Jump to content

Recommended Posts

Дано: отладочная плата STM32F303VC, индукционный датчик.

Доброго времени суток, суть моего проекта в  детектировании вибраций(ударов) при помощи аналогового датчика.

Код отслеживания удара написан, но я не пойму то ли я ошибся с алгоритмом его работы то ли не правильно сконфигурировал отладочную плату.

image.png.6c5dfd3015fe1e7c39610351e9d8a5fb.png

Информация по датчику.

Индукционный датчик удара, шок сенсор, Arduino может использоваться в проектах на микроконтроллерах (в т.ч. Arduino), в которых нужно следить за уровнем вибрации или подобных механических возмущений. Принцип действия датчика основан на электромагнитной индукции. Движущийся стальной, ферритовый или магнитный сердечник относительно катушки создает в катушке ЭДС, подходящую по амплитуде ударного воздействия на систему. Чувствительный элемент датчика установлен в прозрачный пластиковый параллелепипед для защиты от действий внешней среды.
Для использования датчика нужно подключить его к Arduino контроллеру или другому микропроцессорному управляющему устройству, подать питание, создать программу для работы с датчиком или использовать готовое решение. На корпусе датчика есть два отверстия, с помощью которых можно жестко закрепить датчик на плоской поверхности. В состоянии покоя напряжение на выходе из датчика около 5 В, при возмущении напряжение на датчике падает пропорционально силе возмущения.
Индукционный датчик удара, шок сенсор, Arduino имеет один 3-контактный разъем для подключения к контроллеру и питания:

контакт обозначенный «–» – общий контакт;

средний контакт – напряжение питания;

контакт S – аналоговый выходной сигнал датчика.

Датчик может питаться как от Arduino контроллера (другого микропроцессорного управляющего устройства), так и от внешнего источника питания. Напряжение питания 3,3 – 5 вольт постоянного тока.

Характеристики:

принцип действия: индукционный;
выходной сигнал: аналоговый;
напряжение питания: 3,3 – 5 вольт постоянного тока;
размеры: 30 х 18 х 11;
вес: 2 г.

Shock.7z

Share this post


Link to post
Share on other sites
37 минут назад, Kirill Lubinets сказал:

то ли я ошибся с алгоритмом его работы

А какой алгоритм используется в программе? Если можно, напишите коротко своими словами. 

Share this post


Link to post
Share on other sites

Инициализирую порт А(там находится АЦП) и порт В(там находятся распаянные светодиоды), конфигурирую светодиоды и АЦП1(ножна PA0).

АЦП 10-битный значит он сможет детектировать 1024 различных  напряжений на амплитуде 0-5 V. 
Из этого выходит что чувствительность(шаг квантования) равен 5мВ.

Когда датчик приводят в возбуждение(трисут, стукают,дергают) в нем возникает ЭДС самоиндукции что гасит напряжение:

1.Датчик в работе значит на выходе будет менее 5V(напряжение питания);

2.Датчик в спокойствие на выходе будет 5V(напряжение питания);
 

 

АЛГОРИТМ(while)

 

1.Считываю значение с АЦП1, делаю паузу, запрещаю дальнейшие преобразование
2.Делаю расчет текущего потенциала на датчике ( значение АЦП * 5(напряжение питания)/1024(разрядность АЦП) )
3.Сравниваю с условием состояния датчика
3.1. Зажигаю один из светодиодов(в зависимости от состояния датчика)

3.2. Делаю паузу

3.3.Тушу светодиод, включаю на АЦП1 преобразования

 

Думаю я ощибся в условии срабатывания датчика среагировавшего на удар.

 

if(u <  1400)

тогда удар был зажечь зеленый светодиод

else

удара не было зажечь красный светодиод

Share this post


Link to post
Share on other sites

Технология Maxim Integrated nanoPower: когда малый IQ имеет преимущества

При разработке устройств с батарейным питанием важно выбирать компоненты не просто с малым потреблением, но и с предельно малым током покоя. При этом следует обратить внимание на линейку nanoPower производства компании Maxim Integrated. В статье рассмотрено их применение на примере системы датчиков беспроводной оконной сигнализации.

Подробнее

16 минут назад, Kirill Lubinets сказал:

в нем возникает ЭДС самоиндукции

В Вашем датчике нет никакой самоиндукции. Это просто контакт, который замыкается при тряске. Упругая пружинка в датчике расположена так, что её свободный конец не касается контактов. При резком движении пружинка начинает колотиться по контакту, кратковременно замыкая электрическую цепь.

Тут даже не нужно АЦП использовать, потому что при срабатывании датчик выдаёт серию импульсов 5В-0В -5В-0В-5В ... Надо просто подать этот сигнал на ножку порта и включить прерывания на этой ноге. Тогда при появлении импульсов на ноге сработает прерывание, и в обработчике прерывания уже можно включать светодиод. 

 

cxem_shock_sensor1.png

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...

  • Similar Content

    • By Максим123456789
      делаю диплом, в схеме у меня микроконтроллер PIC16F688 и мне нужно его заменить на ATmega. Не могу найти похожий
    • By Вячеслав_НС
      Здравствуйте ! подскажите , какую лучше библиотеку использовать (и где ее взять) для управления i2c atmega8 в atmel studio 7  .  задача - управлять atmega8 по i2c ,  цап  PCF8591T .
      понимаю , в интернете много примеров и библиотек , но хотелось бы пример максимально простой и точно рабочий . т.к. пока что все мои попытки не привели к успеху ... то Atmel Studio 7 при компиляции ругается на несуществующий файл ( к примеру - "stream.h") при использовании библиотеки i2c , то еще какие то грабли .
    • By artos5
      Приветствую всех на этом форуме!
      Есть необходимость измерять сигнал при помощи данного АЦП. С помощью этого АЦП можно измерять 4 аналоговых не дифференциальных сигнала . Схема следующая:
      Schematic_Temp_opto_sens_V2_20190817124112.pdf
      Картинками с более низким разрешением:
      библиотеку за основу взял эту:
      https://github.com/nsaspook/nidaq700/blob/master/supermoon/example/ADS1220.c
      Путем незначительного допиливания, получилась такая библиотека:
       
      Поправил только эти функции:
      void ADS1220SendByte(unsigned char Byte) { unsigned char Result = 0x01, i=0, flg=0; MOSI_LO; Delay_us(1); for(i=0;i<8;i++) { SCK_LO; //ADC_CLK=0 Delay_us(4); if (flg) MOSI_LO; Delay_us(1); SCK_HI; //ADC_CLK=1 Delay_us(1); if (Byte&Result){ MOSI_HI; flg=1; } else MOSI_LO; Delay_us(4); Result<<=1; } SCK_LO; //ADC_CLK=0 } unsigned char ADS1220ReceiveByte(void) { unsigned char Result = 0, i=0; for(i=0;i<8;i++) { Result<<=1; SCK_LO; //ADC_CLK=0 Delay_us(5); //Delay_us(5); SCK_HI; //ADC_CLK=1 Delay_us(3); if (MISO) Result++; Delay_us(2); } SCK_LO; //ADC_CLK=0 return Result; } И добавил эту функцию:
      void ADS1220Config_MUX_GAIN(uint8_t mux, uint8_t gain) { unsigned Temp; ADS1220ReadRegister(ADS1220_0_REGISTER, 0x01, &Temp); // clear prev value; Temp &= 0x0f; Temp |= gain; Temp |= mux; // write the register value containing the new value back to the ADS ADS1220WriteRegister(ADS1220_0_REGISTER, 0x01, &Temp); ADS1220ReadRegister(ADS1220_1_REGISTER, 0x01, &Temp); // clear prev DataRate code; Temp &= 0x1f; Temp |= (ADS1220_DR_600 + ADS1220_CC); // Set default start mode to 600sps and continuous conversions // write the register value containing the new value back to the ADS ADS1220WriteRegister(ADS1220_1_REGISTER, 0x01, &Temp); } ADS1220.h :
      в результате получаю такую осциллограмму :

      То есть , постоянно считывается 0.
      А вот регистры конфигурации:
      Задаю номер входа MUX и усиление :
       

       
      Читаю данные так:
      ADS1220Config_MUX_GAIN(ADS1220_MUX_0_G, ADS1220_GAIN_1); HAL_Delay(10); temp_[0] = ADS1220ReadData(); Это для 0 канала. 
      Пробовал и так:
      ADS1220SetChannel(ADS1220_MUX_0_G); ADS1220SetGain(ADS1220_GAIN_1); temp_[0] = ADS1220ReadData(); Результат аналогичный. Кто что подскажет? Может кто заметит какой косяк в коде? Уже голова дымит ..
    • By Антон Плюшкин
      В общем есть небольшая тривиальная задача - сделать свитюльку. Контроллер управляет светодиодиками, цвета меняются, людишки довольны.
      Схема проста: Attiny44a -> 2n3904 x3 -> RGB-светодиод.
      Собрал, протестил, всё норм, но!
      Как только в коде я использую функцию задержки - _delay_ms (util/delay.h) - контроллер повисает!
      #define F_CPU 16000000UL #include <avr/io.h> #include <util/delay.h> int main(void) { // Input/Output Ports initialization // Port A initialization // Function: Bit7=Out Bit6=Out Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRA=(1<<DDA7) | (1<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | (0<<DDA2) | (0<<DDA1) | (0<<DDA0); // State: Bit7=0 Bit6=0 Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0); // Port B initialization // Function: Bit3=In Bit2=Out Bit1=In Bit0=In DDRB=(0<<DDB3) | (1<<DDB2) | (0<<DDB1) | (0<<DDB0); // State: Bit3=T Bit2=0 Bit1=T Bit0=T PORTB=(0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0); // Timer/Counter 0 initialization // Clock source: System Clock // Clock value: 16000,000 kHz // Mode: Phase correct PWM top=0xFF // OC0A output: Non-Inverted PWM // OC0B output: Non-Inverted PWM // Timer Period: 0,031875 ms // Output Pulse(s): // OC0A Period: 0,031875 ms Width: 0 us // OC0B Period: 0,031875 ms Width: 0 us TCCR0A=(1<<COM0A1) | (0<<COM0A0) | (1<<COM0B1) | (0<<COM0B0) | (0<<WGM01) | (1<<WGM00); TCCR0B=(0<<WGM02) | (0<<CS02) | (0<<CS01) | (1<<CS00); TCNT0=0x00; OCR0A=0x00; OCR0B=0x00; // Timer/Counter 1 initialization // Clock source: System Clock // Clock value: 16000,000 kHz // Mode: Ph. correct PWM top=0x00FF // OC1A output: Non-Inverted PWM // OC1B output: Disconnected // Noise Canceler: Off // Input Capture on Falling Edge // Timer Period: 0,031875 ms // Output Pulse(s): // OC1A Period: 0,031875 ms Width: 0 us // Timer1 Overflow Interrupt: Off // Input Capture Interrupt: Off // Compare A Match Interrupt: Off // Compare B Match Interrupt: Off TCCR1A=(1<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (1<<WGM10); TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (0<<CS11) | (1<<CS10); TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00; // Timer/Counter 0 Interrupt(s) initialization TIMSK0=(0<<OCIE0B) | (0<<OCIE0A) | (0<<TOIE0); // Timer/Counter 1 Interrupt(s) initialization TIMSK1=(0<<ICIE1) | (0<<OCIE1B) | (0<<OCIE1A) | (0<<TOIE1); // External Interrupt(s) initialization // INT0: Off // Interrupt on any change on pins PCINT0-7: Off // Interrupt on any change on pins PCINT8-11: Off MCUCR=(0<<ISC01) | (0<<ISC00); GIMSK=(0<<INT0) | (0<<PCIE1) | (0<<PCIE0); // USI initialization // Mode: Disabled // Clock source: Register & Counter=no clk. // USI Counter Overflow Interrupt: Off USICR=(0<<USISIE) | (0<<USIOIE) | (0<<USIWM1) | (0<<USIWM0) | (0<<USICS1) | (0<<USICS0) | (0<<USICLK) | (0<<USITC); // Analog Comparator initialization // Analog Comparator: Off // The Analog Comparator's positive input is // connected to the AIN0 pin // The Analog Comparator's negative input is // connected to the AIN1 pin ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | (0<<ACIC) | (0<<ACIS1) | (0<<ACIS0); ADCSRB=(0<<ACME); // Digital input buffer on AIN0: On // Digital input buffer on AIN1: On DIDR0=(0<<ADC1D) | (0<<ADC2D); // ADC initialization // ADC disabled ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0); unsigned char VL_OCR0A = 0, VL_OCR0B = 0, VL_OCR1A = 0; OCR0A = 0; OCR0B = 0; OCR1A = 0; while(1) { _delay_ms( 100 ); VL_OCR0A = VL_OCR0A + 1; VL_OCR0B = VL_OCR0B + 1; VL_OCR1A = VL_OCR1A + 1; if( VL_OCR0A >= 250 ){ VL_OCR0A = 0; } if( VL_OCR0B >= 250 ){ VL_OCR0B = 0; } if( VL_OCR1A >= 250 ){ VL_OCR1A = 0; } OCR0A = VL_OCR0A; OCR0B = VL_OCR0B; OCR1A = VL_OCR1A; } } Т.е. если указать задержку в начале цикла, то светодиод не светится вообще.
      Если задержку убрать - светодиод немного подсвечивает всеми цветами.
      while(1) { _delay_ms( 100 ); // <--- ЗАДЕРЖКА --- VL_OCR0A = VL_OCR0A + 1; VL_OCR0B = VL_OCR0B + 1; VL_OCR1A = VL_OCR1A + 1; if( VL_OCR0A >= 250 ){ VL_OCR0A = 0; } if( VL_OCR0B >= 250 ){ VL_OCR0B = 0; } if( VL_OCR1A >= 250 ){ VL_OCR1A = 0; } OCR0A = VL_OCR0A; OCR0B = VL_OCR0B; OCR1A = VL_OCR1A; } Где я накосячил?
      З.Ы.: Замечаний по поводу оптимизации кода, излишних переменных и п.р. прошу не писать - изощряюсь как могу ибо не пойму почему не работает
×
×
  • Create New...