Jump to content

Recommended Posts

Всем доброго времени.

Решил выделить в отдельную тему этот усилитель.

Итак, после того, как Иван предложил схему усилителя по мотивам Никитина с тройкой ВК, усилитель был собран и запущен, проведены некоторые исследования и отложен в сторону. Но потенциальные возможности схемы не были полностью реализованы. Это не давало мне покоя и я обратился на форум RCL-electro.  Там,  с помощью Виктора Жуковского, Сергея и Юрия, схема была допилена до такого вида.

5b1a038a28655_H.thumb.png.c699b05108a2ac4fa131d3a3888e4e42.png

В процессе отладки проверялось несколько вариантов коррекции, этот оказался наиболее удачным по параметрам. 

Итак: N+3 УВИЛ. Усилитель Высокой Исходной Линейности. Я решил назвать именно так потому, что любую линейность еще нужно реализовать в железе. Посему исходная линейность- это максимально возможные параметры линейности, полученные с помощью симулятора. У этой схемы они вполне себе не детские: 0,00007% коэфф гармоник и -160 дб интермодуляционных искажений. Все это на нагрузке 4 Ома 20 кГц, 20 Вольт.

Сразу скажу, опережая скепсис, что с такими номиналами в коррекции схема опробована в железе и работает. 

Сначала я не хотел выкладывать этот концепт без ПП, но потом решил, что может быть есть что допилить, пока плата окончательно не трассирована. Так что опять коллективный разум. :)

UPD 28.01.2019.

Схема.

N+3 servo final.jpg

Плата в сборе трассировки finn32.

20180920_224741.jpg

Плата в сборе трассировки aleksolejn

IMG_20181219_161027[1].jpg

Измерения, Дмитрий Боков.

Плата трассировки finn32.

8 Ом

Безымянный рисунок11.png

Безымянный рисунок12.png

4 Ома.

Безымянный рисунок13.png

Ссылка на пост с измерениями.

http://forum.cxem.net/index.php?/topic/202557-n3-увил/&do=findComment&comment=3104903

 

Edited by finn32

Share this post


Link to post
Share on other sites

Литиевые батарейки Fanso для систем телеметрии и дистанционного контроля

Системы телеметрии находят все более широкое применение во многих отраслях на промышленных и коммунальных объектах. Требования, предъявляемые к условиям эксплуатации приборов телеметрии и, как следствие, источников питания для них, могут быть довольно жесткими. Fanso предоставляет широкую линейку продукции, рассчитанной на различные условия эксплуатации, что позволяет подобрать батарейку для каждого конкретного применения, в том числе и для устройств телеметрии.

Подробнее

                     

Материалы вебинара STM32G0 – новый лидер бюджетных 32-битных микроконтроллеров от STMicroelectronics

На вебинаре были продемонстрированы современные методы тестирования производительности микроконтроллеров на примере самых бюджетных 32-битных семейств общего назначения STM32G0 и STM32F0, проведено их подробное сравнение. Мы подготовили для вас материалы. Вы можете посмотреть видеозапись вебинара, ознакомиться с ответами на вопросы, загрузить код для тестирования, прочитать статьи по теме

Подробнее...

Уххх какой зверь! Тут и добавить то нечего.

А есть моделька для Мульсима?

 

Я бы еще все таки к резисторам 2.2ом паралельно поставил ферритовые бусины, можно найти на просторах тырнета вменяемые модельки. У меня в мультисиме с бусинами есть профит.

 

А так же на схеме не вижу RC фильтра между УН и ВК, или в железе есть?

Share this post


Link to post
Share on other sites
1 час назад, miroslav_mm сказал:

А есть моделька для Мульсима?

У меня нет. 

 

1 час назад, miroslav_mm сказал:

 

А так же на схеме не вижу RC фильтра между УН и ВК, или в железе есть?

Конечно. Полная принципиальная схема несколько иная, она будет выложена позже, когда будет готова пилотная ПП и все опробировано на ней. Будет серво и защита по току, другие цепи софтклипа. Это пока просто концепт именно по коррекции. 

С таким вариантом симулятор говорит о петлевом на 20 кГц под 90 дБ.

Share this post


Link to post
Share on other sites

Алексей, помедленнее, не успеваем записывать ( запаивать ) :) .  Впечатляет!

Share this post


Link to post
Share on other sites
В 08.06.2018 в 18:01, finn32 сказал:

С таким вариантом симулятор говорит о петлевом на 20 кГц под 90 дБ.

Получить это в симуляторе в общем-то не проблема. Проблема в устойчивости железа при таком петлевом. Но судя по всему(сёня полдня лоб над промокашкой всяко-разно морщил), в этой схеме и это решено корректно. ...попытать что ли в железе?.. ...а надо ли , - вопрос конечно интересный.

Edited by Black-мур

Share this post


Link to post
Share on other sites
3 минуты назад, Black-мур сказал:

Проблема в устойчивости железа при таком петлевом

Работает, так что не особо проблема. :)

Share this post


Link to post
Share on other sites

Лёш, "я тебе конечно верю"(с), но пока пальчугами эту жузеляку не пощупаю..., извиняй, брат, сумлеваюсь. ...Могу?

 В аугусте пойду в отпуск - слеплю-пощупаю-проверю на своих железках. Пока, исходя из параметров, заложенных в схеме, вроде всё ровно. Хочу узреть, где  и когда/с какими пимпочками это "ровно" сломается. ...ну хотя бы для того, чтобы не было мучительно больно тем, кто решит повторить её. 

Помнишь, - "мы в ответе за тех, кого приручили"(с)? Это груз, брат, и от него не избавиться.

Edited by Black-мур

Share this post


Link to post
Share on other sites
2 часа назад, Black-мур сказал:

Могу?

Естессна. Сомневаться- твое право.  

Но и я не проверив не выкладываю. О повторении пока речи нет, да и не для всех этот усик, его настраивать надо тонко. Приведу схему в порядок, ПП опробую, тогда будет видно.

Share this post


Link to post
Share on other sites

"0" на выходе усилка чем обеспечивается?  Поскольку, ежели на вход поставить емкость разделительную, то на выходе появится порядка 4-х вольт. Симуляционно канешна.

Чем на макетке обнулялся выход?

Share this post


Link to post
Share on other sites

Симуляционно.

Когда вход открыт, и он замкнут (по постоянке) на землю через нулевое сопротивление источника, то все гак бы  балансируется посредством ОООС. Как только ставим разделительную емкость по входу, то вход  (база входного транзистора) подключается к земле через 33К и наступает разбаланс этого УПТ в виде 3х вольт постоянки на выходе.

Что было в "натуре" при макетировании?

Это к тому, что без интегратора, вероятно, не обойтись.

Share this post


Link to post
Share on other sites

@Tartamon Не надо драматизировать. Это общая проблема для подобных структур (коих большинство).

При конденсаторе в ООС, резисторах на входе и обратной связи по 33к, а также разбросе беты входных транзисторов вдвое (300 и 150) на выходе будет около 100мВ.  Можно подобрать транзисторы и взять их с бетой побольше, можно ввести интегратор, да. Можно уменьшить резисторы.  Кому как нравится. Стандартная доводка и сервисные узлы.

Кстати, а как у Вас так получилось? По резистору ООС входной ток не течет? Или это без конденсатора в ООС?

Edited by Юрий_Uri

Share this post


Link to post
Share on other sites

Если без интегратора, то впослед 1К делителя ОООС - емкость (соответствующего номинала, качества и вида) - обязательна.

Без конденсатора - интересней канешно.

 

 

Share this post


Link to post
Share on other sites
46 минут назад, Tartamon сказал:

Что было в "натуре" при макетировании?

В натуре при макетировании R11=R8, последовательно с R13 электролит 220 мкФ. На входе разделительный неполярник 10 мкФ, с меньшим током ДК постоянка 1,5 мВ, с током ДК как на схеме постоянка 30 мВ.

46 минут назад, Tartamon сказал:

Это к тому, что без интегратора, вероятно, не обойтись

В этом посте я указал, что полная принципиальная схема со всеми сервисами и защитой будет позже. Интегратор ес-сно будет.

http://forum.cxem.net/index.php?/topic/202557-n3-увил/&do=findComment&comment=3006217

Нужно просто почитать тему.

Еще и страницы не набежало, а уже читать никто не хочет.

Edited by finn32

Share this post


Link to post
Share on other sites
2 часа назад, Tartamon сказал:

Если без интегратора, то впослед 1К делителя ОООС - емкость (соответствующего номинала, качества и вида) - обязательна.

Не обязательна. Т-делитель в ООС вместо одиночного резистора, выравниваем сопротивления по входам, транзисторы подбираем с одинаковой бетой больше 500, ДК и зеркало - тепловой контакт, точная балансировка в зеркале. Всё. Думаю, в 10 милливольт можно легко уложиться в рабочем диапазоне температур. 

Но проще интегратор, конечно :) 

Edited by Юрий_Uri

Share this post


Link to post
Share on other sites

Дык, надо определиться, с интегратором или без, или же предложить какой-то дуэт или трио...

Усилитель моделируется легко и устаканивается при различных модельках активных, предлагаемых различными производителями.

Искажения низкие, близкие к заявленным Алексеем.  Правда, интермоды не проверял.

Должно получиться качественное изделие.

ПыСы

Щас, нодо изловчиться и посмотреть петлевое..

 

ПыСы  ПыСы

У меня так получилось:

LG.png.0b3cae5c47f4ed5828183dd8c2e68247.png

Глубина ОООС на 20К  под 100 Дб.

Запасы "прочности" где-то под 50 градусов и минус 9 Дб

Edited by Tartamon

Share this post


Link to post
Share on other sites
2 часа назад, Tartamon сказал:

Дык, надо определиться, с интегратором или без, или же предложить какой-то дуэт или трио...

Уже ж, вроде, написали, что с интегратором будет. Дважды :)  

 

Share this post


Link to post
Share on other sites
42 минуты назад, Tartamon сказал:

У меня так получилось

Сергей на RCL говорил о 95,  так что где- то сходится. С коррекцией погрубей 88 дб.

Share this post


Link to post
Share on other sites

Юрий,КМК, можно (по-Вашему же) реализовать вариант без интегратора, с конденсатором в ОООС, с Т-ООС без конденсатора и с интегратором. И все будут жизнеспособны, правда? Или я чего-то не понял?

 

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...

  • Topic Moderators

  • Similar Content

    • By Ремирович
      Каким должен быть первый усилитель, который бы хотелось собрать самому? Понятно, что как можно лучше, и как можно проще и доступнее. В пору господства ламповой техники и начала эры транзисторных приёмников на германиевых транзисторах, мой первый усилитель был собран по схеме, которая приводится ниже.

      Самым главным достоинством этого усилителя было то, что он работал. Измерение привычных сегодня параметров было затруднено, в виду отсутствия, у обычного радиолюбителя, нужных приборов. Даже в справочнике, откуда взята эта схема, параметры усилителя отсутствуют. Тестер, а позднее и осциллограф, вот и всё чем приходилось обходиться. Как я сейчас понимаю, мощность у него была не более 6 Вт, но тогда это было много, и он работал громче большинства ламповых радиол и телевизоров, а главное звучал лучше, что и сыграло главную роль в моём дальнейшем творчестве.
       Если взять за основу приведённую схему, и попробовать её сделать на существующих сейчас транзисторах, добавив к ней имеющийся опыт разработок усилителей, то может быть удастся получить что-нибудь адекватное сегодняшним требованиям?
      Сегодня не обязательно собирать схему в реальности, её можно проверить на компьютерной модели с помощью соответствующей программы, например Multisim. Это значительно облегчает задачу и позволяет без дополнительных материальных затрат ответить на поставленный вопрос.
       Не знаю, насколько близко удастся приблизиться к параметрам в реальных конструкциях, но на модели они получились вполне адекватными сегодняшним требованиям, как я понимаю. Например, такой параметр, как нелинейные искажения, усилитель «высокой линейности», обсуждавшийся на форуме, в Multisim показывал значение 0,01%, а у модели они достигали значения 0,001%. Но важно было иметь адекватными не только нелинейные искажения, но и остальные параметры. Например, приличную мощность на уровне 100 Вт, хороший КПД, про который редко кто вспоминает, и стабилизацию тока покоя, о которой, похоже, вообще никто не вспоминает.  Привожу получившуюся схему усилителя, чтобы можно было более подробно рассмотреть, каким образом это достигается.

      Выходной каскад состоит из двух составных транзисторов, типа КТ925, КТ927. Понятно, что в модели использовались их аналоги. Включены они не эмиттерными повторителями, как чаще всего можно увидеть в приводимых схемах на форуме, а коллекторами к нагрузке. Такое включение обеспечивает наиболее полное использование транзисторов по мощности, а значит и высокий КПД. Принято считать, и не без основания, что такое включение транзисторов приводит к росту нелинейных искажений. Поэтому, для уменьшения усиления каскада, используются местная обратная связь, за счёт резисторов R17, R18.  Вместе с транзисторами VT3, VT4 получается выходной каскад, обеспечивающий усиление по мощности. Транзистор VT1 обеспечивает усиление по напряжению и является элементом общей отрицательной обратной связи. При входном пиковом напряжении 3,7 Вольт, усилитель имеет максимальную выходную мощность, то есть он рассчитан на выходной сигнал звуковой карты.
      Резистор R11 обеспечивает выравнивание плеч выходного каскада по усилению, и первоначально устанавливается в среднее положение. В процессе настройки он устанавливается в положение, обеспечивающее минимальные нелинейные искажения.
      Основной регулировкой усилителя является установка тока покоя, обеспечивающего желаемый уровень нелинейных искажений. Ток покоя задаётся транзистором VT2, диодами VD1, VD2 и резисторами R6, R8, R9. Причём диоды являются датчиками температуры, и вместе с выходными транзисторами располагаются не на печатной плате, а на радиаторе охлаждения как можно плотнее к выходным транзисторам с использованием теплопроводящей пасты и элементов крепления, обеспечивающих надёжный тепловой контакт.
      К сожалению промоделировать изменение тока покоя при нагреве выходных транзисторов не получается и поэтому проверить как он меняется можно будет на реальном макете, который появится в случае хоть какого-нибудь интереса к данной теме.
      Изначально резистор R6 предназначался для снижения чувствительности усилителя на транзисторе VT2. Так как вполне реальна ситуация, когда из-за высокой чувствительности схемы термокомпенсации, при нагревании выходных транзисторов, ток покоя будет уменьшаться, хотя обычно он растёт. Но в дальнейшем оказалось, что он играет более значимую роль в схеме и его необходимо выбирать по другим критериям.
      Моделирование показывает, что с нагрузкой 8 Ом, увеличение тока покоя до 800 мА, приводит к снижению нелинейных искажений до 0,003% и менее, вплоть до 0,001%, при дальнейшем увеличении тока. Это значение нелинейных искажений фиксировалось при выходной мощности 4 Вт. Такая мощность уже будет обеспечивать вполне приемлемую громкость звучания для небольшого помещения, и взята за точку отсчёта. При меньших значениях выходной мощности, нелинейные искажения снижаются. Для нагрузки 4 Ом, потребуется больший ток покоя, обеспечивающий тот же уровень нелинейных искажений.
      Второй точкой отсчёта брался уровень половины выходной мощности, или 0,707 от максимального выходного напряжения. Здесь нелинейные искажения увеличивались до 0,06% на нагрузке 4 Ом, хотя ток покоя увеличивался до 2 Ампер.
      Возможно, для любителей А класса, такой ток кажется вполне приемлемым, но для  усилителя начального уровня он всё же будет великоват. Именно поэтому после многочисленных попыток снизить ток покоя, при приемлемых нелинейных искажениях, выяснилось, что схема, задающая ток покоя на транзисторе VT2, вместе с диодами и резисторами смещения, работает как корректор нелинейных искажений. Именно благодаря корректору, при токе покоя в пределах 220…260 мА, усилитель начинает работать с минимальными нелинейными искажениями.
      Мне не встречались упоминания о том, что нелинейные искажения можно корректировать, но, возможно, я отстал от жизни и теперь это обыденная реальность. И даже, если на самом деле корректор нелинейных искажений здесь встретился впервые, кого и чем сейчас можно удивить?
      В первую очередь самому было интересно понять, как это работает. Теорию так и не придумал. Но на практике, в процессе моделирования, стало понятно, что резистор R6, определяет точность коррекции, и его величина зависит от нагрузки. Поэтому на схеме приведены два значения, в скобках для нагрузки 4 Ом. Так как при изменении величины этого сопротивления ток покоя меняется, то одновременно приходится менять ток покоя с помощью резистора R8. Соответственно на схеме тоже приводятся два значения этого резистора.
      При реализации в железе, номиналы резисторов R6 и R8, скорее всего, будут другими. Изменяя их значения, добиваются минимальных нелинейных искажений. Как показало моделирование, на нагрузке 8 Ом, даже при выходном напряжении близком к максимальному значению, нелинейные искажения остаются в пределах 0,002…0,003%.   На нагрузке 4 Ом они возрастают до 0.02%, что, я думаю, допустимо для усилителя начального уровня.
      Было также замечено, что схема коррекции работает только при наличии резисторов обратной связи R17, R18, что делает ещё сложнее выработку теории коррекции нелинейных искажений. Но для практической реализации это ничего не меняет, было бы желание попробовать сделать.
      На схеме пунктиром обозначен резистор Rш, который, может понадобиться, для снижения чувствительности схемы термокомпенсации, ведь резистор R6 теперь играет другую важную роль, и его менять нельзя.  Трудно сказать понадобится ли он вообще, но если и понадобится, то, ориентировочно, будет в пределах 2…10 кОм.
      Конденсаторы С1 и С2, ограничивают диапазон входного сигнала снизу и сверху, обеспечивая нужную полосу рабочих частот. Конденсатор С3 обеспечивает частотную коррекцию усиления, и делает работу усилителя более устойчивой. На модели усилитель показывал равномерное усиление вплоть до 1 мГц, естественно без конденсаторов С2 и С3, что вряд ли будет получаться в реальности. Очень хорошо устойчивость усилителя на модели проверяется при подаче на вход сигнала с частотой 100кГц, с уровнем, обеспечивающим ограничение выходного сигнала по напряжению.
       В таком режиме хорошо видно как влияет конденсатор С3 при подключении. Теоретически, включение этого конденсатора должно приводить к увеличению нелинейных искажений на частоте 10 кГц и выше.
       Так и происходит, при ёмкости 20 пФ и более, а при 10 пФ искажения наоборот снижаются, поэтому эта величина обозначена на схеме. Хватит ли этой величины в реальности, покажет реализация в железе.
       Устойчивость усилителя в первую очередь определяется глубиной общей отрицательной обратной связи. В данном случае задаётся величиной резистора R3. Этот же резистор одновременно регулирует уровень выходного напряжения при отсутствии сигнала, он должен быть равен половине напряжения питания. Именно по этому критерию он и выбирается.
      В итоге глубина отрицательной обратной связи зависит от величины усиления транзисторов предварительного и выходного каскада, которая определяется типом используемых транзисторов. На это необходимо обращать внимание при выборе замены приведённых на схеме элементов.
       Все значения величины нелинейных искажений приводились ранее для частоты 1 кГц. На 10 кГц эти значения не меняются, а вот на 100 Гц они увеличиваются до 0,005%. Для снижения этого значения придётся увеличивать номиналы ёмкостей С6, С7, именно они определяют рост нелинейных искажений на нижних частотах, и при значениях 4700 мкФ искажения снижаются до 0,003%. Поэтому номиналы ёмкостей С6 и С7 выбираются исходя из необходимости получения минимальных искажений на низких частотах. Кроме того, эти конденсаторы обеспечивают защиту нагрузки от постоянного напряжения, в случае неисправности выходного каскада усилителя.
      При таком количестве элементов схемы, даже печатная плата может не понадобится, можно обойтись макетной платой. А когда-то я обходился и без макетной и без печатной платы, устанавливая элементы на обычном гетинаксе без фольги, обеспечивая крепление элементов за счёт отверстий в плате. Монтаж получался как на печатной плате, а вместо фольги использовались либо выводы элементов, либо монтажный провод. Сейчас это будет делать гораздо проще, с использованием компьютера и принтера можно выполнить компоновку на бумаге, и по прорисовке сделать сверление отверстий, и никаких мучений по переводу рисунка проводников на фольгу, травлению платы, не говоря уже о металлизации переходных отверстий.
       Так что, если хоть кому-то захотелось собрать в железе данную схему, делитесь впечатлениями, продолжайте тему. Я основную работу сделал и вполне возможно участвовать в теме буду изредка, так как всё железо и серьёзные приборы остались по месту прежней работы, а тратить “огромную” пенсию на удовлетворение любопытства не хочется.
       Конечно, хотелось бы, что бы данный материал хоть кому-нибудь пригодился, но для нас уже стало привычным, что за нас всё делают китайцы. Что-же, пожуём-увидим.
      И в заключении стоит отметить, что заявленные 100 Вт выходной мощности, усилитель обеспечивает на нагрузке 4 Ом, с нелинейными искажениями менее 1%. При этом КПД его составлял более 70%, что совсем неплохо для усилителя начального уровня, вернее модели усилителя. Интересно, до реализации дойдёт дело, или это очередной “глас вопиющего в пустыне”?   
    • By Signus
      Продаются заводские платы и киты усилителя Никитин+:
      Тема на форуме: http://forum.cxem.net/index.php?/topic/196833-усилитель-никитин/
      Платы усилителя Никитин+ - 250р шт., доставка почтой России за ваш счет.  
      Размер Платы 80x60. Предусмотрен вариант сборки обычного и улучшенного ВК, интегратор в вариантах Creek 4330 и Никитин+. Мощные резисторы могут быть в следующих вариантах: 3xMF-2W, 2xMF-3W, 1xBPR56 5W, SQP 5W.  Платы достаточно узкие, что дает возможность крепить их на боковые радиаторы планарно. Маркировка элементов соответствует схеме в первом посте ветки форума.
      Схема, список деталей и размеры платы: Nikitin+ SMD v2.pdf

      Полный кит на два канала с платами - 3100р, доставка почтой России за ваш счет. 
      Кит рассчитан на сборку обычного ВК и интегратора Creek 4330. Электролиты Panasonic FC и Jamicon TK, пленка Epcos и Rifa. Транзисторы - IRL540N, 2SB1109C, 2SD1609C, ZVP3310A, MMBF170, ОУ - TL082.  Мощные резисторы - 3xMF-2W. В кит входят все разъемы на плату и ответные части на провода.  
      К Киту прилагается инструкция по сборке и настройке усилителя.
      Фото не совсем соответствует комплектации кита, но выглядит подобным образом:

       
    • By Александр Л.
      ВНИМАНИЕ, ОБНОВЛЕНИЕ НА ДЕКАБРЬ 2010г!
      Вся работа на форуме проходила в режиме реального времени, и в этой теме есть и промежуточные конструкции и неудачные опыты и неизбежные ошибки. Следует внимательно читать тему и всё сверять на соответствие схеме.
      С появлением более совершенного 6 варианта усилителя он становится основным (базовым), и вариант 5 (малогабаритный). Надобность в вариантах 1-4 отпадает, или же их следует собирать на основе 6го варианта. Поэтому тема обновляется. В теме было много ценных наработок и печатных плат, по этому решено всё пока сохранить, а ссылки на них помещать на стр.1.
      Предвидя некоторые вопросы и предложения классических решений, хочется сразу сказать следующее. Усилитель не классический, и классические решения здесь не подойдут. Основная идея (плавающие от + к - рабочие точки транзисторов) возникла от схемы прибора Х1-50. Там много разных питающих напряжений, уровней, логики, ЭЛТ, ключей, но при правильном согласовании уровней оказывается можно работать без переключательных искажений. Далее всё выбиралось по логике: конечно параллельные каскады, конечно композит, и конечно эмиттерные повторители на выходе (с ОК), а формирование токов покоя конечно по принципу ЭА. Но формирование только опорным, звуковым, и выходным (ООС) напряжениями,не жесткое принудительное, не глубокое, а мягкое, и главный принцип - никакой связки между + и - плечами усилителя, тем более жестко стабилизированной (ИСТ) или нелинейной (диоды). Только из-за этого 1-4 варианты делались с двумя раздельными термодатчиками. В 6 варианте удалось эту проблему решить. Ниже приводится подробное описание принципа работы и изготовления по состоянию на декабрь 2010г.
      Схема усилителя на сайте
      Ссылка на начало обсуждения в теме версии 6 http://forum.cxem.ne...700#comment-765600.
      Ссылка на усилитель Александра для наушников .http://forum.cxem.ne...000#comment-903236
      Ссылка на начало обсуждения версии 7http://forum.cxem.ne...20#comment-1012465
      ВАЖНО!!! Очень интересный пост по настройке 7-ой версии усилителяhttp://forum.cxem.ne...80#comment-1070339
      Ссылка на сообщение Александра о 7-ой версии, с последними на 31.12.2012 дополнениями и изменениями http://forum.cxem.net/index.php?showtopic=36237&st=7040#comment-1401399
      Блок защиты и автоматики для УМЗЧ.pdf
      Немного об усилителе А.pdf
    • By nant34
      Продам наборы для сборки усилителя ОМ2.7 (СМД) или только печатные платы. С описанием повторятся не буду, есть описание от автора. Хочется только сказать, что платы моей разработки соответствуют заявленным автором схемы (Nemo) характеристикам.  Наборы укомплектованы качественными и только оригинальными деталями и содержат всё необходимое, включая весь крепеж, качественные изолирующие подложки, шаблон для разметки отверстий на радиаторе и пару катушек с термоусадкой на выход. Печатная плата имеет габариты 99х48,5 мм. По входу стоит хороший полипропиленовый конденсатор Panasonic. Остальные пленочные преимущественно Kemet.
      Предлагаю несколько вариантов на выбор:
      1. Печатная плата ОМ2.7 + полный набор деталей, конденсаторы по питанию Rubycon YXJ = 2600 рублей/ два канала (+ доставка, см. ниже);
      2. Печатная плата ОМ2.7 + полный набор деталей, конденсаторы по питанию Panasonic FR = 2700 рублей/ два канала (+ доставка, см.ниже);
      3. Только печатные платы = 470 рублей/ пара плат, (включая доставку по России).
      Сборка двух каналов с полной проверкой = 400 рублей.
      Доставка осуществляется преимущественно Почтой России или DPD. В обоих случаях стоимость доставки = 250 рублей. Если покупаете в комплекте с блоком питания и защитой АС - доставка бесплатна. Возможна отправка в Казахстан и Беларусь. 
      Фото плат в собранном виде: 

       
      Так выглядит комплектация набора:

       
      И еще немного фото: 
      Прошу не обсуждать в данной теме схемотехнику, для этого есть соответствующая тема в разделе усилители. Спасибо
       
       
    • By Dmitriy Khamuev
      В модулях для сабвуферов Newton-Lab старших моделей в качестве усилителя я взял за основу симметричный MOSFET AV400 Entony E. Holtona, компактный, недорогой, термостабильный, музыкальный и с хорошим выходным током. Ток покоя устанавливали 15..20 миллиампер на пару,  для снижения температуры покоя модуля ( ~7 ватт на холостом ходу, 3 пары немного тёплые). С задачами он справлялся на 4 (из 5). Мощные выходные транзисторы применял IRFP240/IRFP9240 и IRF640/IRF9640, сотни пар прошли проверку работой и не подводили. Причиной нескольких отказов были BC546 во входном каскодном дифкаскаде. В результате их отказа на выходе появлялось постоянное напряжение питания. Предохранители в цепях силового питания защищали от КЗ на выходе и практически всегда от постоянного напряжения на выходе "4 омные динамики". Но один раз предохранители не справились, что отправило в перемотку  "8 омный" Peerless XLS 830500, 3 центовый транзистор победил 300$ вуфер! Peerless, конечно, перемотали, в Омске есть отличные спецы, но осадочек остался .

         Вывод: дополнительную защиту от постоянного напряжения на выходе усилителя следует предусмотреть.

         Вариант с реле в цепи нагрузки не нравится по причинам:
      - через контакты идёт полный ток нагрузки
      - для реле нормируется минимальный ток контактов, на малых сигналах возможны искажения
      - сопротивление замкнутых контактов вне контура ОС снижает демпинг фактор

         Разработана триггерная защита динамика от постоянного напряжения на выходе усилителя, работает в составе схемы питания усилителя. Схему постарался сделать универсальной и с минимальным количеством элементов. Сигнал с выхода усилителя через интегрирующую цепь R41-C5 поступает на U1 оптрон 814 серии (два инверсно-параллельных инфракрасных светодиода).  При постоянном напряжении на выходе усилителя выше ~+-4 вольта транзистор оптопары отрывается  и переключает триггер Q19-Q19. Транзисторный ключ Q20 открывается и включает оптопару U2 817 серии, обмотка управления реле RL1 (RT424048 48V 5520oHm 8A/15A Df=10% 4s) подключённая в цепь +57V,R43, Q17ke, -57V  обесточивается. Элементы схемы R42-C17 формируют задержку включения ~200мс (на время выключения при срабатывании защиты практически не влияют), диод D7 компенсирует ток самоиндукции обмотки реле при выключении.  Схема питания имеет дополнительный вход STBYE для внешнего отключения, замыкание на "землю" (~2ma, 5V, открытый (сток) коллектор). Для защиты от перегрузок применены самовосстанавливающиеся предохранители FU1 FU2 RXE375 3,75A/7A, практичнее плавких, но заявленный ресурс срабатываний 100 раз, злоупотреблять не стоит.

         Преимущества предложенного мною решения:

      - выход усилителя непосредственно подключен к нагрузке
      - действующий ток через контакты реле вдвое меньше нагрузочного
      - силовое питание снимается при пропадании (падении) одного из плеч
      - имеем возможность внешнего управления силовым питанием
      - схема защиты работает при питании от Up=+-24V. Меняются только резисторы (R43=0, R1=1900oHm для Up=24V), для других напряжений значения рассчитывается по формуле R43=(2*Up-48V)/48V*5520oHm, R1=(Up-5.1V)/10ma. И не забываем выбрать мощность этих резисторов.
      Ссылка на полное описание экспериментального модуля.

      Имеется с десяток ПП оставшихся после экспериментов.
      Best regards,
      Dmitriy Khamuev.
      Russia, Omsk.
  • Сообщения

    • На нём написан максимальный ток заряда, а выдавать на разряд он может и побольше, особенно, если его закоротить, что ты и сделал. 
    • Как всегда, всё вытягивать надо. В час по чайной ложке. Исходную схему с PICом покажите. И функционал опишите: что и как делает схема, какие параметры контролирует и т.п. и т.д. Тогда и можно будет что то посоветовать. А пока, как выше и сказали, даже тиньки 2313 может хватить. Кст, программу тоже будете писать? Программа для PIC и Atmega - это две большие разницы.
    • Только так - брать с собой в магазин и примерять. Ибо ни марок, ни посадочных размеров никто не знает, в т.ч. и продавец в магазине.
    • Все, кто ставил себе предпусковые подогреватели знает, что нужна небольшая помпа для циркуляции антифриза, лучше бесщеточный.  Зарядник подключить навсегда к АКБ через диод Шоттки, чтобы аккум не разряжался через него.  Чтобы вентилятор подключить напрямую к АКБ без включения зажигания, нужно перехватывать релюшкой два провода, так один идет на зажигание, а второй на ШИМ регулятор или набор добавочных резисторов. 
    • Причин может быть туча. Если не получилось вылечить монитор с наскока, то надо уже бросить "ковровую бомбардировку" и подойти к решению задачи как и рекомендует форум, например, прикрепить схему, чтобы можно было хоть что то посоветовать.  
    • Согласно формулам расчёт фи для альфы даёт Vb=2373,54л, Fз=Fb=13.1гц, Dv=15см, Lv=1.82см. Т.е двухкубовый с лишним ящик с трубой инвертора диаметром 15см, длинной 1.8см с настройкой резонанса по уровню -3дб на 13.1гц.  Просчитаем рекомендованный зя 85л. Резонанка в таком ящике Fc= 41×sqrt (1+260/85)=82.6 Добротность резонанки Qtc=1.26×sqrt(1+260/85)=2.538.  Такая добротность даст очень заметный на слух выброс ачх 20log(2.538)=8дб т.е будет бубнить на частоте 82.6гц. Рекомендованый фи 177л будет бунякать ещё хлеще. В итоге после таких вот "рекомендаций горе-рекомендаторов" соблюдателям подобных рекомендаций, в том чисое и вам, не нравится звучание зя/фи.  Что касаемо моих наработок в моей теме. Во первых, тема есть, но на другом форуме. И свои изделия показывал в соответствующей теме. Во вторых, я не нуждаюсь а оценке своего труда в соц.сетях. И главное- не пиарю свои наработки с целью окучивания лохов. В отличии от доски с шириками, мои SG скопировать и повторить невозможно. Как повторить изделия Adamson, L-Acoustics, WisdomAudio, GemmeAudio, Bosendorfer и многих других.
  • Покупай!

×
×
  • Create New...