• Объявления

    • admin

      Просьба всем принять участие!   24.11.2017

      На форуме разыгрывается спектроанализатор Arinst SSA-TG LC (цена 18500 руб). Просьба всем перейти по ссылке ниже и принять участие!

DesAlex

Moderators
  • Публикации

    5 301
  • Зарегистрирован

  • Посещение

  • Дней в лидерах

    12

Все публикации пользователя DesAlex

  1. В этой теме обсуждаем сборку прибора Quasar ARM от Andy_F - исходные данные (схема, печатка, прошивка) берём на его страничке - http://fandy.ucoz.or...rm_quot/2-1-0-5 Сайт автора не всегда бывает доступен, поэтому перевыкладываю схему здесь. Также прикрепляю сборник информации (устройство меню прибора, настройка и т.п.), который подходит для работы с обеими вариантами прибора. Quazar ARM-AVR manual.pdf shematic.pdf Инструкция ozzy_sv.pdf
  2. Разработка пинпоинтера КВ ver.3 & ver.5

    А чем предыдущий не устраивал?
  3. Смотрим. Мы выставили напряжение питания 5 вольт. Выставили добротность 5. Это значит, что синусоида "от пика до пика" на конденсаторе = 25 вольт. Повышаем напряжение до 6 вольт регулировкой. Размах напряжения на конденсаторе вырастает до 30 вольт. Разделить на 6 (напряжение ведь уже не 5, а 6) - снова получаем добротность ту же - 5. Понижаем напряжение до 4 вольт. На конденсаторе - 20 вольт размах. 20 разделить на 4 - снова добротность = 5.
  4. Добротность регулируется изменением сопротивления R2. Поэтому - не рекомендуется делать регулировку тока, оперативно перестраивая сопротивление этого резистора. Правильно это делать, регулируя напряжение питания выходного каскада. Выставляем, с помощью электронной регулировки, напряжение вых.каскада, равное 5 в. Это будет при значениях регулятора около 40 единиц (со схемой регулировки на полевике). Меряем (вычисляем) добротность. Резистором выгоняем в значение от 4 (для сильно минерализированых грунтов) до 7 (для лёгких грунтов). Если датчиков несколько - часть резистора (3...5 ом) на постой устанавливается в приборе, вторая часть (сколько для какого получится) - заливается в свой родной датчик. Таким образом, при изменении напряжения питания вых.каскада, будет меняться ток в датчике, добротность (заданая резистором) будет оставаться на месте.
  5. Как раз - ради интереса (чтобы сравнивать с датчиками SD), изготовил себе DD40. Но на грунт с ним ещё не выходил, и получиться ли до снегов-морозов - не знаю. В лес с ним не попрёшься, нужно в поле, в полях же сильно грязно сейчас, не влезешь.
  6. Датчики Omega и Super D для IB-детекторов

    Видел обсуждение. Недурственно... http://forum.violity.com/viewtopic.php?t=1818402
  7. В наше время, когда интересные места поиска условно "выбиты", МД-строителя наиболее остро волнует вопрос повышения эффективности работы своего прибора, его конкурентоспособности при работе в команде, камрады которой ходят с топовыми детекторами известных брендов. Чем мы можем помочь своему прибору искать глубже, достовернее, избирательнее? Сами схемы, как правило, уже доведены до совершенства и особо там не намодифицируешься. Коррекция прошивок любительских цифровых приборов доступна лишь их авторам. Остаётся датчик. Многие считают, что в этом плане также уже всё исчерпано: датчик концентрический для замусоренных участков, DD-"руль" для быстрого прочёсывания просторов, всё. Главная проблема приборного металлопоиска у нас какая? Побороть влияние грунта. Исключительно и только на этом поприще (помогая прибору в борьбе с толщей грунта, порой - тяжёлого) можно надеяться выглядеть с самодельным аппаратом достойно, и даже - иметь превосходство над обладателями дорогих покупных современных детекторов. В данной теме представлю опыт построения двух датчиков, отличающихся от привычных "датчик концентрический" да "датчик дубль дэ". Обе модели направлены как раз на более эффективную борьбу с грунтом и, отсюда, - как на бОльшую глубину обнаружения целей вообще, так и на бОльшую глубину достоверного VDI (т.е. улучшение параметра "не сноса цветных целей в чёрное" в грунте, в т.ч. - тяжёлом). Omega Это как раз альтернатива датчику концентрическому, обладающему "точечной" (точнее - "конусной") диаграммой направленности, что делает его привлекательным для работы на замусоренных участках. Главные недостатки концентрического датчика известны: плохо работает на тяжёлых грунтах (т.к. сведение IB производится электрически, а не физически-дифференциально), сложный в настройке (три катушки, петля и т.п.) Вот тут и выходит на передний план "двоюродная сестра" концентрического датчика - Omega. Название происходит от схожести расположения катушек в этом датчике с такой греческой буквой. Сведение в баланс - дифференциальное (значит - получше будет с грунтом); катушки только две, без подбора витков и изменения конфигурации петли, норовящей не поместиться в геометрию имеющегося корпуса и т.д. и т.п. Как известно, ранее некоторые фирмы производили датчики Omega для своих приборов. Впоследствии отказались по той причине, что намотка передающей катушки очень нетехнологична и практически неприемлема для массового конвеерного производства. Лет 10-15 тому назад делать такие датчики пытались и любители, но слабенькие характеристики приборов того времени не позволяли по достоинству оценить этот вариант. Давно хотел попробовать сделать Омегу, но отсутствие готовых заливочных форм такого формата не позволяло воплотить мечту в жизнь. Всё изменилось, когда попался вот такой корпус (причём - литой) под небольшой DD-датчик. Его нижняя часть сама напрашивается разместить там приёмную катушку и "загогулину" передающей. Пробная намотка, настройка, проверка работы "на столе" показала - всё реализуемо. После этого передающая катушка была перемотана в соответствии с наиболее оптимальной формой "загогулины" для размещения в таком корпусе. Так как применялся тяжёлый литой корпус, - по максимуму применено заполнение свободных полостей пенопластом. Проверка на грунте показала идентичность работы (по параметру "достоверность VDI глубокозалегающих цветных целей") датчика О20 с концентрическим датчиком К25 при таких же остальных равных условиях, т.е. Omega заметно выигрывает. Сама О20 прогонялась на грунте в частотном диапазоне 9...17 кГц и различных токах накачки. И то, и другое "держит" уверенно. Конструктив. Соотношение диаметров приёмной и передающей катушек такое же, как и в концентрическом датчике (1:2), количество витков и диаметры проводов также берутся, как для "кольца". Как сделать катушку передающую: ниткой в корпусе измеряем длину передающей катушки с её балансировочной "загогулиной", выкладывая её в корпусе так, как она будет выглядеть. Потом мотаем обычную "круглую" катушку измеренной длины окружности; после скрепления витков - выгибаем "загогулину" нужной формы. После предварительных проб (что всё сведётся), передающая катушка заливается в своём родном месте корпуса полностью, при этом очень желательно, чтобы на месте, где будет располагаться впоследствии приёмная катушка над "загогулиной" образовалась ровная плоская "площадка". Отдельно от передающей вне датчика пропитывается эпоксидкой катушка приёмная и укладывается на ровную поверхность для застывания. После высыхания желательно сделать искусственное состаривание обеих "половинок" датчика (стандартное "жара-холод"). Через несколько дней собираем датчик. Круглую приёмную катушку размещаем над "загогулиной", добиваясь нужного окончательно разбаланса, правильной реакции на мишени и пр. Намертво приклеиваем суперклеем эту катушку в таком положении (приклеивание ведётся к той самой "площадке" над "загогулиной"). Пусть полежит сутки. Проверяем баланс и полностью окончательно заливаем датчик. Пропитанные и состаренные обе катушки, приёмная надёжно приклеена на своё место - никакого ухода разбаланса, совершенно, не будет. Сохнет, дальше, как обычно - последнее графитовое покрытие и т.п. Если "первый блин комом", что-то пошло не так - Omega хорошо поддаётся "выводу из ступора" кусочком феррита. Но это не понадобится. Проблемы в постройке Омеги очевидны: отсутствие готовых заливочных форм, "двухэтажная" конструкция (одна катушка находится над второй, что увеличивает толщину датчика). Первая проблема "не вопрос" для тех, кто привык делать датчики "в пенопласте" или готовых корпусах дискообразной формы "без дырок". Вторая проблема легко решается, если вспомнить, как размещают две обмотки DD-датчика в месте пересечения одной катушки над другой - специальная "канавка" в корпусе датчика, что «уплощает» всю конструкцию и экономит на материалах и весе. Рассмотрим ещё пару нюансов построения Omega. Они касаются размеров балансировочной "загогулины" передающей катушки. Зависимость такая: чем больше диаметр "загогулины", тем сильнее в сторону центра датчика придётся сместить круглую приёмную катушку для достижения нужного баланса. Мне, для расположения приёмной катушки в нижней части датчика, пришлось делать размер "загогулины" такой, чтобы она располагалась по центру приёмной катушки, будучи отдалённой от неё по всем краям где-то на 1,5 см. При этом, естественно, максимум чувствительности датчика приходится на "общий центр масс" катушек, т.е. диаграмма направленности моего датчика несколько сдвинута своим конусом условно "вниз от центра" датчика. Если надо, чтобы центр чувствительности располагался максимально близко к центру датчика - диаметр "загогулины" выполняем равным диаметру приёмной катушки. При этом последняя, понятно, в сбалансированном датчике будет находиться также ближе к центру датчика. Пару фоток по этому поводу, найденных на просторах сети: Super D На создание следующей поделки побудила мощная реклама Майнлаба своего нового датчика для золотоискательского GPZ 7000. Варианты реализации подобного типа датчиков любителями (по крайней мере – публикации об этом) на просторах сети не обнаружены. Присмотревшись к устройству датчика и его свойствам, просто невозможно такового не построить))) Судите сами: "руль", который, за счёт повышенного дифференциального вычитания, лучше борется с грунтом; плюс, за счёт широкой и равномерной диаграммы направленности, не пропустит ни одной даже самой мелкой цели, как быстро им не сканируй. Недостатки обычного DD-датчика известны: боковые лепестки диаграммы направленности; сканирование грунта полосой широкой "вдоль", но узкой "вширь", что может привести к пропуску небольшой мишени при достаточно быстрых взмахах или при применении скоростных фильтров. Super D датчик же, за счёт общей симметрии и разделения приёмной катушки на две равные части, позволяет ещё более дифференцировано бороться с грунтом; иметь широкую во всех направлениях диаграмму направленности – отклик от мишени получается непривычно длинным и не останется не замеченным в случае даже самых мелких целей. Отсюда, понятно, и свой недостаток - датчик неприменим для замусоренных мест. Это «царь полей», где мишени в грунте лежат достаточно далеко друг от друга; вскоре - любимый датчик поисковиков мелких рариков самой глубокой старины – скифы, ЧК, КК, ПК, КР… Конструкция датчика понятна; проблема, как и с Omega, практически одна - отсутствие готовых заливочных форм. Что ж, подбираю из того, что есть. Приглянулся корпус М30 под моно-датчик для импульсника. Пробная намотка, сведение, калибровка показали: всё реализуемо. После уточнения окончательной геометрии приёмных катушек, таковые были перемотаны проводом 0,18 (на фото - пробные приёмные катушки с проводом 0,14 "потому, что его у меня много"))) Дальше всё, как обычно - сведение, заливка в несколько приёмов, с термоударами, заграфичивание и пр. Полевые испытания проводились, при равных вводных, попеременно с датчиком DD32х30. Изготовленный датчик SD30 уверенно показал себя лучше во всех позициях, кроме, естественно, теста "на разделение целей". За счёт лучшей борьбы с грунтом, получен несколько-сантиметровый выигрыш по параметру "достоверность VDI глубокозалегающей цветной цели" и "максимальная глубина обнаружения цели из чёрного металла". Сам датчик SD30 прогонялся в частотном диапазоне 6...12 кГц при различных, в т.ч. самых максимальных токах накачки. И первое, и второе "держит" очень хорошо. Нюансы изготовления. Первое - как вычислить размеры катушек, пропорции, их взаимное расположение? Я распечатал на бумаге фотку фирменного датчика, разлинеял в масштабе своего корпуса (15 см - половинка) и получил примерную геометрию. Затем жестко покоцал и переклеил имеющеюся заливочную форму под нужную конфигурацию. Катушки: количество витков и диаметры проводов - как для обычного DD-датчика, только приёмную катушку мотаем "пополам" витков для каждой части. Потом эти катушки соединяем последовательно. Передающую катушку заливаем сразу на родном месте в корпусе. Сводить этот датчик – одно удовольствие – балансировка идёт мягко, плавно (приёмная катушка разделена пополам – сведение в соотношении «милливольты-миллиметры пространства» идёт вдвое плавней); у каждой половинки приёмной катушки своя зона сведения, лоханулся с одной стороны - подправит вторая))) Хотя, конечно, желательно выдерживать максимальную симметрию датчика, чтобы левая его сторона отзеркаливала правую. Таким образом. Понятно, - если есть намерение сделать датчик в готовом корпусе, то тут некуда деваться - "концентрический", "дубль дэ". Если же предполагается делать датчик "в пенопласте" или готовом корпусе типа "летающая тарелка" (где катушки можно расположить любой формы), то почему бы не попробовать сделать что-то выходящее за рамки общепринятых форм-факторов? Тем более - получая, при этом, поисковые преимущества и даже, местами, упрощая общий процесс изготовления. Надеемся, в скором будущем, подтянутся и наши "пластиковдуватели" с предложениями готовых заливочных форм под такие вещи.
  8. Для слоя, обращённого к пользователю - не критично; хоть 500...600 ом, хоть 10...15 кОм. Важно делать хороший, равномерный экран для слоя, обращённого к грунту.
  9. Датчики Omega и Super D для IB-детекторов

    Нет. Изображение+описание - намного информативней и полезней для повторения. Да. Ведро с грунтом может послужить только для проверки работы в статическом режиме. Для динамики - нужно корыто, обеспечивающее грунт под датчиком на весь мах. Т.е. - проще и правильнее выйти на реальный грунт. У "Квазара" есть регулировка тока. Если уверены, что добротность контура ТХ будет в необходимых рамках. Иначе - "рекорды чутья" по воздуху и "пшик" - в грунте. 100 витков в каждой половинке, но можно (нужно) экспериментировать, увеличивая их значение в 1,5-2 раза.
  10. Датчики Omega и Super D для IB-детекторов

    Дежа Вю. Снова "ребровой" случай. На этот раз - 2 копейки серебром 1844 г. Глубина - не более 10-15 см. В радиусе около 3 метров от монеты - штук шесть ямок от предыдущих поисков; луг, чернозём+глина, место бито-перебито. Снова слабый, но чёткий сигнал с завышеным ВДИ - прыгало 85-86.
  11. Датчики Omega и Super D для IB-детекторов

    Говорим на разных языках. КУ входного усилителя надо проверить или добротность контуров? Что не устраивает в изготовленом приборе (или датчике) - как ведёт себя прибор с другими датчиками? В чёрном кине - нет ни слова об отстройке от грунта.
  12. Датчики Omega и Super D для IB-детекторов

    Первое сообщение темы по "Квазару АВР".
  13. Датчики Omega и Super D для IB-детекторов

    1. Что значит "слепые"? 2. "Проволокой" катушки лучше не мотать. Для нашей цели есть провод медный, эмалированый, обмоточный. 3. Почему выбраны именно такие диаметры проводов? Добротность контуров замерялась при этом???
  14. Clone Pi-W Своими Руками

    Каждый раз. Причины неработоспособности указаны, осталось найти и устранить.
  15. Предлагаю всем желающим собрать отличный импульсный микропроцессорный металлодетектор Clone PI-W, успешно конкурирующий с Traker PI-2. Отличительные особенности и достоинства (по сравнению с Traker PI-2): - проще схема (меньшее количество деталей) - десятиразрядная наглядная индикация, более громкий и регулируемый звук - бОльшая чувствительность - до 30 см на монету - нет зависимости чувствительности от степени разряда батарей - современное квазисенсорное управление (кнопочки, а не крутилки) Недостатки: - бОльшее потребление (100-160 мА) - есть редкораспостранённые детали, но им подобрана замена - менее стабилен в работе, более чувствителен к наводкам и помехам. Первым делом необходимо посетить страничку автора - http://fandy.hut2.ru Сохраням эту страничку (на ней конфигурационные биты для процессора, назначения кнопочек и т.п.), скачиваем прошивку, схему с чертежами печатных плат. Поскольку авторская плата содержит много перемычек, проводники между выводами микросхем и предполагает изготовление из двустороннего фольгированного стеклотекстолита, мною разработана альтернативная печатная плата. Она односторонняя, нет проводников между выводами микросхем, содержит только три перемычки. Есть и другие изменения, о которых можно будет прочитать в аннотации к файлам. Архив с этой платой в формате Sprint Layout 5.0 и сборочным чертежом качаем по ссылке внизу поста. Обсуждение вопросов, касающихся сборки и настройки этого МД, с участием автора прибора, идёт на форуме "мд4ю". Новички же в металлодетекторостроении в общем и микроконтроллерном в частности, чтобы не грузить и не веселить народ "там", могут вероятно, общаться и здесь. Выкладываю правильные напряжения, с разъяснениями. Ну, во-первых, при первых настройках прибора не должно быть никаких "Крон", севших батареек, разряженных аккумуляторов. Не приветсвуется и плохо отлаженный случайный стационарный БП. Идеальный вариант - свежий комплект батареек (провернных ПО ТОКУ! - должны держать 12в при токе потребления 100 мА) или заряженный, проверенный аккумулятор. Из лабораторных БП подойдёт хорошо отлаженный, желательно - не импульсный, с защитой по току. Итак первое напряжение - напряжение питания - проверяем НА ВХОДЕ стабилизатора 78L05 (конденсатор 220 мкФ)- должно составлять 11...14 вольт. Соответственно, НА ВЫХОДЕ стабилизатора (конденсатор 470 мкФ)- должно быть около 5в. Дальше - источник образцового напряжения TL431 - по схеме - Uref - должно составлять примерно 4,85 вольт. Это напряжение по дорожкам должно приходить на ОУ и МК. Если этих напряжений нет - ни о каком дальнейшем исследовании прибора не может быть и речи. Повынимать все МС (или по порядку, если впаяны - перерезать "плюсовые" дорожки питания к ним), проверить монтаж, устранить неполадки. Теперь напряжения на выводах ОУ TL074: Выводы 5, 10 - напряжение, равное Uref При отбаллансированном ОУ такое же напряжение должно быть и на выв.1,2,3,5,7 и 14. При исправных деталях, но расбаллансированном ОУ они там могут отличаться незначительно - на 0.2...0.5 вольт - станут на место при баллансировке прибора подстроечником (или его замене, ели при кручении напряжение на выв.7 ОУ не шевелится). Напряжение на выв.12 и 13 должны быть одинаковы и примерно равны напряжению источника питания(чуть ниже - примерно на 0.3..0.6 вольт). Если не так - проверять подстроечник и всю входную цепь. Напряжение на выв.8 ОУ должно быть примерно равно половине напряжения источника питания и зависит от качества ОУ и обвязки - чем больше скурпулёзности Вы приложили, подбирая детали, тем ближе там напряжение будет равно половине питающего. Как правило, оно там 4,5...7 вольт. Аналогично, на выв.9 ОУ напряжение тоже зависит от тех же причин, но оно там должно быть маленьким - 0.5...1,5 вольта. Напряжение на выв.6 ОУ примерно 3...4 вольта. Измерить цифровым прибором затруднительно, желательно - стрелочник. Напряжения на выводах КН не указываю - она подключена параллельно ОУ и, соответственно, если смотреть по схеме, то понятно, где и что на ней будет. Напряжения на МК, кроме питания, можно не мерять - если есть световая индикация, работают кнопочки, да ещё и катушка "гудит" - значит, всё в порядке. Если напряжения на выв. ОУ не соответствуют приведённым - внимательно проверить монтаж, соответствие номиналов деталек, очистить плату от грязи. Менять микросхемы - сначала КН, затем и ОУ. 14.07.2011 ПП в папке с моим ником являются доработками оригинальной ПП от DesAlex, поэтому огромная просьба при указании "на чьей ПП собрано" указывать автора. Это либо DesAlex либо DesAlex-Korvin. Спасибо. ©Korvin korvin.rar Даташиты.rar DesAlex.rar
  16. Ну так зачем захламлять своё жизненное пространство в тесной квартире ощё одним "кирпичом", который может понадобиться (а скорее - нет) один раз в год??? В процветание здравого смысла - правильнее будет сесть на трамвай и проехать на радиорынок, попросить, чтобы на современном, гарантировано откалиброваном приборе замеряли ту злощастную индуктивность - один раз в год. Втрое проще, чем собрать детекторный приёмник. Понадобиться от платы собранного устройства к разъёму на компьютере протянуть три проводка и потом три раза кликнуть мышкой. На сборку и настройку детекторного приёмника понадобиться времени и усилий намного больше. Не было ещё (и не будет) в Истории Человечества ни одного случая, чтобы подключением мотка провода к измерительному входу индуктиво-метра, сжигали в нём проц. Нет (и не будет никогда) аналогового измерителя, который смог бы измерить в более широком диапазоне значения индуктивностей (да ёще и с такой точностью - без калибровки!!!!!!!!!!!, в таких размерах прибора, в удобно читаемом виде, с бонусом в виде измерения той же индуктивности сразу по нескольким параметрам, с бонусом в виде измерения ещё и конденсаторов и резисторов, да ещё и почти нахаляву в в сборке), чем предложеный Вам к самостоятельной сборке прибор.
  17. Почитайте в статье о том приборе, что Вам порекомендовано самому собрать, о ценах на детали для него. Почти халява. На "700-1200р." можно штук 5 собрать, если все детальки купить на ближайшем радиорынке. Так будет настоящая вещь в хозяйстве, а не допотопное недоразумение.
  18. Да "в Москве"-то можно раз в год тупо сходить, найти, где можно индуктивность (ближайший радиорынок или типа того) померять. Зачем что-то городить, да ещё и такое допотопное? Каждый день катушки мотаете, высокоточные? Так ведь - кто не может собрать простой нормальный измеритель индуктивности - тот же не сможет собрать и ничего такого, где нужны моточные изделия известной индуктивности. Для сборки детекторного приёмника измеритель индуктивности не нужен. Хомо сапиенс изначально, по великому задуму Природы, сотворён как тварь, живущая согласно здравому смыслу. И обязана делать только то, что в дальнейшем ей будет полезно. Вот Вам нужен такой измеритель. Зачем? Приведите схему конструкции, которую Вы собираетесь собрать после того, как станете счастливым обладателем измерителя (и которую невозможно собрать без него).
  19. Металлоискатель Quasar Arm

    Настроить резистором добротность контура ТХ (счас она занижена), как рассказано в первом сообщении темы по "Квазару АВР". Должен регулироваться ток до 130 мА примерно. Но это - по моей схеме регулировки. На этих платках схема регулировки авторская, на ОУ. Ну, очевидно - цепь компенсации (подмешивание во входной сигнала сигнала компенсатора) проверить, там две-три детали + дорожки сами.
  20. Clone Pi-W Своими Руками

    Номиналы конденсаторов в обвязке ОУ проверить и подстроечник.
  21. Clone Pi-W Своими Руками

    Маловато образцовое напряжение с TL431. Хорошо, когда около 4,8 вольта. Плата от флюсов и грязи отмыта?
  22. Металлоискатель Quasar AVR

    Нет передающей катушки - нет и тока потребления выходного каскада. Конечно, надо искать косяк.
  23. По многочисленным просьбам выкладываю шаблон печатной платы для МД Quasar AVR под детали в DIP-корпусах. Под готовые промышленные корпуса плата специально не примерялась. Разрабатывалась, как штучное изделие для личного использования, без разъёмов и других коммерческих унификаций. Перемычек нет, регулятор контрастности индикатора установлен на выводах самого индикатора, отсутствуют защитные диоды по питанию и выходного каскада. Плата расчитана под малогабаритные элементы. Электролитические конденсаторы применяются с малым диаметром корпуса ("компьютерные"). При комплектации за основу брать не схему, а сборочный чертёж, т.к. многие элементы заменены на аналоги либо имеют другие номиналы. В принципе - достаточно просто спаять безошибочно прибор, прошить процессор, изготовить и подключить (настроить по авторской методике) датчик и прибор заработает. Но. При желании выжимать из прибора все возможности - после сборки и первого включения настоятельно рекомендуется: R29 - подбирается, чтобы величина напряжения на индикаторе соответствовала напряжению на выводах аккумулятора; R9 - подбирается, чтобы значение тока потребления выходного каскада соответствовало истинному. Измеряем падение напряжения на этом резисторе, смотрим показания тока в меню прибора, высчитываем по закону Ома сопротивление этого резистора либо подбираем "вручную". R3 - подбором этого резистора осущевствляется очень важная настройка - добротности контура ТХ. Рекомендуется в диапазоне 5...6. Осциллографом смотрим размах напряжения от пика до пика (Vpp) на контурном конденсаторе С6 (если этот конденсатор установлен в датчике - на плате ставится перемычка). Делим показание на 5 (размах напряжения раскачки). Подбором сопротивления вгоняем результат в 5...6. При заниженой добротности не получится добиться максимальной чувствительности. При завышеной добротности будет и завышеная чувствительность "по воздуху", но на грунте будет наблюдаться крайне неприятный эффект "сноса ВДИ мишеней", когда "цветные" цели попадут под маску, а "чёрные" - полезут "в цвет". Это обусловлено сильным влиянием на фазу переотражённого мишенью сигнала "перемагниченого" током ТХ грунта, особенно - минерализированого. Очень хорошо, если ток ТХ при добротности 5...6 и номинале резистора 5...10 Ом будет в диапазоне 60...90 мА. В противном случае, - для катушки контура ТХ был выбран либо сильно тонкий, либо слишком толстый провод. R7 - установка КУ входного каскада. Для новичков рекомендуется около 50, для опытных МД-строителей 100 и даже больше. Маленький КУ обеспечит более слабое влияние роста окончательного разбаланса датчика при изменении внешней среды (температуры воздуха, "старения" датчика и пр.), лучше будет держаться хороший динамический диапазон прибора, но несколько снизится чувствительность. При большом КУ можно получить выше чувствительность, но повышаются требования к качеству выполнения датчика. Осциллографом или милливольтметром проверяется величина переменного напряжения окончательного разбаланса датчика на входе детектора, подбором этого резистора отрегулировать так, чтобы на выходе ОУ переменное напряжение было примерно в КУ раз больше. Как вариант, можно изменять номинал не R7, а R4. После этого можно проверить склонность данной разводки платы к шумам. С подключенным датчиком (чтобы вых. каскад "тянул" по дорожкам реальный ток на себя), заходим в Coil balance. Видем напряжение окончательного разбаланса, умноженное на КУ, т.е. после входного усилителя. Замыкаем на плате контактные пятачки RX между собой. На индикаторе должно стать 0 мВ - уровень напряжения собственных шумов входной части прибора, разведённой на данной плате. При включенных рядом ЛДС, компьютере и т.п. источниках помех это значение не должно превышать 1-2 мВ. Описание процесса настройки, органов управления и другие, необходимые для сборки данные смотреть на сайте автора прибора. Всё в архиве (архив перезаливался). Также прикрепляю две другие популярные разводки - под DIP и SMD. Quazar DIP-lay from YSDragon.rar Quasar SMD-lay from pchela5 .zip Quasar AVR board by DesAlex.rar
  24. Новая разработка от автора Клона - МД "Шанс" - селективный импульсник с дискриминацией.
  25. Спасибы уже складывать некуда (что мне, что автору прибора).