Jump to content
Ремирович

Неизвестные свойства мощных полевых транзисторов и как их использовать в усилителях мощности.

Recommended Posts

Данные, изложенные ниже, появились в результате многолетней работы над усилителем мощности с использованием высоковольтных MOSFET полевых транзисторов в нетипичном для них линейном режиме. Двухканальный усилитель должен был обеспечивать мощность 1000 Вт, при эффективном выходном напряжении 250 Вольт. Соответственно, при совместной работе двух каналов мощность должна была быть 2000 Вт, а напряжение 500 Вольт.

Приведённые параметры, в наше время, особо никого не удивили бы, но усилитель должен был работать в полосе частот 10…200000 Гц. Это значить, что на выходе усилителя нельзя было ставить повышающий трансформатор, так как он никогда не сможет работать в такой полосе частот, да и нелинейные искажения с ним значительно больше. То есть необходимо было заставить работать высоковольтные полевые транзисторы, практически на пределе своих возможностей.

Вот здесь и началось самое интересное. После поиска по всевозможным сайтам, были найдены наиболее подходящие по мощности, напряжению и току транзисторы, и был изготовлен опытный образец. Перед этим, маломощный прототип усилителя, подтвердил работоспособность схемных решений и возможность получения необходимого выходного напряжения.

Первое включение показало, что усилитель находится в режиме самовозбуждения. Типичная ситуация, но только устранить её никак не получалось, а опыта в такой работе мне хватало. Даже после отключения всех предварительных каскадов, генерация не прекращалась.

Ситуация была абсурдной, прототип нормально работал, а на более мощных транзисторах ничего не получалось. Пришлось включить один мощный транзистор в режиме тестирования. Для этого была собрана типовая схема с нагрузкой в виде мощного резистора около 2 кОм, установленном в стоке транзистора и напряжением 600 Вольт, между истоком и нагрузочным резистором.

Используя дополнительный низковольтный регулируемый источник питания, подавалось напряжение на затвор транзистора, относительно его истока. Напряжение на стоке транзистора должно было плавно уменьшаться, при увеличении напряжения на затворе. Правда, разработчиками такой режим работы транзисторов никак не регламентирован, что очень удобно для них, чувствуется присутствие “наших людей” в силиконовой долине. Им гораздо удобнее назвать транзисторы импульсными, и не обращать внимания на то, что будет происходить с транзисторами между открытым и закрытым состоянием.

Вот тут то и выяснилось, что в промежуточном состоянии, транзистор переходит в режим генерации, что наглядно продемонстрировала собранная схема тестирования. Проверив, находившейся под рукой, транзистор другой марки, получил тот же результат. Надо было устранять генерацию. Вспомнилось, что для устранения взаимного влияния полевых транзисторов, при параллельном включении в импульсных устройствах, предлагалось последовательно с затвором транзистора устанавливать резистор от 10 Ом и выше.

Попробовал, и при 20 Ом генерация пропала. Получается, что автор рекомендации сам не понимал сути происходящего, не транзисторы влияют друг на друга, а они сами являются источником генерации, и чем больше их включено параллельно, тем больше склонность к генерации. Стало понятно, почему на маломощных транзисторах такого эффекта не наблюдалось.

В дальнейшем, вместо резистора я использовал небольшой дроссель, порядка 10 мкГн, что было удобней в моей схеме управления транзисторами, и это также обеспечивало отсутствие генерации.

Но на этом “интересное” не заканчивалось. После того как после доработок опытный образец заработал, выяснилось, что выше частоты 20 кГц, напряжение на выходе резко уменьшается, совсем не в линейной зависимости. А у маломощного прототипа легко получалось достичь 200 кГц. Казалось бы понятно, что у более мощных транзисторов гораздо больше ёмкость между истоком и затвором, и скорее всего она и даёт такой эффект, но измерение напряжения на затворе этого не подтвердили. На затворе напряжение с частотой выше 20 кГц очень плавно уменьшалось вплоть до 200 кГц.

Пришлось опять возвращаться к режиму тестирования, только теперь на затвор вместе с постоянным напряжением подавался и синусоидальный сигнал от генератора. Результат был примерно тем же самым, выше 20 кГц происходил резкий завал уровня переменного напряжения на стоке.

Казалось, что вывод очевиден, транзисторы не “тянут”. Надо искать более высокочастотные экземпляры, что и было сделано, только результата это не дало. Обидно считать себя идиотом, глядя в техническую документацию, где чётко написано, что транзистор должен работать вплоть до 500 кГц.

После многочисленных попыток изменить ситуацию с помощью отрицательной обратной связи и других ухищрений, было решено сменить источник сигнала на генератор повышенной мощности и напряжения. Не сразу, но всё же удалось раскачать транзистор на частоте 200 кГц, выше генератор не давал. При этом переменное напряжение на затвор приходилось подавать чуть ли не максимально допустимого уровня в 30 Вольт.

В голове сквозила мысль, что же это за современные “супер-пупер” транзисторы, которые имеют дикую нелинейность в частотной области. Опять стало понятно, зачем их называют импульсными, за нелинейность в частотной области отвечать не надо. Но от этого жить легче не стало, так как было не понятно, что же происходит, и как с этим бороться.

Быстро текст набирается, да только дела это не касается. На деле всё происходит гораздо медленнее и с постоянными “затыками”, что совсем не нравится руководству, особенно если оно в этом вообще ничего не понимает. После того как стало казаться, что с такой нелинейностью сделать ничего не удастся, в голову приходит мысль посмотреть, что происходит на затворе работающего транзистора с поданным на него высоким напряжением, что совсем не просто без специального изолированного от земли осциллографа. Но если очень хочется, то можно просто обойтись высокочастотным трансформатором, обеспечивающим гальваническую развязку.

Вот тут то “карта и пошла”. Всё встало на свои места и чувство ущербности улетучилось. При подаче высокого напряжения, уровень сигнала на затворе очень сильно падал и восстанавливался при отсутствии такового. На частоте 200 кГц от сигнала вообще ничего не оставалось. То есть транзистор каким-то образом гасил “сигнал”.

Можно сказать, что мгновенно пришло понимание того, что происходит, если учесть всё время, потраченное до этого момента.

В техническом описании на транзистор есть такой параметр, как ёмкость между стоком и затвором, она совсем маленькая и, казалось бы, не должна существенно влиять на работу транзистора. Но именно она и обеспечивает эти самые “интересные” эффекты. Это не что иное, как частотнозависимая отрицательная обратная связь в теле самого транзистора. Чем выше частота и напряжение на стоке транзистора, тем большее влияние оказывает эта паразитная ёмкость.

Теперь, если учесть, что транзистор имеет довольно большой коэффициент усиления, несложно сообразить, что при определённых условиях, на высоких частотах, отрицательная обратная связь легко может превратиться в положительную. Для этого необходим небольшой сдвиг фазы до нужной величины и у нас появляется устойчиво работающий генератор высокой частоты, что и подтверждало тестирование отдельных транзисторов.

Но это ещё не всё, ведь если удаётся заставить работать транзистор без генерации, обратная связь не исчезнет, она будет проявлять себя в работе транзистора на высоких частотах, очень сильно снижая усиление транзистора. В итоге имеем прибор с отвратительными, хорошо замаскированными разработчиками транзисторов, свойствами, которые проявляют себя в самый неподходящий момент. А претензий предъявлять некому, просто надо назвать транзисторы импульсными и можно жить богато и счастливо.

Но что есть, то есть. Понятно, что разработчики старались сделать всё как можно лучше, а получилось …, очень знакомая для наших людей ситуация. Хотя сейчас существует огромный выбор транзисторов, но ведут они себя практически одинаково, так как имеют одинаковую технологию производства. Ясно, что улучшений в ближайшее время ждать не приходится, поэтому надо использовать имеющиеся транзисторы.

Каким то образом необходимо снизить влияние этой паразитной отрицательной обратной связи, при этом, не меняя конструкцию транзистора. Это очень напоминает желание овладеть телекинезом, чтобы силой мысли двигать предметы.

Придётся научиться делать это, не прибегая к телекинезу. Для этого устанавливаем низкоомный резистор между истоком и затвором, и управляющее напряжение подаём через дроссель с небольшой индуктивностью, мне хватало 10 мкГн. Получаем на затворе транзистора довольно приличный шунт, который быстро разряжает большую ёмкость затвора и тем сильнее уменьшает влияние паразитной ёмкости между стоком и затвором, чем меньше значение сопротивления этого шунта. Для достижения хороших результатов, транзистору с ёмкостью затвора порядка 10000 пФ, потребуется резистор не более 10 Ом.

Тем самым полевой транзистор перестаёт быть полевым, так как для его управления потребуется не только напряжение, но и вполне приличный ток. Если включается несколько транзисторов параллельно, то к каждому подключается свой шунт и свой дроссель.

Для управления таким прибором потребуется специальный подход, чтобы оптимизировать затраты на управление. Отсюда, чем меньше напряжение включения транзистора, тем лучше. Максимальное напряжение на затворе должно обеспечивать уверенное открывание транзистора, но не более того.

Для ключевых схем оптимальным будет использование импульсных трансформаторов, которые и сейчас используют довольно часто, только мощность у них должна быть заметно больше. А вот для линейных схем, где требуется плавное включение и высокая линейность, пришлось изобретать нечто новое, на основе хорошо забытого старого.

Не знаю как сейчас, а 50 лет назад очень популярными были приёмники прямого усиления, а в школе демонстрировали работу детекторного приёмника. В основе работы того и другого, лежат одни и те же принципы. Мне очень запомнилось высокое качество их звучания, благодаря минимальному количеству преобразований и, в результате, минимальным нелинейным искажениям.

Если совместить удобство использования импульсного трансформатора и качество работы детекторного приёмника, то получим компактное и достаточно простое устройство управления полевыми, да и любыми другими, транзисторами.

Для этого преобразуем управляющее напряжение в радио сигнал с амплитудной модуляцией. Несущая такого сигнала должна быть достаточно высокой частоты, например 3 мГц для моего случая. Она определяется максимально необходимой верхней частотой сигнала управления. По сути, получаем мини радиостанцию, выход которой подключаем к первичной обмотке высокочастотного трансформатора. Сигнал гальванически развязанной вторичной обмотки детектируется и используется для управления транзистором. Получаем почти детекторный приёмник, только с достаточно мощными импульсными диодами, позволяющими получить необходимую мощность сигнала управления.

Разброс мощностей такого устройства может быть довольно большим, от 10 мВт до единиц и даже сотен Ватт. Мне хватило 3 Вт. Привожу схему, которая позволила это сделать, она довольно простая, так как собрана всего на двух транзисторах и четырёх диодах, не считая трансформатора и обвязки.

5c752f91c09a8_.jpg.360e5c93056004d3797993bb74d54986.jpg

Трансформатор намотан на двух ферритовых кольцах диаметром 10 мм, с магнитной проницаемостью 200. Каждая обмотка содержит 7 витков медного изолированного провода диаметром 0,18 мм.

В заключение отмечу, что усилитель, в конце концов, заработал так, как от него требовалось, но полной программы испытаний провести не удалось, кончился запас выходных транзисторов. Их доставали 6 месяцев, за это время кончилось терпение у руководства, и автор попал под сокращение из-за возраста, а главное, отсутствия какого либо интереса к этой теме.

В общем-то, на предложенный здесь способ управления транзисторами, вполне можно получить патент, знаю по собственному опыту. Но только сейчас это имеет смысл только в том случае, если точно знаешь, что это кому-то понадобится, и удастся как-то на этом заработать. В противном случае зарабатывать будет патентное ведомство, а изобретатель будет его кормить. Поэтому делать изобретения сейчас могут себе позволить только богатые люди.

Такое устройство вполне можно было бы сделать 50 лет тому назад, и если бы это случилось, то схемотехника усилителей мощности была бы гораздо проще и не надо было бы придумывать комплементарные пары мощных транзисторов. Но может быть и сейчас кому-то это понравится, а в некоторых случаях выведет из тупика, или сделает решение проблемы гораздо эффективнее. Лично мне уже удалось получить удовлетворение от решения этой, довольно сложной, технической задачи, надеюсь, что я не останусь в одиночестве.


Время в разных системах отсчёта движется по разному. Особенно заметно замедление течения времени в системе отсчёта дней оставшихся до зарплаты.

Share this post


Link to post
Share on other sites

Информация действительно интересная. Когда-то я тоже влетел в самовозбуд, но так и не смог из него вылезти.

Единственно, что ТС "передал кутье мёду": наверное, не надо было приводить схему управления. Хотя, в усилителях на десятки киловатт никто особо не добивается Кни порядка сотых долей процента.


Я не раздаю рыбу. Я раздаю удочки.

ПРОСТОТА - ХУЖЕ ВОРОВСТВА!!!

Share this post


Link to post
Share on other sites

Похоже, что Вы открыли для себя эффект Миллера, хотя и он открыл то, что описывается дифференциальными уравнениями уже лет двести, только назвал своим именем.

С проверкой на маломощных полевиках Вы ошиблись в коэффициенте масштабирования. Учитывая, что мощные полевики состоят из десятков-сотен маломощных, включенных параллельно,

то нагрузка маломощного должна быть порядка мегома, и при такой нагрузке усиление начнет падать уже на килогерцах.

Проблема раскачки полевика на высоких частотах заключается в том, что источнику сигнала приходится на ёмкостную нагрузку несколькои нФ, а с учётом эффекта Миллера , даже десятки и сотни нФ.

Шунтирование низкоомным резистором эту проблему решает за счёт затраты большой мощности на раскачку, что делает применение полевика невыгодным по сравнению с биполярным транзистором.

Ваша схема для раскачки представляет отдельный интерес и может быть применена для решения других задач.

 


" Вызывает интерес Ваш технический прогресс " ( Л. Филатов )

А, на ругань жалко буквы тратить

Share this post


Link to post
Share on other sites

Как сделать ИП с ультрашироким диапазоном?

Ключевыми особенностями высоковольтных SiC MOSFET Wolfspeed являются малое сопротивление канала в открытом состоянии и минимальное значение паразитных емкостей, что позволяет максимально снизить статические и динамические потери, и, соответственно, увеличить рабочую частоту преобразователей.

Подробнее

Вебинар «Практика разработки IoT-устройств с BlueNRG-LP – волшебной палочкой разработчика» (23/03/2021)

Приглашаем 23 февраля на бесплатный практический вебинар по BlueNRG-LP - новой SoC STMicroelectronics. Будут рассмотрены новые возможности создания прототипов IoT-устройств на BlueNRG-LP с использованием экосистемы и отладочных средств ST, а также практические примеры по использованию BlueNRG-GUI v.4.0.0, настройке и работе в сети BLE-MESH, пример управления умным домом с помощью BlueNRG-LP и другие.

Подробнее

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...

  • Сообщения

  • Similar Content

    • By Jack 3.5
      Здраствуйте. Я начинающий радиолюбитель с весьма ограниченными ресурсами. Хочу сделать свою электрогитару, а что меня больше всего волнует звукосниматель и усилитель для неё. Мотать катушку как в заводских вариантах не могу(разве что проводом ПЭВ 0.55). По этому хотелось бы сделать звукосниматель из катушек от механизмов китайских, настенных часов(фото снизу). Ну и схему усилителя хотелось бы). Звук не важен, хоть как на первых альбомах 《Гражданской обороны》, лишь бы играло. За ранее спасибо. 

    • By Кати_Рууска
      Доброго дня. Решила обратиться за советом к знающим людям, сама не разбираюсь совсем... Надеюсь на подсказку) Мне подарили проигрыватель для пластинок JVC и усилитель для него radiotehnika у-101 стерео. Не могу определиться с выбором колонок. Вся система стоит в небольшой комнате, поэтому очень мощные колонки не нужны. Хочу взять б/у. Мне посоветовали искать колонки на 4 Ом, но их не так просто найти. Можно ли взять колонки на 6 Ом? Или какие лучше выбрать, чтобы качество звука было на хорошем уровне? И возможно ли это вообще?)
    • Guest Александр
      By Guest Александр
      Доброго времени суток!
      В сети нашёл схему усилителя. Поделитесь, пожалуйста, мыслями об этой схеме, как её правильно настраивать, насколько она лучше таких схем двухтранзисторных УНЧ, которые используются в простых приемниках на тда7088т? Есть мысль её собрать на напряжение питания 3 Вольт и для нагрузки 2 Ом

    • By Sergey89
      Распродам остатки плат ОМ2.7
      Подглядев на форуме, скопировал плату с паралельным расположением. Запускается сразу если сильно не отходить от схемы. Кому интересно, могу докомплектовать мелкими оригинальными транзисторами, керамическими прокладками под выходные транзисторы, мелкими радиаторами или соберу под ключ.
      Пара плат 170грн

      Меандр ровненький, без выбросов и змеек


    • Guest Александр
      By Guest Александр
      Доброго времени суток!
      Вопрос, наверное, необычный будет) везде в сети, где описывают усилитель на тда2030/тда2050, говорят, что требуются большие радиаторы, так как микросхемы очень сильно нагреваются при работе. Я построил усилитель, и не один, на тда2050, работает, искажений на слух нет, но микросхема еле теплая, почти холодная, даже без радиатора, испытывал 8 часов, пробовал оригинальную и китайские микросхемы, питание схемы однополярное 12 Вольт, схема почти из даташита, разница только в цепи оос, там резисторы 1:5, усиления много не надо, для озвучивания комнаты. Почему микросхема не нагревается при работе? Не из-за выбранного ли коэффициента усиления, кто знает? Менять коэффициент усиления не хочется, чтобы проверить, мощных динамиков нет.
       
×
×
  • Create New...