Jump to content

Recommended Posts

3 минуты назад, zoog сказал:

Весь пост - сплошной флейм.

А Вы тут чем занимаетесь? Ликбезом? :) 

4 минуты назад, zoog сказал:

Вам дали всю необходимую информаци, Вы её даже не проверили

О какой информации речь? И зачем мне ее проверять? 

 

5 минут назад, zoog сказал:

Да, НЧ-керамиа - это НЧ-керамика.

Конкретнее: диэлектрик, группа по ТКЕ, маркировка, область применения?

 

6 минут назад, zoog сказал:

Да, она не работает на ВЧ

До каких частот? Конкретный диапазон приведите.

7 минут назад, zoog сказал:

Оно нам тут потому, то должно работать на ВЧ.

Опять таки на каких частотах? С какими амплитудами? Конкретизируйте.

8 минут назад, zoog сказал:

Даже из Справочника Радиолюбителя, если читать не по диагонали, можно узнать о паразитных параметрах.

Что Вы говорите...Интересно... 

 

9 минут назад, zoog сказал:

Номинальное - это и есть максимальное рабочее напряжение, в любых букварях и даташитах это вроде есть.

Так номинальное или максимальное? Вы определитесь уж как-нибудь. :) 

Еще раз повторяю вопрос: какой конкретно параметр не дает нам применять керамику в качестве шунта по питанию в УМЗЧ? Просто ответьте, не размазывайте кашу по тарелке.

Share this post


Link to post
Share on other sites

Финальные результаты тестирования литиевых батареек FANSO при нормальных условиях

Перед разработчиком устройства, в котором предполагается использование батарейки, всегда стоит задача выбора того или иного бренда. Конечно, наиболее объективный результат по качеству можно получить при реальном тестировании в режиме работы самого устройства. Для того чтобы у разработчиков была некоторая информация о реальных значениях основных параметров ЛХИТ, инженеры компании КОМПЭЛ решили провести серию из трех тестов. Первый тест на постоянный разряд в нормальных климатических условиях, начатый в апреле 2019 г., мы завершили.

Узнать финальный результат тестирования

Серег, извини, напоследок :rolleyes:

@zoog , перестаньте умничать, тут это не оценят. Аргументов как не было так и нет, а общими формулировками будете глупеньких и наивненьких вразумлять. Помните рассказ Шукшина "Срезал"?  От один в один.:lol:

Замолкаю.

Share this post


Link to post
Share on other sites
13 минуты назад, finn32 сказал:

напоследок :rolleyes:

Да мне не жалко, если б Илья тему чистил. А так уже 300стр. В Ланзаре уже 795стр.:shok: Кто ж это читать будет?
Вы б хоть по делу спорили, в натуре. С конкретикой какой-то.

И высосали ведь предмет спора из пальца.
Пусть каждый ставит такие конденсаторы, какие хочет.

Советуем тут ВВ, плёнка и слюда... А люди ставят то, что есть.
Я вот тоже не брезгую керамику ставить. Правда, с распая промаппаратуры...:rolleyes:

 

Share this post


Link to post
Share on other sites
                     

Видеокурс Работаем с микроконтроллерами STM32G0. Впервые на русском языке.

В цикле видеокурсов по работе с STM32G0 от компании STMicroelectronics показаны архитектура, периферия (особенности процессорного ядра, режимов пониженного питания, векторов прерываний, DMA и мультиплексора DMA, схемы тактирования и сброса, и.т.д.) и даны практические примеры. Материал дает наглядное понимание того, как начать работу на новых микроконтроллерах STM32G0

Подробнее

1 минуту назад, HAKAS сказал:

если б Илья тему чистил.

ИЛЬЯ! 

Извини за офф, почисти, пожалуйста тему! 

Share this post


Link to post
Share on other sites

Вы считаете, что данным спором Вы очень сильно "помогли" начинающим в выборе? Конкретного ничего не увидел...

Share this post


Link to post
Share on other sites
Только что, zoog сказал:

Это имхо очень вредный совет.

Это из практики советов.:yes:
Мы тут советуем, а человек всё равно ставит то, что у него есть, оправдывая тем, что это временно и потом обязательно поменяет.
Далее следует - а зачем менять, если работает. И всё остаётся, как собрано вначале. За редкими исключениями.

А про конкретность поддерживаю. Тогда все почерпнут немного информации. Но это лучше в теме про особенности применения конденсаторов.

Share this post


Link to post
Share on other sites

А я везде, если керамика, NP0 ставлю и не заморачиваюсь :). Если уж ставить то сразу лучшее, чем потом перепаивать снова. Стараюсь Murata брать или TDK

Edited by delidov.george

Share this post


Link to post
Share on other sites

Вы своими же ссылками не владеете, что наглядно и доказали. Повторюсь, не рисуйтесь и будет много проще. А делать выводы о моей квалификации у Вас не достаточно квалификации. Такой каламбурчик.

В принципе, когда Вы мне предложили условия, я понял, что в Вас говорит ущемленное самолюбие. И Вы-таки не удержались сделать профанацию на публику. ЧИТД.

Share this post


Link to post
Share on other sites
4 часа назад, zoog сказал:

Везёт, такую на 100нФ достать большая проблема

Выводных да. А вот SMD их полно. Не дешёвые. 

4 часа назад, zoog сказал:

Да и оверкилл такое в питание ставить.

Что может произойти? Я просто шунтирую в своём блоке питания SMD конденсаторами электролиты. Может быть пробой?

umpower.png.6742198c5d381e4d536d84cda9e4d9fd.png

Share this post


Link to post
Share on other sites
8 минут назад, zoog сказал:

Ну и остальные, с трудом находящие x7r, любители, будут чёрной завистью исходить)

Покупаю в промэлектронике - всегда есть в наличии :). Единственное напряжение не более 50В. Ну я свой УМЗЧ больше 36В и не питаю.

8 минут назад, zoog сказал:

асты или даже Шоттки вместо шунтирования конденсаторами НЧ диодов - эффективность выше

Знаю. Лень переходить на что-то новое. По старинке делаю.

Edited by delidov.george

Share this post


Link to post
Share on other sites

Я в фотогалерее выкладывал, видать и здесь дублировать придется. Мое мнение: очень удобна керамика в СМД исполнении:

IMG_20170126_181408.thumb.jpg.c2cb964fbda6a1ad81ee8e22409a4e5e.jpg

И место экономит на ПП, и монтаж удобный, простой.

15 часов назад, delidov.george сказал:

не более 50В

Есть и более, поисковик сайта в помощь!

Share this post


Link to post
Share on other sites

На сайте родного магазина появилась СМД керамика 1000V - на нее перейду, в том числе и для коррекции.

Share this post


Link to post
Share on other sites
42 минуты назад, Sufiyarov сказал:

Есть и более, поисковик сайта в помощь!

По запросу NP0 0.1uf ничего больше не выдаёт

1ufNP0.thumb.png.b37eccd181c0c5eb22d248ab1f4f3e3d.png

Share this post


Link to post
Share on other sites

@zoog Обычные NPO и X7R 

А если не понравится, то есть выводные TDK :beach:

Я тут не 3,14ськами меряюсь, а альтернативы предлагаю

Share this post


Link to post
Share on other sites

Два года назад я бан от Немо схлопотал за крамольные высказывания про СМД керамику. Он где-то вычитал что керамике в звукотехнике не место:lol2:

Share this post


Link to post
Share on other sites

Керамику применяйте на здоровье где угодно - в коррекции, в цепях питания, но только не в цепи сигнала.

Share this post


Link to post
Share on other sites

Естественно все номиналы рассчитываются, не от балды выбираются.

Насчет того, как влияют керамические конденсаторы на сигнал, можете ознакомиться тут - http://www.electroclub.info/other/conders3.htm

Share this post


Link to post
Share on other sites
Цитата

Кстати, если это не слишком нагло с моей стороны - можете рассказать о критериях выбора шунтов по питанию?

Критерий прост, чем больше - тем лучше шунтирование цепей питания.

Цитата

Свойства самой плёнки 1мкФ - уже на частоте 2МГц превращается в индуктивность.

Это очевидно и понятно. ОМ на 2МГц имеет коэффициент усиления меньше единицы. И причем здесь это вообще?

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...

  • Topic Moderators

  • Similar Content

    • By LevelLORD174
      Здравствуйте, подскажите мне дурной голове, как правильно читать схему, а именно как понять какого должен быть напряжения конденсатор. К примеру плата А11 (узел индикации), конденсатор С3. Я понял, что это конденсатор типа К50-16, емкостью 50 мкф, но про напряжение так и не понял, так же и по остальным конденсатором в ступоре, как определить напряжение исходя из схемы. Спасите, добрые люди!)
      P.S. в файле последняя страница с схемами.
      kumir_u001s_instr.djvu
    • By Ремирович
      Впервые с возможностью коррекции нелинейных искажений я столкнулся при подготовке темы про адекватный усилитель начального уровня. Тема ожидаемо не получила значительного развития, так как никто не захотел разбираться, почему схема, составленная вопреки установившимся традициям, изложенным, в частности, у Рода Эллиотта,  даёт в симуляторе Multisim довольно низкий уровень нелинейных искажений.
      Что же такое коррекция нелинейных искажений, и, причём тут схема усилителя? Это станет понятно, если сравнить две фотографии работы схемы в симуляторе.

                                                             Фото 1.
       

                                                              Фото 2.
      На фото 1 приводится типичный режим работы схемы, при уровне выходного напряжения 40 Вольт, это составляет примерно 0,7 от максимального значения. Фиксируем значение нелинейных искажений, которые имеют уровень 0,002%.
      На фото 2 всё то же самое, но с помощью конденсатора С8, шунтируется транзистор Q3, предназначенный для задания тока покоя выходного каскада усилителя. Уровень нелинейных искажений вырос до значения 0,027%, больше чем в 10 раз. То есть элемент, задающий ток покоя, который, в общем-то, можно заменить резистором, непонятным образом снижает нелинейные искажения больше, чем на порядок.
       Это не укладывается в привычную теорию работы усилителей мощности, изложенную умными людьми, например, такими как Род Эллиотт и Дуглас Селф. Согласно существующим понятиям, нелинейные искажения можно снизить, только увеличивая глубину отрицательной обратной связи.
        Для этого необходимо сделать усилитель с  возможно большим усилением, который, после замыкания ООС, позволит получить минимальные нелинейные искажения. Эта теория привела к созданию операционного усилителя, и их схемотехника автоматически распространилась на усилители мощности. По сути, правильным будет считаться усилитель мощности, выполненный точно в соответствии со схемотехникой операционных усилителей, с добавлением мощного выходного каскада.
      Отсюда стремление получить каскады с возможно большим усилением, использование транзисторов с максимально большим коэффициентом усиления, построение каскодных схем с динамической нагрузкой и других сложнейших схем, позволяющих получить максимально возможное усиление, без включённой отрицательной обратной связи.
      Результат хорошо известен. Достигается впечатляюще малый уровень нелинейных искажений, но усилитель работает на грани самовозбуждения, при замыкании обратной связи.
       Для устранения самовозбуждения, приходиться уменьшать усиление на высоких частотах с помощью корректирующих цепочек, их должно быть тем больше, чем больше каскадов усиления.
       Снижение усиления на высоких частотах приводит к увеличению искажений на них, а наличие большого количества цепей коррекции, к длительным переходным процессам и, как следствие,  непредсказуемому поведению усилителя в режиме ограничения по напряжению, особенно на высоких частотах.
      В качестве примера, привожу фото 3, и фото 4, где видно влияние цепи коррекции, конденсатора С5, на устойчивость уже упоминавшегося усилителя, при ограничении сигнала на частоте 100 кГц. На фото 4 хорошо видно улучшение качества сигнала при включении конденсатора.
       

                                                            Фото 3.

                                                              Фото 4.
      В погоне за максимальным коэффициентом усиления, из поля зрения выпали линейность характеристик различных транзисторов, взаимовлияние каскадов усиления друг на друга и другие факторы, способные влиять на уровень нелинейных искажений усилителя в целом. Как я понимаю, считается, что они не оказывают существенного влияния, и, при использовании глубокой ООС, их можно не учитывать.
      Фото 1 и фото 2 доказывают, что это не так. Есть возможность снизить нелинейные искажения другим путём. Предположим, что нелинейность одного полупроводникового прибора можно компенсировать нелинейностью другого, а фотографии это доказывают.
      Конечно, такие предположения, в первую очередь сочтут бредовыми, а автора, не очень умным человеком, что, собственно и случилось с темой про адекватный усилитель начального уровня. Что же, мне не привыкать.
      На фото 5 и фото 6 показана работа простейшего усилителя на одном транзисторе. На фото 5, в схеме присутствуют “бредовые” диоды D1 и D2, которые должны были бы вообще не влиять на работу схемы, или только ухудшать её работу, а они заметно снижают уровень нелинейных искажений, что доказывает фото 6, где на схеме диоды отключены.

                                                                           Фото 5.

                                                                                  Фото 6.
       В более сложных схемах присутствуют свои закономерности и возможности коррекции нелинейных искажений. Только для “истинно верующих”, приведённые примеры вряд ли покажутся убедительными.
       Тогда обратимся к “истокам веры”, схеме усилителя умного человека Рода Эллиотта, и попробуем проверить его работу в симуляторе, чтобы хотя бы немного набраться ума, а заодно проверить соответствие характеристик усилителя, приведённых автором и тех, что покажет Multisim.
      Впервые пройдя по ссылке на этот усилитель, я с удивлением обнаружил хорошо знакомую мне схему усилителя “Одиссей-001”, только без германиевых транзисторов. Где-то в 1973 году этот усилитель был у меня, и он имел некоторые “особенности” работы, которые заставили избавиться от него, при первой же возможности.
      Понятно, что образцово-показательный усилитель должен работать идеально, но проверить, и убедиться всё равно надо, и этому ничего не мешает. Поэтому загружаем схему в эмулятор, и убеждаемся, что автор не врёт, и технические характеристики, скажем прямо, не очень выдающиеся, подтверждаются. Нелинейные искажения, на частоте 1 кГц, Multisim определил на уровне 0,031%.
      А вот попытка перейти ко второй части проверки, режиму ограничения сигнала на высокой частоте, провалилась. Какие там 100 кГц, тут даже на 5 кГц, при минимальном уровне ограничения, усилитель так изуродовал сигнал, что невольно задаёшься вопросом, а не отсюда ли “ноги растут”, эффекта транзисторного звучания?

                                                              Фото 7.
      На фото 7 приведён образцово-показательный пример того, как не должен работать усилитель, даже начального уровня. Именно такие искажения и проявлялись у усилителя “Одиссей-001”, если, с помощью темброблока, слишком сильно добавлялись высокие частоты. Иногда это заканчивалось смертельным исходом для одного из каналов усилителя.
      Тому, кто подрывает “основы веры”, дорого это обходится, легко можно попасть в отряд глупых людей. И это не самый худший вариант, раньше бывало и до костра доходило. Но раз уж начал, надо идти дальше, и продолжать делать “глупости”. Поэтому на фото 8 привожу доработанную схему усилителя и результат её работы, а на фото 9, работа в режиме ограничения на высоких частотах.

                                                              Фото 8.

                                                              Фото 9.
      Придётся объяснить, что даёт каждое изменение в отдельности, чтобы не перегружать тему фотографиями.
       Первой  была сделана замена выходного каскада на составных транзисторах, так как он очень плохо работает на высоких частотах. Применённые мощные транзисторы Дарлингтона  не рекомендуются для применения умными людьми, но зато хорошо работают не только в моделях эмуляторов, но и в реальности. Они улучшили работу усилителя на высоких частотах, но нелинейные искажения оставались прежними. Замена транзистора Q4 на  BC636 позволила снизить искажения до 0,01%, что уже неплохо, но хотелось лучшего.
      Выбор тока покоя, изменения номинала резисторов R6, R9 и R10, а также установка совершенно бессмысленного, c точки зрения классической схемотехники, резистора R19, позволили снизить искажения до значения 0,003%, и сделать удовлетворительной работу на высоких частотах.
        Как видно на фото 9, частота тестирования 50 кГц. До 100 кГц усилитель не дотягивает из-за использования на входе дифференциального каскада, вернее слишком большого напряжения питания для него. А ведь использование дифференциального каскада на входе усилителя, это “святое”. Действительно очень полезная схема для операционного усилителя с напряжением питания  ±15 Вольт, но чем выше напряжение питания, тем больше с ней проблем.
      Как видно из этого примера, даже хорошо известные, и довольно простые схемы, можно довести до нужных кондиций, если понимаешь, что не только коэффициент усиления усилителя с разомкнутой обратной связью, позволяет получить низкие нелинейные искажения.
      Возвращаясь к теме коррекции нелинейных искажений, следует отметить, что чем проще схема, чем меньше усиление используемых каскадов и их количество, тем сложнее найти возможность такой коррекции. Связь величины нелинейных искажений с глубиной ООС, коррекция не отменяет, она позволяет уменьшить величину ООС и, тем самым, повысить запас устойчивости усилителя.
      Для иллюстрации этого положения привожу схемы двух простейших усилителей и  их работу в Multisim. На фото 10 и фото 11 одна схема, на фото 12 и фото 13 другая.

                                                                Фото 10.

                                                                 Фото 11.
       
       

                                                                Фото 12.

                                                                 Фото 13.
      И хотя усилитель на фото 10 вроде бы проще, чем на фото 12, да ещё и нелинейные искажения у него меньше, для меня схема на фото 12 является более перспективной, так как к ней легко подключить операционный усилитель, а также перейти на работу с повышенным напряжением питания. Однако это для других применений и к теме не относится.
      Не затрагиваю я, и тему температурной стабильности, хотя неоднократно к ней обращался в других темах, и успешно решал её на практике, для гораздо более сложных схем. Этот вопрос возникает только в случае практической реализации, до которой, может быть, ещё и дело не дойдёт.
      Тема опять может быть признана “ересью”, недостойной внимания умных людей. Это нормально. С тех пор, когда землю считали плоской, психология людей практически не изменилась. Если что-то не укладывается в привычные рамки, значит это не правильно.
      А для этой темы, думаю “глупостей” и так достаточно. Только не надо делать опровержения с использованием упрощённых программ симуляторов, ведь в них отсутствуют модели существующих полупроводниковых приборов, и предназначены они для обучения азбуки схемотехники, а не для проверки качества работы схем.
       Так что “думайте сами, решайте сами …” делать глупости, или нет. Будьте крайне осторожны в желании использовать приведённые схемы в реальности, не забывайте, что бывает с теми, кто подрывает “основы веры”.  
       
            
    • By Глеб Панков
      Собирал усилитель от Урала 114 в корпус, и при последней проверке (как оказалось - еще отнюдь не последней!) выявил, что он гудит. То есть не гудит так, как будто это фон сети, нет. Это импульсы частотой 5-6 герц, не выше. Гул появляется, если крутить ручку переменного резистора, который регулирует низкие частоты (по схеме R3).
      Проходные конденсаторы менял на пленку от фильтров блоков питания. R1 был заменен на 1 килоом, переменный резистор по входу - на 33 килоома. Напряжения на анодах V1.1 - 110 вольт, V1.2 - 100 вольт, V2 и V3 - 250 вольт. Напряжения на катодах такие же, как указано на схеме.
      Цепочку C9 R13 трогал - результата не принесло.
      Подскажите, что делать?
       

    • By Евгений-435
      Продам собранные и проверенные платы ОМ2.7, в наличии 4 штуки. Все компоненты соответствуют оригинальной схеме. Выходники оригинальные NJW0281/NJW0302 от ON Semiconductor. 
      Цена 1 платы 1400 руб.
      Платы находятся в г. Михайловка Волгоградской области.
      Отправлю Почтой России по РФ. Доставка оплачивается Вами.







    • By Ремирович
      Каким должен быть первый усилитель, который бы хотелось собрать самому? Понятно, что как можно лучше, и как можно проще и доступнее. В пору господства ламповой техники и начала эры транзисторных приёмников на германиевых транзисторах, мой первый усилитель был собран по схеме, которая приводится ниже.

      Самым главным достоинством этого усилителя было то, что он работал. Измерение привычных сегодня параметров было затруднено, в виду отсутствия, у обычного радиолюбителя, нужных приборов. Даже в справочнике, откуда взята эта схема, параметры усилителя отсутствуют. Тестер, а позднее и осциллограф, вот и всё чем приходилось обходиться. Как я сейчас понимаю, мощность у него была не более 6 Вт, но тогда это было много, и он работал громче большинства ламповых радиол и телевизоров, а главное звучал лучше, что и сыграло главную роль в моём дальнейшем творчестве.
       Если взять за основу приведённую схему, и попробовать её сделать на существующих сейчас транзисторах, добавив к ней имеющийся опыт разработок усилителей, то может быть удастся получить что-нибудь адекватное сегодняшним требованиям?
      Сегодня не обязательно собирать схему в реальности, её можно проверить на компьютерной модели с помощью соответствующей программы, например Multisim. Это значительно облегчает задачу и позволяет без дополнительных материальных затрат ответить на поставленный вопрос.
       Не знаю, насколько близко удастся приблизиться к параметрам в реальных конструкциях, но на модели они получились вполне адекватными сегодняшним требованиям, как я понимаю. Например, такой параметр, как нелинейные искажения, усилитель «высокой линейности», обсуждавшийся на форуме, в Multisim показывал значение 0,01%, а у модели они достигали значения 0,001%. Но важно было иметь адекватными не только нелинейные искажения, но и остальные параметры. Например, приличную мощность на уровне 100 Вт, хороший КПД, про который редко кто вспоминает, и стабилизацию тока покоя, о которой, похоже, вообще никто не вспоминает.  Привожу получившуюся схему усилителя, чтобы можно было более подробно рассмотреть, каким образом это достигается.

      Выходной каскад состоит из двух составных транзисторов, типа КТ925, КТ927. Понятно, что в модели использовались их аналоги. Включены они не эмиттерными повторителями, как чаще всего можно увидеть в приводимых схемах на форуме, а коллекторами к нагрузке. Такое включение обеспечивает наиболее полное использование транзисторов по мощности, а значит и высокий КПД. Принято считать, и не без основания, что такое включение транзисторов приводит к росту нелинейных искажений. Поэтому, для уменьшения усиления каскада, используются местная обратная связь, за счёт резисторов R17, R18.  Вместе с транзисторами VT3, VT4 получается выходной каскад, обеспечивающий усиление по мощности. Транзистор VT1 обеспечивает усиление по напряжению и является элементом общей отрицательной обратной связи. При входном пиковом напряжении 3,7 Вольт, усилитель имеет максимальную выходную мощность, то есть он рассчитан на выходной сигнал звуковой карты.
      Резистор R11 обеспечивает выравнивание плеч выходного каскада по усилению, и первоначально устанавливается в среднее положение. В процессе настройки он устанавливается в положение, обеспечивающее минимальные нелинейные искажения.
      Основной регулировкой усилителя является установка тока покоя, обеспечивающего желаемый уровень нелинейных искажений. Ток покоя задаётся транзистором VT2, диодами VD1, VD2 и резисторами R6, R8, R9. Причём диоды являются датчиками температуры, и вместе с выходными транзисторами располагаются не на печатной плате, а на радиаторе охлаждения как можно плотнее к выходным транзисторам с использованием теплопроводящей пасты и элементов крепления, обеспечивающих надёжный тепловой контакт.
      К сожалению промоделировать изменение тока покоя при нагреве выходных транзисторов не получается и поэтому проверить как он меняется можно будет на реальном макете, который появится в случае хоть какого-нибудь интереса к данной теме.
      Изначально резистор R6 предназначался для снижения чувствительности усилителя на транзисторе VT2. Так как вполне реальна ситуация, когда из-за высокой чувствительности схемы термокомпенсации, при нагревании выходных транзисторов, ток покоя будет уменьшаться, хотя обычно он растёт. Но в дальнейшем оказалось, что он играет более значимую роль в схеме и его необходимо выбирать по другим критериям.
      Моделирование показывает, что с нагрузкой 8 Ом, увеличение тока покоя до 800 мА, приводит к снижению нелинейных искажений до 0,003% и менее, вплоть до 0,001%, при дальнейшем увеличении тока. Это значение нелинейных искажений фиксировалось при выходной мощности 4 Вт. Такая мощность уже будет обеспечивать вполне приемлемую громкость звучания для небольшого помещения, и взята за точку отсчёта. При меньших значениях выходной мощности, нелинейные искажения снижаются. Для нагрузки 4 Ом, потребуется больший ток покоя, обеспечивающий тот же уровень нелинейных искажений.
      Второй точкой отсчёта брался уровень половины выходной мощности, или 0,707 от максимального выходного напряжения. Здесь нелинейные искажения увеличивались до 0,06% на нагрузке 4 Ом, хотя ток покоя увеличивался до 2 Ампер.
      Возможно, для любителей А класса, такой ток кажется вполне приемлемым, но для  усилителя начального уровня он всё же будет великоват. Именно поэтому после многочисленных попыток снизить ток покоя, при приемлемых нелинейных искажениях, выяснилось, что схема, задающая ток покоя на транзисторе VT2, вместе с диодами и резисторами смещения, работает как корректор нелинейных искажений. Именно благодаря корректору, при токе покоя в пределах 220…260 мА, усилитель начинает работать с минимальными нелинейными искажениями.
      Мне не встречались упоминания о том, что нелинейные искажения можно корректировать, но, возможно, я отстал от жизни и теперь это обыденная реальность. И даже, если на самом деле корректор нелинейных искажений здесь встретился впервые, кого и чем сейчас можно удивить?
      В первую очередь самому было интересно понять, как это работает. Теорию так и не придумал. Но на практике, в процессе моделирования, стало понятно, что резистор R6, определяет точность коррекции, и его величина зависит от нагрузки. Поэтому на схеме приведены два значения, в скобках для нагрузки 4 Ом. Так как при изменении величины этого сопротивления ток покоя меняется, то одновременно приходится менять ток покоя с помощью резистора R8. Соответственно на схеме тоже приводятся два значения этого резистора.
      При реализации в железе, номиналы резисторов R6 и R8, скорее всего, будут другими. Изменяя их значения, добиваются минимальных нелинейных искажений. Как показало моделирование, на нагрузке 8 Ом, даже при выходном напряжении близком к максимальному значению, нелинейные искажения остаются в пределах 0,002…0,003%.   На нагрузке 4 Ом они возрастают до 0.02%, что, я думаю, допустимо для усилителя начального уровня.
      Было также замечено, что схема коррекции работает только при наличии резисторов обратной связи R17, R18, что делает ещё сложнее выработку теории коррекции нелинейных искажений. Но для практической реализации это ничего не меняет, было бы желание попробовать сделать.
      На схеме пунктиром обозначен резистор Rш, который, может понадобиться, для снижения чувствительности схемы термокомпенсации, ведь резистор R6 теперь играет другую важную роль, и его менять нельзя.  Трудно сказать понадобится ли он вообще, но если и понадобится, то, ориентировочно, будет в пределах 2…10 кОм.
      Конденсаторы С1 и С2, ограничивают диапазон входного сигнала снизу и сверху, обеспечивая нужную полосу рабочих частот. Конденсатор С3 обеспечивает частотную коррекцию усиления, и делает работу усилителя более устойчивой. На модели усилитель показывал равномерное усиление вплоть до 1 мГц, естественно без конденсаторов С2 и С3, что вряд ли будет получаться в реальности. Очень хорошо устойчивость усилителя на модели проверяется при подаче на вход сигнала с частотой 100кГц, с уровнем, обеспечивающим ограничение выходного сигнала по напряжению.
       В таком режиме хорошо видно как влияет конденсатор С3 при подключении. Теоретически, включение этого конденсатора должно приводить к увеличению нелинейных искажений на частоте 10 кГц и выше.
       Так и происходит, при ёмкости 20 пФ и более, а при 10 пФ искажения наоборот снижаются, поэтому эта величина обозначена на схеме. Хватит ли этой величины в реальности, покажет реализация в железе.
       Устойчивость усилителя в первую очередь определяется глубиной общей отрицательной обратной связи. В данном случае задаётся величиной резистора R3. Этот же резистор одновременно регулирует уровень выходного напряжения при отсутствии сигнала, он должен быть равен половине напряжения питания. Именно по этому критерию он и выбирается.
      В итоге глубина отрицательной обратной связи зависит от величины усиления транзисторов предварительного и выходного каскада, которая определяется типом используемых транзисторов. На это необходимо обращать внимание при выборе замены приведённых на схеме элементов.
       Все значения величины нелинейных искажений приводились ранее для частоты 1 кГц. На 10 кГц эти значения не меняются, а вот на 100 Гц они увеличиваются до 0,005%. Для снижения этого значения придётся увеличивать номиналы ёмкостей С6, С7, именно они определяют рост нелинейных искажений на нижних частотах, и при значениях 4700 мкФ искажения снижаются до 0,003%. Поэтому номиналы ёмкостей С6 и С7 выбираются исходя из необходимости получения минимальных искажений на низких частотах. Кроме того, эти конденсаторы обеспечивают защиту нагрузки от постоянного напряжения, в случае неисправности выходного каскада усилителя.
      При таком количестве элементов схемы, даже печатная плата может не понадобится, можно обойтись макетной платой. А когда-то я обходился и без макетной и без печатной платы, устанавливая элементы на обычном гетинаксе без фольги, обеспечивая крепление элементов за счёт отверстий в плате. Монтаж получался как на печатной плате, а вместо фольги использовались либо выводы элементов, либо монтажный провод. Сейчас это будет делать гораздо проще, с использованием компьютера и принтера можно выполнить компоновку на бумаге, и по прорисовке сделать сверление отверстий, и никаких мучений по переводу рисунка проводников на фольгу, травлению платы, не говоря уже о металлизации переходных отверстий.
       Так что, если хоть кому-то захотелось собрать в железе данную схему, делитесь впечатлениями, продолжайте тему. Я основную работу сделал и вполне возможно участвовать в теме буду изредка, так как всё железо и серьёзные приборы остались по месту прежней работы, а тратить “огромную” пенсию на удовлетворение любопытства не хочется.
       Конечно, хотелось бы, что бы данный материал хоть кому-нибудь пригодился, но для нас уже стало привычным, что за нас всё делают китайцы. Что-же, пожуём-увидим.
      И в заключении стоит отметить, что заявленные 100 Вт выходной мощности, усилитель обеспечивает на нагрузке 4 Ом, с нелинейными искажениями менее 1%. При этом КПД его составлял более 70%, что совсем неплохо для усилителя начального уровня, вернее модели усилителя. Интересно, до реализации дойдёт дело, или это очередной “глас вопиющего в пустыне”?   
  • Сообщения

    • У моего ТЕС-41, на ICL7107 сделан вольтметр и амперметр.
    • @SoKoL SoKoL Есть конечно, во такой: Преобразует HDMI в toslink. Причём, у того, что на фото походу есть 5.1 режим. Или вот ещё вариант, но звук будет гораздо хуже, аналоговый, так ещё и 2.0:
    • На али есть АЦП, ищеться без проблем В Украине МАХ987 есть в продаже https://m.ru.aliexpress.com/item/4000111621466.html?pid=808_0004_0105&spm=a2g0n.search-amp.list.4000111621466&aff_trace_key=a546aa4b9c8f43368839804b83a77e0b-1575749883034-01685-DX0sdrok&aff_platform=msite&m_page_id=5910amp-8lrBVK2I2tQoOTlsmhrDEw1575750027899
    • Что смотрел, квадрат 300 кГц? Нужно смотреть ПХ, а не синус, синус ничего не покажет. На вход квадрат 1 кГц и смотрим на эквиваленте.  Темброблок нужно просвистеть отдельно, тоже квадратом. Проверить равномерность регулировки по ВЧ и НЧ.
    • Да чем же тут хвастатся!? Нужно читать сначала что бы понять к чему это написано!Знаете когда кто то подходит к вам и встряет в конце вашего диалога с кем то,услышав краем уха знакомые слова и вываливает вообще неподходящий левак?! уверенно думая что с умничал в масть! но выглядет тупицей! вот это как раз похожий момент!
    • @Витала  я знаю) ток мне не нужно было постоянку проводить - он то в схему не глянул - мне претензии предъявил- тип фиглы ты тут делаешь )) сам правда тоже косячнул - не правильно рассчитал частоту ) все равно перематывать - возможно еще это добавило пару ватт на резистор 
    • Доброго времени, коллеги и друзья. Продолжаю эпопею по мере возможностей и наличия: тороид был отставлен в сторону для Ланзара, собранные платы от которого приехали уже давно - есть намерение в первую очередь запустить УО-100 х 2. Для запуска и предварительной настройки остановился на варианте с раздельным питанием - уже намотан отдельно анодный трансформатор на Ш железе, для накала есть ТН-61 временно, сеточное и напряжение смещения - переделанный немного ТСШ-170. Вместо мостиков из Д7Ж куплены мосты RS207 - 2А 1000V, конденсаторы 20 мкф 1600в, также намотан один катодный дроссель для Л3, проверять по одному каналу сначала. Пришлось сделать на скорую руку станок для намотки анодной обмотки - сетевая использована уже находившаяся на нём, а также нужно ещё намотать дросселя для блока питания  
×
×
  • Create New...