Jump to content
Ремирович

Неизвестные свойства мощных полевых транзисторов и как их использовать в усилителях мощности.

Recommended Posts

Данные, изложенные ниже, появились в результате многолетней работы над усилителем мощности с использованием высоковольтных MOSFET полевых транзисторов в нетипичном для них линейном режиме. Двухканальный усилитель должен был обеспечивать мощность 1000 Вт, при эффективном выходном напряжении 250 Вольт. Соответственно, при совместной работе двух каналов мощность должна была быть 2000 Вт, а напряжение 500 Вольт.

Приведённые параметры, в наше время, особо никого не удивили бы, но усилитель должен был работать в полосе частот 10…200000 Гц. Это значить, что на выходе усилителя нельзя было ставить повышающий трансформатор, так как он никогда не сможет работать в такой полосе частот, да и нелинейные искажения с ним значительно больше. То есть необходимо было заставить работать высоковольтные полевые транзисторы, практически на пределе своих возможностей.

Вот здесь и началось самое интересное. После поиска по всевозможным сайтам, были найдены наиболее подходящие по мощности, напряжению и току транзисторы, и был изготовлен опытный образец. Перед этим, маломощный прототип усилителя, подтвердил работоспособность схемных решений и возможность получения необходимого выходного напряжения.

Первое включение показало, что усилитель находится в режиме самовозбуждения. Типичная ситуация, но только устранить её никак не получалось, а опыта в такой работе мне хватало. Даже после отключения всех предварительных каскадов, генерация не прекращалась.

Ситуация была абсурдной, прототип нормально работал, а на более мощных транзисторах ничего не получалось. Пришлось включить один мощный транзистор в режиме тестирования. Для этого была собрана типовая схема с нагрузкой в виде мощного резистора около 2 кОм, установленном в стоке транзистора и напряжением 600 Вольт, между истоком и нагрузочным резистором.

Используя дополнительный низковольтный регулируемый источник питания, подавалось напряжение на затвор транзистора, относительно его истока. Напряжение на стоке транзистора должно было плавно уменьшаться, при увеличении напряжения на затворе. Правда, разработчиками такой режим работы транзисторов никак не регламентирован, что очень удобно для них, чувствуется присутствие “наших людей” в силиконовой долине. Им гораздо удобнее назвать транзисторы импульсными, и не обращать внимания на то, что будет происходить с транзисторами между открытым и закрытым состоянием.

Вот тут то и выяснилось, что в промежуточном состоянии, транзистор переходит в режим генерации, что наглядно продемонстрировала собранная схема тестирования. Проверив, находившейся под рукой, транзистор другой марки, получил тот же результат. Надо было устранять генерацию. Вспомнилось, что для устранения взаимного влияния полевых транзисторов, при параллельном включении в импульсных устройствах, предлагалось последовательно с затвором транзистора устанавливать резистор от 10 Ом и выше.

Попробовал, и при 20 Ом генерация пропала. Получается, что автор рекомендации сам не понимал сути происходящего, не транзисторы влияют друг на друга, а они сами являются источником генерации, и чем больше их включено параллельно, тем больше склонность к генерации. Стало понятно, почему на маломощных транзисторах такого эффекта не наблюдалось.

В дальнейшем, вместо резистора я использовал небольшой дроссель, порядка 10 мкГн, что было удобней в моей схеме управления транзисторами, и это также обеспечивало отсутствие генерации.

Но на этом “интересное” не заканчивалось. После того как после доработок опытный образец заработал, выяснилось, что выше частоты 20 кГц, напряжение на выходе резко уменьшается, совсем не в линейной зависимости. А у маломощного прототипа легко получалось достичь 200 кГц. Казалось бы понятно, что у более мощных транзисторов гораздо больше ёмкость между истоком и затвором, и скорее всего она и даёт такой эффект, но измерение напряжения на затворе этого не подтвердили. На затворе напряжение с частотой выше 20 кГц очень плавно уменьшалось вплоть до 200 кГц.

Пришлось опять возвращаться к режиму тестирования, только теперь на затвор вместе с постоянным напряжением подавался и синусоидальный сигнал от генератора. Результат был примерно тем же самым, выше 20 кГц происходил резкий завал уровня переменного напряжения на стоке.

Казалось, что вывод очевиден, транзисторы не “тянут”. Надо искать более высокочастотные экземпляры, что и было сделано, только результата это не дало. Обидно считать себя идиотом, глядя в техническую документацию, где чётко написано, что транзистор должен работать вплоть до 500 кГц.

После многочисленных попыток изменить ситуацию с помощью отрицательной обратной связи и других ухищрений, было решено сменить источник сигнала на генератор повышенной мощности и напряжения. Не сразу, но всё же удалось раскачать транзистор на частоте 200 кГц, выше генератор не давал. При этом переменное напряжение на затвор приходилось подавать чуть ли не максимально допустимого уровня в 30 Вольт.

В голове сквозила мысль, что же это за современные “супер-пупер” транзисторы, которые имеют дикую нелинейность в частотной области. Опять стало понятно, зачем их называют импульсными, за нелинейность в частотной области отвечать не надо. Но от этого жить легче не стало, так как было не понятно, что же происходит, и как с этим бороться.

Быстро текст набирается, да только дела это не касается. На деле всё происходит гораздо медленнее и с постоянными “затыками”, что совсем не нравится руководству, особенно если оно в этом вообще ничего не понимает. После того как стало казаться, что с такой нелинейностью сделать ничего не удастся, в голову приходит мысль посмотреть, что происходит на затворе работающего транзистора с поданным на него высоким напряжением, что совсем не просто без специального изолированного от земли осциллографа. Но если очень хочется, то можно просто обойтись высокочастотным трансформатором, обеспечивающим гальваническую развязку.

Вот тут то “карта и пошла”. Всё встало на свои места и чувство ущербности улетучилось. При подаче высокого напряжения, уровень сигнала на затворе очень сильно падал и восстанавливался при отсутствии такового. На частоте 200 кГц от сигнала вообще ничего не оставалось. То есть транзистор каким-то образом гасил “сигнал”.

Можно сказать, что мгновенно пришло понимание того, что происходит, если учесть всё время, потраченное до этого момента.

В техническом описании на транзистор есть такой параметр, как ёмкость между стоком и затвором, она совсем маленькая и, казалось бы, не должна существенно влиять на работу транзистора. Но именно она и обеспечивает эти самые “интересные” эффекты. Это не что иное, как частотнозависимая отрицательная обратная связь в теле самого транзистора. Чем выше частота и напряжение на стоке транзистора, тем большее влияние оказывает эта паразитная ёмкость.

Теперь, если учесть, что транзистор имеет довольно большой коэффициент усиления, несложно сообразить, что при определённых условиях, на высоких частотах, отрицательная обратная связь легко может превратиться в положительную. Для этого необходим небольшой сдвиг фазы до нужной величины и у нас появляется устойчиво работающий генератор высокой частоты, что и подтверждало тестирование отдельных транзисторов.

Но это ещё не всё, ведь если удаётся заставить работать транзистор без генерации, обратная связь не исчезнет, она будет проявлять себя в работе транзистора на высоких частотах, очень сильно снижая усиление транзистора. В итоге имеем прибор с отвратительными, хорошо замаскированными разработчиками транзисторов, свойствами, которые проявляют себя в самый неподходящий момент. А претензий предъявлять некому, просто надо назвать транзисторы импульсными и можно жить богато и счастливо.

Но что есть, то есть. Понятно, что разработчики старались сделать всё как можно лучше, а получилось …, очень знакомая для наших людей ситуация. Хотя сейчас существует огромный выбор транзисторов, но ведут они себя практически одинаково, так как имеют одинаковую технологию производства. Ясно, что улучшений в ближайшее время ждать не приходится, поэтому надо использовать имеющиеся транзисторы.

Каким то образом необходимо снизить влияние этой паразитной отрицательной обратной связи, при этом, не меняя конструкцию транзистора. Это очень напоминает желание овладеть телекинезом, чтобы силой мысли двигать предметы.

Придётся научиться делать это, не прибегая к телекинезу. Для этого устанавливаем низкоомный резистор между истоком и затвором, и управляющее напряжение подаём через дроссель с небольшой индуктивностью, мне хватало 10 мкГн. Получаем на затворе транзистора довольно приличный шунт, который быстро разряжает большую ёмкость затвора и тем сильнее уменьшает влияние паразитной ёмкости между стоком и затвором, чем меньше значение сопротивления этого шунта. Для достижения хороших результатов, транзистору с ёмкостью затвора порядка 10000 пФ, потребуется резистор не более 10 Ом.

Тем самым полевой транзистор перестаёт быть полевым, так как для его управления потребуется не только напряжение, но и вполне приличный ток. Если включается несколько транзисторов параллельно, то к каждому подключается свой шунт и свой дроссель.

Для управления таким прибором потребуется специальный подход, чтобы оптимизировать затраты на управление. Отсюда, чем меньше напряжение включения транзистора, тем лучше. Максимальное напряжение на затворе должно обеспечивать уверенное открывание транзистора, но не более того.

Для ключевых схем оптимальным будет использование импульсных трансформаторов, которые и сейчас используют довольно часто, только мощность у них должна быть заметно больше. А вот для линейных схем, где требуется плавное включение и высокая линейность, пришлось изобретать нечто новое, на основе хорошо забытого старого.

Не знаю как сейчас, а 50 лет назад очень популярными были приёмники прямого усиления, а в школе демонстрировали работу детекторного приёмника. В основе работы того и другого, лежат одни и те же принципы. Мне очень запомнилось высокое качество их звучания, благодаря минимальному количеству преобразований и, в результате, минимальным нелинейным искажениям.

Если совместить удобство использования импульсного трансформатора и качество работы детекторного приёмника, то получим компактное и достаточно простое устройство управления полевыми, да и любыми другими, транзисторами.

Для этого преобразуем управляющее напряжение в радио сигнал с амплитудной модуляцией. Несущая такого сигнала должна быть достаточно высокой частоты, например 3 мГц для моего случая. Она определяется максимально необходимой верхней частотой сигнала управления. По сути, получаем мини радиостанцию, выход которой подключаем к первичной обмотке высокочастотного трансформатора. Сигнал гальванически развязанной вторичной обмотки детектируется и используется для управления транзистором. Получаем почти детекторный приёмник, только с достаточно мощными импульсными диодами, позволяющими получить необходимую мощность сигнала управления.

Разброс мощностей такого устройства может быть довольно большим, от 10 мВт до единиц и даже сотен Ватт. Мне хватило 3 Вт. Привожу схему, которая позволила это сделать, она довольно простая, так как собрана всего на двух транзисторах и четырёх диодах, не считая трансформатора и обвязки.

5c752f91c09a8_.jpg.360e5c93056004d3797993bb74d54986.jpg

Трансформатор намотан на двух ферритовых кольцах диаметром 10 мм, с магнитной проницаемостью 200. Каждая обмотка содержит 7 витков медного изолированного провода диаметром 0,18 мм.

В заключение отмечу, что усилитель, в конце концов, заработал так, как от него требовалось, но полной программы испытаний провести не удалось, кончился запас выходных транзисторов. Их доставали 6 месяцев, за это время кончилось терпение у руководства, и автор попал под сокращение из-за возраста, а главное, отсутствия какого либо интереса к этой теме.

В общем-то, на предложенный здесь способ управления транзисторами, вполне можно получить патент, знаю по собственному опыту. Но только сейчас это имеет смысл только в том случае, если точно знаешь, что это кому-то понадобится, и удастся как-то на этом заработать. В противном случае зарабатывать будет патентное ведомство, а изобретатель будет его кормить. Поэтому делать изобретения сейчас могут себе позволить только богатые люди.

Такое устройство вполне можно было бы сделать 50 лет тому назад, и если бы это случилось, то схемотехника усилителей мощности была бы гораздо проще и не надо было бы придумывать комплементарные пары мощных транзисторов. Но может быть и сейчас кому-то это понравится, а в некоторых случаях выведет из тупика, или сделает решение проблемы гораздо эффективнее. Лично мне уже удалось получить удовлетворение от решения этой, довольно сложной, технической задачи, надеюсь, что я не останусь в одиночестве.

Share this post


Link to post
Share on other sites

Информация действительно интересная. Когда-то я тоже влетел в самовозбуд, но так и не смог из него вылезти.

Единственно, что ТС "передал кутье мёду": наверное, не надо было приводить схему управления. Хотя, в усилителях на десятки киловатт никто особо не добивается Кни порядка сотых долей процента.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...

  • Similar Content

    • By sendel
      Здравствуйте, 
      Дано: электродвигатель постоянного тока щеточный где-то 5-12 В, например от игрушки
      Задача:
      Сделать так что бы при превышении нагрузки на роторе двигатель переходил в "спящий" режим.
      Механически это выглядит как трещетка на шуруповерте на усилие, т.е. если усилие больше, трещётка будет просто проворачиваться, и двигатель будет крутится вхолостую.
      Как реализовать это же электронно?
      На сайте наткнулся на схему защиты по току, и изменил её на простой контроллер по току:
      Принцип который должен получится, при перегрузке на моторе, заряжается конденсатор, включается оптопара, ток идёт через R1, пока разряжается конденсатор оптопары, как только разрядился, ток идёт через VT1 и пытаемся запустить мотор.
      При перегрузке в оригинальной схеме срабатывал оптотиристор
      В схеме предлагаю заменить оптотиристор U2 на оптопару, что бы как только выключится диод U2 ток снова пошёл через транзистор VT1. Для того что бы внести задержку от выключения диода U2, нужно добавить конденсатор, только вот сходу не придумал как его правильно воткнуть, что бы он заряжался мгновенно, а разряжался постепенно, и пока не зарядится, светодиод U2 не начал бы светится. наверное нужно закомутировать его через транзистор?
      Ссылка на оригинал статьи http://www.kondratev-v.ru/stabilizatory/stabilizator-toka-s-zashhitoj-ot-kz.html
       
      Помогите пожалуйста с данным вопросом. Правильно ли я мыслю?  Может есть более красивые решения? И как правильно подключить конденсатор в данную схему?
       

    • By Фанти Блокс
      Есть два усилителя том-1201(буду разделять их по цветам, темный и светлый), сам я в усилителях да и радиосхематике очень слаб, поэтому прошу помощи у спецов. В общем по рассказам бывшего хозяина один из них работал, пока не сгорело что то в области питания(темный), теперь он не реагирует на включение. Второй же(светлый) при включении в сеть зажигает лампочку, но у него есть самодельные элемены в цепи, которые очень сильно(до красна) нагреваются, я в силу нехватки знаний могу только показать на фото где они. Так вот, вопрос в том как разобраться что с этими "лапочками" и можно ли реанимировать хоть 1 из 2. Из приборов есть мультиметр, паяльник и фен. Фото выложу пачкой. А там, если найдется профи, кто влзьмется помогать - буду докидывать что скажет.










    • By gasonger0
      Столкнулся с проблемой: звук на  левом канале тише, чем на правом. Методом проб определил, что на левом канале напряжение приблизительно рано 4.60В, а на правом - около 8В. Думаю, попахивает заменой конденсаторов, но сам разобраться до конца не могу. Посоветуйте, что могу сделать.
       
    • By pribor458
      Куплю изделия:
       
      Реле-регуляторы ЭРРТ-01
      Счетчики бета-гамма излучений БЕТА-5
      Циркуляторы коаксиальные ФЦКВ3-8А
      Фотодиоды кремниевые ФД-288А
       
      Магнетроны:
      МИ-176
      МИ-334
       
      Конденсаторы вакуумные КП1-6 (45кВ, 15-250пФ)
      Лампы генераторные ГУ-23А
      Усилители МИУ-41
       
       
      Россия, Москва:
      Конт. тел. +7-495-260-12-54
      Украина, Львов:
      Конт. тел. +38-050-410-57-87
      pribor458@gmail.com

    • By user0
      В приведенной схеме в симуляторе появляется искажение типа ступенька на выходе (желтый канал), при этом на выходе ОУ её нет (синий канал). Является ли это "багом" симуляции? Ведь ООС должна установить такое напр. на базах, что на выходе будет в K раз больше. С другой стороны, ОУ имеет напр. смещения и это может приводить к большой ступеньки при большом коэф. усиления (но в симуляторе её нет, в синем канале).

×
×
  • Create New...