Jump to content

Recommended Posts

Имеется схема:

photo_2019-11-17_15-41-11.jpg.ed81084d71d5ec3edbffd7668ca4f4f4.jpg

С1=С2=С4=3.18 mФ
C3=6.36 mФ
L1=1.59 mH
L2=3.18 mH
E1=E2=5 В
R1=1 Ом

По методу контурных токов получил систему уравнений:

Screenshot_1.png.e02ae29186f1632dad647f4e6510a73b.png

Затем подставил значения и получил матрицу: 

photo_2019-11-17_18-04-21.jpg.cbd10e6bdf367570266db9e2468c804f.jpg

После чего было полученно решение для фактических токов I11,I22,I33
I11 = 5.04-5.08j
I22 = -10.056+0.04j
I33 = 5.07-15.13j

Затем расчитал модули комплексного числа:
I11 = 7.16
I22 = 10.05
I33 = 15.96

Затем нашел сами токи:
I1=I11+I33 = 23.12 * 0.707 = 16.34
I2=I11 = 7.16 * 0.707 = 5.06
I3=I11+I22 = 17.21 * 0.707 = 12.16
I4=I11+I22+I33 = 33.7 * 0.707 = 23.8
I5=I33 = 15.96 * 0.707 = 11.28
I6=I22 = 10.05 * 0.707 = 7.10

Но как видим,расчетные значения не сходятся с практическими. Где моя может быть моя ошибка?

Share this post


Link to post
Share on other sites
2 часа назад, Falco Femoralis сказал:

Затем расчитал модули комплексного числа

Зачем же? Складывать переменные токи без учета фазового угла между ними, - бессмысленно.

И множитель "0,707" непонятен. Будто пересчет из амплитудного значения в эффективное.

Edited by J_Ohm

Share this post


Link to post
Share on other sites
43 minutes ago, J_Ohm said:

Зачем же? Складывать переменные токи без учета фазового угла между ними, - бессмысленно.

И множитель "0,707" непонятен. Будто пересчет из амплитудного значения в эффективное.

т.е выходит

I1=I11+I33 =  5.04-5.08j + 5.07-15.13j = 10.11 - 20.21i
 

И чтобы найти ток мы считаем модуль?
10.11^2+20.21^=22.6 

На схеме 20.75,

это не верно или дело в погрешности?

Share this post


Link to post
Share on other sites

Импульсный источник питания - расчет за 10 минут в eDesignSuite

Как ориентироваться в огромном количестве существующих вариантов, чтобы выбрать наиболее подходящий для конкретного случая. «Ручной» перебор всех вариантов может оказаться весьма трудоемким процессом, а полученный результат – далеко не оптимальным. Специализированное программное обеспечение, позволяет уменьшить количество рутинных операций при проектировании.

Подробнее

Система уравнений составлена правильно.

Полученные значения токов правильные.

Но Вы же видите, что значения емкостей и индуктивностей подобраны так, что получаются целые числа, кратные пяти, округлите их.

I11 = 5.04-5.08j  = 5 -5j
I22 = -10.056+0.04j = -10
I33 = 5.07-15.13j = 5 -15j

и тогда токи (в амперах):

I1 = 10 -20j
I2 = 5 - 5j
I3 = -5 -5j
I4 = -20j
I5 = 5 -15j
I6 = -10

И теперь моделирование в Micro-Cap. В синих прямоугольниках рассчитаны значения токов и их фазы.

Смотрите как все красиво.
Для тока I2 стоит амплитуда 7,1  и фаза -45 градусов, а Вы получили в расчете Re = 5 и Im = -5. Постройте вектор на плоскости - его длина будет 7,07 и угол -45.
Для тока I4 чисто мнимое значение 20 вертикально вниз под -90 градусов.
Для I6 значение 10 под 180 градусов, так как с минусом. 

circuit1.cir

circuit1.png.dbed7fdcdb2ea50099f03ab261992f4f.png

Share this post


Link to post
Share on other sites
                     

Как упростить выбор ИП для промышленного применения?

Компания Mean Well выпускает широкий перечень встраиваемых источников питания с креплением на шасси, имеющих, на первый взгляд, схожие характеристики. Статья расскажет о ключевых особенностях выпускаемых семейств и упростит выбор источника питания для промышленного применения.

Подробнее

                     

Преимущества новых высоковольтных SOI-драйверов Infineon

При производстве драйверов силовых транзисторов компания Infineon использует различные технологии: JI, SOI, CT. Драйверы, выполненные с применением технологии SOI, имеют целый ряд преимуществ по сравнению с классическими JI-драйверами. В статье рассматриваются эти преимущества на примере новых семейств драйверов 650 В 2ED210x и 2ED218x.

Подробнее

Join the conversation

You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...

  • Сообщения

  • Similar Content

    • By radio.elektronik
      1. Подготовка опыта.

      Для опыта по исследованию изменения индуктивности катушки внешним (чужим) полем подготовим:
      1. Катушка намотанная проводом 0,8 мм.
      2. Сердечник – болт с резьбой М16, длинной 15 см.
      3. Неодимовый постоянный магнит.

       
      Рис. 1. Подготовка к опыту с изменением индуктивности катушки внешним полем постоянного магнита.

      2. Измерения индуктивности прибором MY6243.

      Сопротивление катушки вместе с измерительным резистором 0,1 Ом равно 3,49 Ом. Диаметр моточного провода катушки 0,8 мм.
      Первый опыт проведём с катушкой без сердечника.
      Сначала измерим индуктивность катушки без сердечника прибором MY6243
       

       
      Рис. 2. Измерение индуктивности катушки без сердечника прибором MY6243. Индуктивность катушки без сердечника 6,70 mH.

      3. Метод измерения индуктивности при помощи экспоненциального переходного процесса.

      Далее, измерим индуктивность катушки при помощи экспоненциального переходного процесса. Для измерения и фиксации переходного процесса применим следующую схему:

       
      Рис. 3. Схема для записи в осциллограф процесса релаксации катушки с током. Осциллограф Rigol DS 1102 E.


      Когда замыкается тумблер SA1 происходит переходной процесс в цепи катушки L1. По затуханию экспоненты можно вычислить индуктивность катушки. L1.
      Тумблер SA1 замыкает блок питания GSV 1200, у которого есть защита от короткого замыкания, и он отключается.
      Последовательность действий при измерении:

      1. Сначала катушка обесточена.
      2. Тумблером SA1 подаём на катушку напряжение 15,87 Вольт. Всё закреплено и ничего не двигается. Включаем осциллограф в ждущем режиме на приём сигнала. Это начальное состояние. Через катушку проходит максимальный ток I max = 4,67 Ампера.
      5.Тумблером SA1, замыкаем источник питания и запускаем переходной процесс в катушке. Получаем экспоненту. По затуханию экспоненты определяем индуктивность катушки.
      6. Снимаем информацию с осциллографа на накопитель памяти. после этого, файлы могут быть просмотрены и обработаны на компьютере.

      Осциллограф создаёт файл с расширением BMP, который является изображением экрана осциллографа в момент измерения.

       
      Рис. 4. Изображение экрана осциллографа из файла с расширением BMP.

      Осциллограф создаёт файл с расширением CSV. Этот файл предназначен для построения таблицы данных, разделённых запятыми.
      Файл CSV загружаем в компьютер, после чего, можем проводить обработку числовых данных

      Рис. 5. Отображение опытных данных из файла CSV для 1-го канала, которые соответствуют измерению электрического тока.

      Для того, чтобы найти коэффициент затухания экспоненты, следует значения тока прологарифмировать в натуральных логарифмах по следующей формуле:

      Получим график Ln(I) на рисунке 5.

      Рис. 6. Значения тока катушки без сердечника в полулогарифмическом масштабе. Точками голубого цвета построена мат. модель, в виде прямой.

      Уравнение прямой имеет вид:

      L=3,49 / 440 = 7,93 mH. (1,5)

      Небольшая разница есть, при сравнении с данными измерителя индуктивности MY6243.


      4. Методика опыта по изменению индуктивности внешним магнитным полем.

      Опыт будем проводить по следующему плану:
      1. Сначала катушка обесточена. В ней закреплён сердечник, чтобы не двигался в момент включения.
      2. Закрепляем неодимовый магнит на сердечнике в определённой полярности.
      4. Тумблером SA1 подаём ток на катушку 4,67 Ампера при напряжении 15,87 Вольт. Всё закреплено и ничего не двигается. Включаем осциллограф в ждущем режиме на приём сигнала. Это начальное состояние. Здесь есть и максимальный ток в катушке, здесь и сердечник соединён с магнитом.
      5.Тумблером SA1 запускаем переходной процесс в катушке. Получаем экспоненту. По затуханию экспоненты определяем индуктивность всей системы.
      6. Снимаем информацию с осциллографа на накопитель памяти. после этого, файлы могут быть просмотрены и обработаны на компьютере.


      5. Катушка с сердечником без магнита.

      Сразу представим результаты опыта, уравнение прямой и полученную индуктивность:

      Рис. 7. Значения тока катушки с сердечником, без неодиомового магнита, в полулогарифмическом масштабе. Белыми точками построена мат. модель, в виде прямой.


      Ln(I) = -97*t + Ln(3,7) (1,6)

      L = 35,98 mH. (1,7)

      Если измерить индуктивность катушки с сердечником прибором MY6243, то он покажет другое значение. См. рис. 8.

       
      Рис. 8. Измерение индуктивности катушки с сердечником. Прибор ошибается, и тому виной могут быть токи Фуко.

      6. Катушка с сердечником с магнитом. Вариант 1.

      Расположим катушку, сердечник и магнит следующим образом, как показано на рис. 9. , и хорошо закрепим, чтобы не было механического движения при измерении.
      На катушке магнитные полюса отмечены изолентой. Красный цвет соответствует южному полюсу, белый – северному. Аналогично, соответственными цветами отмечены полюса постоянного магнита
       

      Рис. 9. Катушка с сердечником с магнитом. Первый вариант расположения полюсов катушки и магнита.

      Сразу представим результаты опыта, уравнение прямой и полученную индуктивность:

      Рис. 10. Значения тока катушки с сердечником, с неодимовым магнитом, вариант 1, в полулогарифмическом масштабе. Зелёными точками построена мат. модель, в виде прямой.

      Ln(I) = -97*t + Ln(4,0) (1,6)

      L = 35,98 mH. (1,7)

      Индуктивность не изменилась, и она такая же, как у катушки с сердечником без магнита.

      7. Катушка с сердечником с магнитом. Вариант 2.

      Расположим катушку, сердечник и магнит следующим образом, как показано на рис. 11. , и хорошо закрепим, чтобы не было механического движения при измерении.

       
      Рис. 11. Катушка с сердечником с магнитом. Второй вариант расположения полюсов катушки и магнита.

      Сразу представим результаты опыта, уравнение прямой и полученную индуктивность:

      Рис. 12. Значения тока катушки с сердечником, с неодимовым магнитом, вариант 2, в полулогарифмическом масштабе. Синими точками построена мат. модель, в виде прямой.

      Ln(I) = -180*t + Ln(3,7) (1,6)

      L = 19,388 mH. (1,7)

      Индуктивность уменьшилась, благодаря полю постоянного магнита, при единственном варианте расположения полюсов магнита и катушки.

      Сделаем ещё два измерения прибором MY6243.

      Рис. 13.

      Рис. 14.

      Выводы:

      Индуктивность катушки с сердечником изменяется (уменьшается) только в одном случае, если полюс болта и полюс магнита противоположны. Индуктивность катушки в этом случае убывает ( в моём опыте - приблизительно в 2 раза).
      В другом случае, магнит не изменяет индуктивность катушки с сердечником.
      Это как-то можно объяснить?
      Современная электроника предлагает измерять индуктивность прибором MY6243, но этот прибор не создаёт магнитных полюсов в катушке и в сердечнике, при этом невозможно увидеть в каком варианте уменьшается индуктивность.
       
    • By MMS1142
      Куплю конденсаторы К71-7 емкостью более 0.2 мкф в количестве 50 шт.
      Только К71-7, ни какие " китайские аналоги" или "не китайские фирменные" не интересуют.
    • By Владимир Баев
      Добрый день.
      Была цель сделать схему задержки включения питания (в автомобиль), чтоб включил зажигание,  завел, только потом пошло питание.
      Выбрал схему, сделал в multisim, все отлично, дает задержку порядка 15 сек.
      Собрал физически, стал тестировать.
      Номиналы как на схеме, после нескольких испытаний работать перестало, выяснилось, что конденсатор не может зарядится до порогового значения открытия транзистора (использовал IFR620). Поменял конденсатор, работает! Стал грешить на разрядку конденсатора (R1), поставил на 27 ом, и диод последовательно, R1 поставил 510 кОм, C1 = 100 мкф - все работает ка надо. Решил потестить в машине, пару циклов все ОК, потом задержки почти нет (2 сек), принес домой, увидел что конденсатор, теперь наоборот, быстро заряжается, поменял его - опять все ОК. Я так понимаю что-то происходит с конденсатором, но не знаю что. Может они бракованные все попались (пробовал 2х производителей, по 2 шт. каждого)
       
       

    • By Dan Gashigullin
      Подскажите как рассчитать номиналы резистора и конденсатора. tи (как я понял это длительность импульса)  = 200 с, tп ( длительность паузы) = 300 с.
      В итоге получается 1 уравнение с 2 неизвестными 0,7 * R * C = 500. Какое ещё уравнение можно применить к данной схеме?


    • By SavaLione
      Привет
      У меня есть несколько радиоламп 6Н17Б-В и трансформатор ТА-49
      У ТА-49 6 вторичных обмоток:
      11-12 224В 0.042А
      13-14 224В 0.042А
      15-16 125В 0.057А
      17-18 125В 0.057А
      19-20 25В 0.057А
      21-22 25В 0.057А
      Сопротивление накала 6Н17Б-В - 500кОм
      С питанием анода всё понятно, параллельно соединяю 11-12 и 13-14, но вот с питанием накала не знаю как поступить
      Я могу последовательно соединить 19-20 и 21-22, получить 25В~ 0.114А
      Как мне получить 6.3В? Использовать делитель на резисторах (с 35,335В постоянного напряжения) или делитель на конденсаторах?
      Какого номинала и какой мощности должны быть резисторы?
      Если использовать конденсаторы, то какого номинала должны быть они?
      Перемотать трансформатор нет возможности
      Спасибо
×
×
  • Create New...