изменения яркости светильника (в некоторых случаях); соответствие действующим нормам электромагнитной совместимости (ЭМС), безопасности эксплуатации и прочих характеристик оборудования, использующего сеть переменного тока. Разработка такого ИИП под силу только специалистам, которые могут отсутствовать в штате компаний, производящих осветительное оборудование. Кроме того, как проектирование, так и производство драйверов требуют времени и могут оказаться экономически невыгодными в случае относительно небольших партий. Более простое, быстрое и выгодное решение - использовать готовые источники питания. Среди компаний, специализирующихся на разработке и производстве LED-драйверов, высоким авторитетом пользуется MEAN WELL – один из мировых лидеров среди производителей ИИП. Продукция этой компании была одним из первых предложений на рынке драйверов для светодиодного освещения. К настоящему времени MEAN WELL накопил огромный опыт в разработке ИИП и, отвечая современным тенденциям, выпускает широчайший ассортимент источников питания для LED-светильников, используемых как в жилищно-коммунальном хозяйстве (простые бюджетные драйверы), так и в интеллектуальных системах освещения (драйверы с интерфейсами KNX, DALI). ИИП MEAN WELL соответствуют отраслевым нормативам и стандартам, действующим на территории РФ. Нормативные требования к светодиодным драйверам Правила, регламентирующие эксплуатацию осветительных систем на территории Российской Федерации, требуют от светодиодного светильника соответствия нормам по пульсациям и спектру светового потока, а также ЭМС. Спектр излучения определяется только параметрами светодиода, а за уровень пульсаций несет ответственность источник питания. Как упоминалось выше, светодиод безынерционен, любое изменение тока, проходящего через него, вызывает мгновенное изменение яркости свечения, притом зависимость этих изменений практически линейна. Это позволяет легко проверить соблюдение уровня пульсаций светового потока по коэффициенту пульсаций выходного тока драйвера. Ниже приведены нормы пульсаций светового потока (коэффициент пульсаций, не более, %), которые допустимы для определенных областей применения: Рабочее место оператора ПЭВМ – 5%; Различение объектов очень высокой точности – 10%; Детские дошкольные и учебные учреждения – 10%; Различение объектов высокой точности – 15%; Различение объектов средней точности – 20%; Временное присутствие человека – не нормировано; Остальные области – 20%. Еще один важный параметр – коэффициент мощности ИИП. Это величина, равная отношению активной мощности к полной (потребляемой). В идеальном варианте напряжение и ток полностью совпадают по фазе и форме, то есть коэффициент мощности равен единице. LED-драйвер является нелинейным преобразователем, работа которого изменяет в цепи нагрузки форму тока, что приводит к генерации помех в электрической сети и сказывается на уменьшении значения коэффициента. Это допустимо, если мощность электрооборудования менее 25 Вт. В устройствах с большей мощностью необходимо приблизить значение коэффициента к единице, например, с помощью корректоров коэффициента мощности (ККМ). Диапазон рабочих температур и степень защиты – два нормативных требования, определяющих условия эксплуатации. Для светильников, работающих внутри помещений, используются драйверы со степенью защиты не ниже IP20 и диапазоном положительных температур с верхней границей не ниже 40°С. Освещение вне помещений требует источников питания со степенью защиты IP65 и выше, диапазон температур должен быть с отрицательной областью: -40…40°С. LED-драйверы MEAN WELL Преимущества использования продукции MEAN WELL заключаются не только в высоком качестве и возможности выбрать подходящую модель из множества вариантов, но и в достаточной простоте ориентирования по наименованиям этих ИИП. Компания подразделяет источники питания на несколько семейств, внутри которых конструкция, схемотехническое решение и условия эксплуатации практически одинаковы. Различия могут быть лишь в выходной мощности (ее значения обособляют серию ИП внутри семейства) и связанных с ней габаритов, а также в некоторых иных непринципиальных изменениях. Каждая серия с определенной выходной мощностью состоит из ряда LED-драйверов, отличающихся значением номинального тока. Такое разделение позволяет удобно проектировать светодиодные светильники для одинаковых условий эксплуатации, но с различной мощностью светового потока. Замена ИП одного семейства минимизирует затраты на изменения в конструкции при модернизации и обслуживании существующих устройств. Экономичные нерегулируемые LED-драйверы семейства APC Малая стоимость – основное достоинство светодиодных драйверов APC, внешний вид которых изображен на рисунке 1. Они предназначены для эксплуатации в системах внутреннего освещения (класс защиты IP42). Это единственное семейство, в котором есть LED-драйвер мощностью всего 8 Вт. Другие семейства драйверов MEAN WELL имеют минимальную мощность 16…25 Вт, что избыточно при освещении подсобных помещений, коридоров, лестниц и прочих мест, где достаточно небольшой освещенности, и нет необходимости переплачивать за более дорогие модели. Рис. 1. Внешний вид LED-драйвера семейства APC Несмотря на малую стоимость, модели LED-драйверов семейства APC обладают высокими техническими характеристиками (приведены ниже). Низкий уровень колебаний выходного тока позволяет светильникам отвечать самым жестким требованиям к пульсациям светового потока. Эти LED-драйверы имеют защиту от коротких замыканий, перегрузок и перенапряжений. Гарантийный срок службы – 2 года. Параметры драйверов семейства APC: диапазон входных напряжений: 90…264 В; серии по мощности: 8, 12, 16, 25 и 35 Вт; фиксированные выходные токи: для всех серий: 350 и 700 мА; дополнительно для серии APC-8: 250 и 500 мА; дополнительно для серий APC-25 и APC-35: 500 и 1050 мА. КПД до 84%; пульсации выходного тока не более 5%; отсутствие корректора коэффициента мощности; защита от коротких замыканий, перегрузок и перенапряжений; температурный диапазон: -30…70°C; класс защиты IP42; размеры: серия APC-8: 60х30х23,5 мм; серии APC-12 и APC-16: 77х40х29 мм; серии APC-25 и APC-35: 84х57х29,5 мм. Примечание. Семейство APC не имеет встроенного ККМ, а значит, серия APC-35 не может эксплуатироваться на территории РФ из-за превышения допустимой мощности (25 Вт) без корректора. Семейство PLD для систем освещения внутри помещений LED-драйверы семейства PLD по корпусу (рисунок 2) и классу защиты (IP42) аналогичны семейству APC и так же обладают невысокой стоимостью. Однако их отличает наличие встроенного ККМ, бóльшая мощность и довольно высокий уровень колебаний выходного тока. Такие характеристики позволяют применять источники питания PLD в недорогих, но мощных светильниках для помещений с низкими требованиями к пульсациям светового потока. Это достаточно широкая область, поэтому среди производителей светодиодных светильников семейство PLD пользуется повышенным спросом. Рис. 2. Внешний вид LED-драйвера семейства PLD мощностью 16 Вт Основные характеристики драйверов семейства PLD: диапазон входных напряжений: 180…295 В; серии по мощности: 16, 25, 40 и 60 Вт; фиксированные выходные токи: для серий PLD-16 и PLD-25: 350, 700, 1050 и 1400 мА; для серии PLD-40: 350, 500, 700, 1050, 1400 и 1750 мА; для серии PLD-60: 500, 700, 1050, 1400, 1750, 2000 и 2400 мА. КПД до 88%; пульсации выходного тока: 15…20%; коэффициент мощности более 0,9; защита от коротких замыканий и перегрева; температурный диапазон: -30…50°C; класс защиты IP42; размеры: серии PLD-16 и PLD-25: 84х57х29,5 мм; серии PLD-40 и PLD-60: 128х60х31,5 мм. Драйверы PLD имеют защиту от коротких замыканий и перегрузок. Гарантийный срок службы – 3 года. LED-драйверы семейства PCD Следующее семейство драйверов MEAN WELL является продолжением развития семейства PLD: модели имеют такой же корпус (рисунок 3) и характеристики, встроенную защиту от коротких замыканий и перегрева, гарантийный срок составляет 3 года. Однако семейство PCD обладает важной особенностью, позволяющей использовать LED-драйверы там, где необходимо изменение яркости освещения - возможностью работы с внешним диммером. Рис. 3. LED-драйвер семейства PCD Параметры LED-драйверов семейства PCD: диапазон входных напряжений: 180…295 В; серии по мощности: 16, 25, 40 и 60 Вт; выходные токи (без диммирования): для серий PCD-16 и PCD-25: 350, 700, 1050 и 1400 мА; для серии PCD-40: 350, 500, 700, 1050, 1400 и 1750 мА; для серии PCD-60: 500, 700, 1050, 1400, 1750, 2000 и 2400 мА. КПД: для серий PCD-16 и PCD-25: 80…82%; для серии PCD-40: 85…87%; для серии PCD-60: 84…87%. пульсации выходного тока:15…20%; коэффициент мощности более 0,9; защита от коротких замыканий и перегрева; температурный диапазон: -30…50°C; класс защиты IP42; размеры: серии PCD-16 и PCD-25: 84х57х29,5 мм; серии PCD-40 и PCD-60: 128х60х31,5 мм. Принцип управления симисторного диммера заключен в смещении включения источника света от перехода фазы через ноль (рисунок 4). Таким образом, лампы накаливания получают меньшую мощность и, как следствие, снижают яркость, а мерцание незаметно из-за огромной инерции нити. Но для работы подобных диммеров с ИИП светодиодных светильников необходимы дополнительные схемотехнические решения, примененные в семействе PCD. Рис. 4. Работа LED-драйвера PCD совместно с симисторным диммером Несмотря на то, что драйверы PCD способны «понимать» практически любое диммирование отсечкой фазы по переднему или заднему фронту, существует ненулевая вероятность, что ранее производитель диммеров использовал решение, несовместимое с LED-драйвером PCD и способное вызвать его некорректную работу, поэтому MEAN WELL приводит в документации список наименований рекомендуемых диммеров. Назначение драйверов PCD аналогично семейству PLD: их можно применять в системах внутреннего освещения помещений, не требовательных к пульсациям светового потока. Регулировка яркости диммером позволит дополнительно сэкономить расходы на электроэнергию и создать более комфортные условия пребывания в помещении. LDC – семейство регулируемых светодиодных драйверов LED-драйверы семейства LDC, в отличие от предыдущего семейства, имеют не только удлиненный металлический корпус (рисунок 5), но и двойную систему регулировки значения выходного тока. Первая система ограничивает номинальный ток, позволяя использовать один и тот же драйвер для светильников одной мощности, но с различными решениями в соединении светодиодов. Вторую более подробно рассмотрим далее. Рис. 5. LED-драйвер семейства LDC Установка значения выходного тока осуществляется внешним резистором (рисунок 6), значение сопротивления выбирается согласно технической документации к драйверу. Установка номинального тока драйверов LDC производится с помощью подключения внешнего резистора между выводами IADJ разъема TB2 (рисунок 6). Значения выходных токов и соответствующие им номиналы резисторов приведены в технической документации на драйверы LDC. Рис. 6. Установка значения тока LED-драйвера LDC внешним резистором Вторая система регулирования осуществляет изменение яркости в процессе работы, но, в отличие от семейства PCD, диммирование в LDC осуществляется иначе: системой «3 в 1» (рисунок 7), которая позволяет регулировать яркость через контакты DIM+ и DIM- аналоговым напряжением в диапазоне 0…10 В (ток прямо пропорционален напряжению), ШИМ-сигналом частотой 100…3000 Гц (ток прямо пропорционален коэффициенту заполнения) и сопротивлением переменного резистора 100 кОм (ток прямо пропорционален значению сопротивления); через интерфейс DALI/DALI-2 или кнопкой. Вариант диммирования конкретного драйвера семейства LDC можно определить по суффиксу в наименовании: B: «3 в 1»; DA и DA2: DALI или DALI-2, соответственно. Если суффикс отсутствует, диммирование в данном LED-драйвере не поддерживается. Рис. 7. Диммирование «3 в 1» Управлять яркостью по интерфейсу «3 в 1» допускается независимо от способа и сразу несколькими драйверами, объединенными в одну цепь. Надо лишь рассчитать минимальный ток управления, учитывая, что потребление по шине DIM+/DIM- одним драйвером составляет около 100 мкА, а номинальное значение сопротивления переменного резистора должно быть уменьшено в N раз, где N равно количеству драйверов. LED-драйверы семейства LDC с интерфейсом DALI/DALI-2 позволяют осуществить диммирование кнопкой (рисунок 8). Управление происходит посредством длительности удержания нажатой кнопки: 0,1…1 с – «ВКЛ-ВЫКЛ»; 1,5…10 с – изменение яркости (направление меняется поочередно с нажатиями); 11…∞ с – максимальная яркость. Интерфейс DALI позволяет объединить до 64 LED-драйверов, но управление кнопкой ограничивает максимальное число драйверов до 10, а также требует, чтобы длина проводников от кнопки до последнего драйвера была не более 20 м. Рис. 8. Схема подключения кнопки ручного управления по интерфейсу DALI На рисунке 8 изображена еще одна особенность драйверов семейства LDC - возможность подключения внешнего датчика температуры (термистора NTC). Этот датчик, размещенный непосредственно на подложке светодиода, позволяет драйверу уменьшить ток при недостаточном охлаждении светильника (перегреве). Драйвер LDC имеет собственную защиту от перегрева (а также от короткого замыкания и перенапряжения), а термистор предназначен для защиты светодиодов от тепловой деградации, что обеспечивает им максимальный срок службы. Основные параметры драйверов семейства LDC: диапазон входных напряжений: 180…295 В; серии по мощности: 35, 55 и 80 Вт; диапазон выходных токов: для серии LDC-35: 300…1000 мА; для серии LDC-55: 500…1600 мА; для серии LDC-80: 700…2100 мА. КПД: для LDC-35: 88%; для LDC-55 и LDC-80: 90%. пульсации выходного тока не более 3%; коэффициент мощности не менее 0,95; защита от коротких замыканий, перенапряжений и перегрева; температурный диапазон: -25…80°C; размеры: серия LDC-35: 280х30х21 мм; серия LDC-55: 320х30х21 мм; серия LDC-80: 360х30х21 мм. Гарантийный срок эксплуатации светодиодных драйверов семейства LDC составляет 5 лет, время безотказной работы - не менее 50000 ч, что сопоставимо со сроком службы самих светодиодов. Системы освещения, построенные с применением LED-драйверов LDC, способны удовлетворить практически любые требования, предъявляемые к светильникам для внутреннего освещения помещений. Но, несмотря на замечательные характеристики, драйвер LDC может оказаться неоптимальным выбором, если требуется меньшая мощность или интерфейс управления KNX. В этих случаях стоит обратить внимание на следующее семейство – LCM. LCM – универсальные драйверы для светодиодного освещения LED-драйверы LCM выполнены в пластиковом корпусе (рисунок 9) и обладают следующими особенностями: значение выходного тока устанавливается комбинацией DIP-переключателей; помимо интерфейсов управления яркостью «3 в 1» и DALI/DALI-2 (аналогично драйверам семейства LDC), есть вариант с интерфейсом KNX; модель LCM-xxTW позволяет регулировать температуру цвета светильника; существуют модели с дополнительным выходом (AUX) 12 В/50 мА. Интерфейс управления определяется суффиксом в наименовании драйвера: DA и DA2 – DALI или DALI-2, соответственно, кнопка; KN – KNX, кнопка; TW – DALI, кнопка; без суффикса – «3 в 1». По отдельным запросам компания MEAN WELL может комплектовать некоторые серии драйверов LCM модулем беспроводной связи EnOcean, в этом случае в наименовании будет стоять суффикс EO. Рис. 9. Внешний вид LED-драйвера семейства LCM Технические характеристики и некоторые функциональные особенности несколько различаются внутри семейства, в зависимости от серии. Параметры LED-драйверов семейства LCM: диапазон входных напряжений: для серии LCM—25: 180…277 В; для серий LCM-40 и LCM-60: 180…295 В. серии по мощности: 25, 40 и 60 Вт; выходные токи: для LCM-25 и LCM-40: 350, 500, 600, 700, 900 и 1050 мА; для LCM-60: 500, 600, 700, 900, 1050 и 1400 мА. КПД: для серий LCM-25 и LCM-25DA: 86%; для LCM-25KN: 85%; для LCM-40 и LCM-40DA: 91%; для LCM-40KN: 90% для серий LCM-60 и LCM-60DA: 92%; для LCM-60KN: 91%. пульсации выходного тока не более 5%; коэффициент мощности: для LCM-25: не менее 0,94; для LCM-40 и LCM-60: не менее 0,975. защита: для LCM-25: от коротких замыканий и перегрева; для LCM-40 и LCM-60: от коротких замыканий, перенапряжений и перегрева. функции: для LCM-25: диммирование, синхронизация; для LCM-40 и LCM-60: диммирование, синхронизация, температурная компенсация. температурный диапазон: для LCM-25: -30…85°C; для LCM-40 и LCM-60: -30…90°C. размеры: для LCM-25: 105х68х23 мм; для LCM-40 и LCM-60: 123,5х81,5х23 мм. Отдельно следует рассмотреть драйвер LCM-40TW, предназначенный для обеспечения максимального комфорта в помещении посредством регулировки цветовой температуры. LCM-40TW имеет два выходных канала с регулируемым током (DT6 или DT8), которые управляются по интерфейсу DALI и обеспечивают питание светодиодов с различной температурой свечения. Микшированием яркости «холодных» и «теплых» светодиодов можно получить наиболее благоприятный оттенок освещения для работы или отдыха. Кроме того, этот LED-драйвер имеет наименьшие значения пульсаций светового потока. Контроль температуры светодиодов драйверами серий LCM-40 и LCM-60 аналогичен LDC, различие лишь в зависимости значений выходного тока от температуры и сопротивления термистора (рисунок 10). Рис. 10. График температурной компенсации LCM-40 и LCM-60 в зависимости от сопротивления NTC На рисунке 11 показано объединение нескольких LED-драйверов семейства LCM в одну группу благодаря специальному интерфейсу синхронизации (отсутствует у LCM-40TW). Один из драйверов является мастером, другие – подчиненными. Их количество может доходить до 9, а длина кабеля между ними и мастером не должна превышать 5 м. Диммирование мастера синхронно проецируется на подчиненных. Рис. 11. Синхронизация LED-драйверов семейства LCM Интерфейс DALI разработан исключительно для систем освещения, что и заключено в его названии: цифровой адресный интерфейс освещения (Digital Addressable Lighting Interface). В системах умного дома более целесообразным может оказаться использование интерфейса KNX, который, в отличие от DALI, обеспечивает двусторонний обмен информацией и позволяет управлять не только светильниками, но и остальными компонентами системами, например, датчиками и исполнительными механизмами. Каждый элемент системы имеет уникальный адрес. Адреса могут группироваться для более удобного управления. Сеть устройств, построенная на основе KNX, достаточно сложна, может иметь различные топологию и среды передачи данных, и для упрощения ее построения, программирования логики работы, настройки параметров и связей используется специальное программное обеспечение, работающее на ОС Windows - Engineering Tool Software (ETS). Версия ETS5 Demo может использоваться бесплатно, при условии, что количество компонентов системы не превышает 5. Остальные две версии - Professional (полнофункциональная) и Lite (до 20 устройств) - стоят €1000 и €200, соответственно. Драйверы LCM/KN способны не только регулировать яркость освещения, но и осуществлять мониторинг входного напряжения, если вместо кнопки подключить вход PUSH согласно рисунку 12. Рис. 12. Подключение в режимах мониторинга входного напряжения (а) и ручного диммирования кнопкой (б) При диммировании кнопкой ее параметры задаются в ETS, что позволяет настроить управление в соответствии с предпочтениями пользователя. Система умного дома, построенная на основе KNX, способна существенно повысить энергосбережение и обеспечить единообразную работу светильника благодаря функции Constant Light Output (CLO), которая компенсирует снижение светового потока с течением времени из-за деградации светодиодов. На рисунке 13 поясняется принцип работы LED-драйвера со включенной и выключенной функциями CLO. Рис. 13. Экономия энергии и равномерность светового потока при использовании функции CLO Заключение Даже в устаревших системах внутреннего освещения разработчики старались обеспечить комфорт и экономичность, предлагая комбинированное управление группами ламп и замену обычных выключателей на диммеры. Установка проходных выключателей требовала дополнительных проводов, зато пользователь мог включать свет в одном конце коридора, а выключать в другом. Сегодня развитие технологий позволяет сделать освещение максимально энергосберегающим и комфортным, изменять интенсивность, локализацию и температуру светового потока, обеспечивать удобство работы, необходимую психологическую и физиологическую обстановку под конкретного пользователя и область применения. Это было бы сложно без широкого выбора драйверов для светодиодных светильников, который предоставляет компания MEAN WELL. К сожалению, невозможно рассмотреть все модели за один раз, поэтому сегодня ограничимся лишь наиболее популярными семействами, а остальные LED-драйверы рассмотрим в следующих обзорах.
  5. Сидел, мудрил над драйвером питания одиночного 3-ваттного светодиода от павербанка. На глаза попалась платка зарядника литиевых аккумуляторов на микросхеме TP4056. И тут же сложился паззл: ведь литиевые аккумуляторы заряжаются стабильным током - это же ГОТОВЫЙ LED-драйвер! Поменял программирующий резистор со второго вывода на минус с 1,2 кОм на 3,9 кОм, чтобы снизить выходной ток. Подпаял светодиод и... получил его слабое свечение. Ну никак не 250...300 мА! Замерил ток тестером (последовательно со светодиодом) - получил 235 мА и яркое свечение светодиода... А при непосредственном замере с платки - всего 18 мА. Чудеса... Однако, чудес ведь не бывает, не так ли? Просто падение напряжения на светодиоде не достигло порога рабочего режима микросхемы и она выдавала "капельный" подзаряд, требующийся сильно разряженному аккумулятору. Включение обычного кремниевого диода последовательно со светодиодом надежно решило эту проблему. Наверное, стОило бы поставить диод Шоттки, но такое ещё не пробовал. Результат - на фото. Фотографировать в работе не стал, т.к. высокая яркость светодиода "забивает" изображение.
  6. Признаюсь честно: первоисточник в экселевском формате где-то скачал пару лет назад. Скорее всего, на "Казусе". Поэтому сразу же извиняюсь перед автором, что использовал его заготовку. А тут вот понадобился. Открыл, подставил свои значения - схватился за голову: серьезные ошибки в расчетных формулах. Пришлось открывать даташит и апноуты и править. Результат плюс исходные апноуты - в аттаче. Расчет компонентов LED-драйвера на HV9910.xls AN-H50 (Constant Off-time Buck-based LED Drivers Using HV9910).pdf AN-H48 (Buck-based LED Drivers Using HV9910).pdf
  7. Попала в руки светодиодная матрица OSRAM 13.31 с заводским номером JZD60-E3-1111, скорее всего, от плоской лампы для подвесного потолка. В матрице 22 диода, по 11 последовательно включенных в двух параллельных ветвях, с выравнивающими резисторами в каждой ветви, на радиаторе. Номинальная мощность 6.3 Вт. Драйвера в наличии нет, все светодиоды проверил, исправны. Падение напряжения на одном диоде по тестеру 3.1-3.14 В, разброса почти нет. Гуглеж по заводскому номеру вывел только на то, что лампа, скорее всего, была редкая птица, "родная", немецкого производства. Хотелось бы попросить у уважаемых форумчан помощи. Где можно инженеру-не-электронщику взять схему, внятное руководство или набор статей, по которым можно будет правильно рассчитать и сделать драйвер для моей матрицы? Особо интересует именно описание расчета характеристик деталей по схеме, с формулами. Изготовление само по себе не пугает: запаять сумею, дроссель смотать - тоже, небольшой опыт есть.
  8. Гость

    Драйвер-щелкунчик...

    Доброго времени суток, уважаемые знатоки! Создание данной темы - это попытка понять причины возникновения нижеизложенного. А именно. Имеется LED-драйвер на 10 Вт, который после непродолжительного времени использования (менее года) начал выдавать "морзянку". Причем, как в визуальном (мигает светодиод), так и в звуковом формате. Без нагрузки (при отключенном светодиоде) - пощелкивания в самом драйвере так же присутствуют, но намного слабее. Светодиод рабочий. Новый (иной) ведет себя так же. Фото виновника прилагаю. Все компоненты визуально целые, не палёные... "Осьминожка" имеет надпись ВР3125 14700С WF10. P.S. Если что не так - не пинайте меня сильно... Я не волшебник... я только учусь.
  9. Здравствуйте люди добрые! Нужна ваша помощь. Суть: На предприятии есть потолочные (квадратные 50х50) LED светильники. У них соответственно есть источники тока. И вот эти источники тока вышли из строя. Где-то помогала замена конденсатора, где-то шим-контроллера (если читабелен). Но починить все не удалось. Заказать эти драйверы негде. Вот и есть мысля их собрать. Но вот на чем? Виды ламп: 1) 60 последовательно соединенных светодиодов, на родном источнике Uвых 120-180 Вольт Iвых 280мА 50ватт 2) 4 параллельно подключенные линейки по 18 светодиодов, на родном источнике Uвых 26-36 Вольт 40Ватт 3) Не знаю сколько светодиодов(модель лампы LP-02), на родном источнике Uвых 36-40 Вольт Iвых 1040мА Были попытки сборки для 1 вида ламп на HV9961NG. Но там выходил достаточно большой дросель, гудел и лампа со временем начинала моргать. Вопрос: Из чего собрать драйвера для каждого вида ламп? Гугление ни к чему внятному не привело, вот и решил обратиться к вам.
×
×
  • Создать...