Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 11/13/19 in Blog Entries

  1. 2 points
    Вопрос, давно "циркулирующий" по разным форумам: каким же должен быть БП для ремонта и предварительной настройки транзисторных УМЗЧ. Если с ремонтом более-менее понятно, то насчет "настройки", да еще и "предварительной" - поясню более подробно. Новоизготовленный УМЗЧ нередко обладает "косяками" (непропаи, пермычки дорожек припоем, перепутаны компоненты и т.п.), из-за чего включать его нужно осторожно и с ограничением тока, дабы не дожечь окончательно. Для ограничения тока рекомендуется использовать либо лампы накаливания на нужное напряжение, либо просто резисторы на несколько десятков Ом. Оба способа токоограничения, при своей простоте и дешевизне, обладают рядом существенных недостатков. Лампы накаливания имеют ограниченный ассортимент напряжений, хрупкую стеклянную колбу и малое сопротивление спирали в холодном состоянии, из-за чего начальный бросок тока может значительно превышать установившееся значение. Достоинство - по свечению нити накала сразу видно, что что-то идет "не так" (короткое замыкание в нагрузке). Резисторы более стабильны в отношении пропускаемого тока, дешевы, но вот никакой индикации аварийного состояния не обеспечивают. Нужны дополнительные вольтметры или амперметры. Что же касается собственно БП, то не устаю удивляться многообразию схем "лабораторных БП", изготавливаемых для этих целей. Если подумать, то регулируемый по напряжению и току ограничения "лабораторник" для данной задачи - "масло масляное маслянистое"! Реально не нужны ни плавная регулировка напряжения, ни тока. Нормальная схема УМЗЧ (подчеркиваю: НОРМАЛЬНАЯ, а не извращенная!) обязана работать при колебаниях питающего напряжения +100 / -50% от номинального значения. Естественно, либо на холостом ходу (Х.Х.), либо на нагрузку , составляющую порядка 10% номинальной. Окончательная настройка режимов (ток покоя, ноль на выходе при отсутствии сигнала и т.п.) должны производиться на ШТАТНОМ БП, с которым этот УМЗЧ будет работать в дальнейшем. Исходя из этих положений, необходимый и достаточный БП для ремонта/настройки УМЗЧ состоит всего-навсего из трансформатора, вторичная обмотка которого может быть вообще без отводов, либо иметь один-два отвода на напряжение порядка 18...24...30 В, выпрямительного мостика, конденсаторного фильтра и ограничителей тока по плюсовой и минусовой шинам. ВСЁ ОСТАЛЬНОЕ - НЕНУЖНОЕ ИЗВРАЩЕНИЕ!!! Ограничение выходного тока (по опыту) достаточно на уровне 0,5 А, чтобы не пожечь сохранившиеся транзисторы средней мощности драйверных каскадов. Транзисторы малой мощности (дифференциальный каскад, усилитель напряжения) обычно "обвязаны" резисторами, не пропускающими избыточные токи. При изготовлении такого БП я оттолкнулся от Двухполярного БП на трансформаторе без среднего отвода: Его схема: Поясняю еще раз и ме-е-е-дленно: Два трансформатора на напряжение первичной обмотки 110 В (сто десять! - севороамериканский стандарт) стоят исключительно потому, что в свое время я их получил по гуманитарке из Канады и они просто валялись в загашниках. И не более того! Первичные обмотки включены последовательно, вторичные - параллельно. Мощность каждого составляет 36 Вт (итого - 72 Вт, чего хватает "выше крыши"). На выходе получается двуполярное питание напряжением ±24 В. Вначале была мысль снабдить этот БП транзисторными ограничителями тока: с индикацией стрелочными гальванометрами от мафонов по падению напряжения на эмиттерном резисторе. Сдвоенный переключатель SA3 переключает выход либо через ограничители тока, либо почти напрямую (через резисторы R4 R7, всё-таки хоть чуть-чуть, но защищающие от полного К.З.). А когда уже подобрал детали - задумался. зачем же я ограничиваю сам себя применением дополнительного БП помимо штатного? По правде говоря, нередко такой дополнительный БП нужен. Скажем, ремонтируется эстрадный УМЗЧ массой под два пуда - сильно такой не покрутишь туда-сюда, даже на каком-то поворотном приспособлении. Приходится снимать плату и ставить ее на "стапель" отдельно от корпуса собственно УМЗЧ с его БП. И тогда выкристализовалось решение соорудить ограничитель тока в виде отдельного блочка, к которому можно было бы подключить любой БП, включая штатный. Сказано - сделано. Нашел в загашниках пару корпусов от разобранный свичей, радиаторы, снятые с компьютерных БП, два комплекта гальванометров М6250-1. Схема содержит два идентичных канала, никак не связанных один с другим. Каналы являются ДВУНАПРАВЛЕННЫМИ, т.е., если на левый по схеме вывод верхнего ограничителя подать плюс от БП, то с его правого вывода снимется плюс на нагрузку (усилитель). И наоборот, если не правый по схеме вывод нижнего ограничителя подать минус от БП (как это изображено для второго узла схемы - на рисунке ниже), то минус на нагрузку снимется с левого вывода. Причем, входы и выходы можно менять местами. Каждый из каналов можно включать как одновременно, каждый в свое плечо питания, так и любой из них по отдельности (скажем, при ремонте усилителя с однополярным питанием). Развел платы (одну - себе, вторую - хорошему приятелю, тоже занимающемуся ремонтом УМЗЧ). Вид сверху (в процессе изготовления): Вид снизу: Из-за простоты и нетиражности не стал ЛУТить, а применил старый добрый способ - рисованием лаком для ногтей через обрезок инъекционной иглы. Хочу еще раз подчеркнуть: ПЛАТА ИЗГОТАВЛИВАЕТСЯ ПОД КОРПУС!!! Ну, и вот что в итоге получилось (один из блочков): На фото показан режим К.З. в левом канале при питании от 12-вольтового аккумулятора. В таком режиме радиатор нагревается до температуры порядка 55...60° (рука еще терпит) примерно за 5 минут. Надо быть совершенно "тёмным" в ремонта, чтобы при наличии "металлического" К.З. в канале продолжать подавать на него питание. Если стрелка ушла вправо до упора - питание НЕМЕДЛЕННО отключается и ищется пробитый компонент. Так и только так! Оба канала настроены на максимальный ток 0,5 А, чему соответствует максимальное отклонение стрелки гальванометров. Они приклеены к корпусу снаружи двухсторонним скотчем. Шкалу не перекалибровывал, поскольку разборка этих гальванометров - квест из геморройных, причем, мало полезных - проще наклеить сверху переводную шкалу, по которой можно ориентироваться в токе потребления по имеющейся оцифровке. В режиме отсутствия ограничения тока падение на каждом из токоограничителей составляет 2,4 В. Светодиоды зеленого свечения (на 2,1 В + последовательно кремниевый диод) индицируют наличие полного К.З, когда это значение повышается более, чем на 2,7 В. Входные и выходные проводники подключаются к разъемам, выведенным на переднюю (бывшую заднюю) стенку. Если входные минус и плюс подключить к крайним контактам обоих разъемов, то выходы будут средними. И наоборот. Данную приставку можно подключать к любому БП, включая штатный для данного УМЗЧ, либо к показанному выше. Если с каналом усилителя всё в порядке и ток потребления соответствует току покоя, тогда и только тогда приставка отключается и питание подается на УМЗЧ непосредственно от БП. Настраиваются нужные параметры (ноль на выходе, коррекция и т.п.).
  2. 1 point
    Известно, что стандартного выходного напряжения типовых звуковых карт или ЦАП зачастую недостаточно для работы на высокоомные наушники. Как и недостаточно выходного тока для работы на низкоомные наушники. Поэтому необходим усилитель, который усилит мощность источника сигнала, и даст возможность источнику работать на широкий диапазон сопротивления нагрузки. Когда-то давно я собирал усилитель для наушников по схеме Питера Смита по схеме из Everyday Practical Electronics (мартовский номер 2008 года). По звуку он мне очень понравился, и до недавнего времени я его использовал в виде макета. Со временем стало понятно, что хочется его таки собрать в нормальный корпус. Тем более у меня появились отлично звучащие ортодинамические наушники ТДС-5М (копия Yamaha YH-1), с которыми и должен работать усилитель. Но в этом варианте конструкция имела недостатки - отсутствие стабилизаторов, которые есть в оригинальной схеме, громоздкость и защита была на отдельной плате. Схема Новая схема по сравнению с макетом претерпела некоторые изменения и приняла следующий вид: Конструкция Отправной точкой для конструкции нового варианта усилителя стало желание перевести схему на SMD-компоненты, сделать максимально монолитную одноплатную конструкцию и уместить ее в китайский алюминиевый корпус: Доступная высота для компонентов в таком корпусе (от платы внутри корпуса до крышки) всего 28,5 мм. Поэтому на замену имеющимся трансформаторам ТПК-2 (ТПГ-2) пришлось подыскать замену пониже, при сохранении максимально возможной габаритной мощности. Нужная модель нашлась у фирмы HAHN - BV EI 304 2047. С электролитами в блоке питания проблем не возникло - были взяты модели B41851F5228 фирмы EPCOS с высотой корпуса 25 мм. С выпрямителе был реализован C-R-2C фильтр. Охлаждение греющихся компонентов - транзисторов выходного каскада и стабилизаторов - реализовано с использованием радиаторов 28 на 28 мм и высотой 20 мм. Причем крепление сделано таким образом, что компоненты расположены горизонтально а радиаторы прижимают их к плате. Для равномерного прижима между платой и корпусами транзисторов проложен силикон толщиной 1 мм, а также в радиаторы вкручены стойки высотой 5 мм, которые не позволяют притянуть радиатор с перекосом и служат элементами крепления радиаторов. К сожалению, найти стабилизаторы в изолированных корпусах не предоставляется возможным, поэтому под них пришлось подложить теплопроводящие изоляционные прокладки. В качестве регулятора громкости применен потенциометр ALPS RK27 на 10 кОм, давно лежащий без дела. У корпуса внутри есть специальные пазы для платы, поэтому на краях платы сделаны соответствующие выступы справа и слева. Кроме этого по углам платы сделаны крепежные отверстия на случай, если будет применяться другой тип корпуса. Три других отверстия остались от варианта, когда планировалось в выбранном корпусе крепить плату ниже, чем это позволяют пазы. В итоге от этого варианта я отказался, а отверстия оставил. В качестве сетевого разъема применен разъем под кабель "восьмерку", совмещенный с выключателем. TRS-разъем взят под Jack 6.3 мм. На плате нашлось место даже для сетевого предохранителя, варистора и термистора. С учетом всего вышесказанного, была получена следующая конструкция и топология печатной платы: Монтаж получился достаточно плотный, но зато удалось все вписать в допустимые габариты: Дизайн Расположение разъемов, регулятора громкости и светодиода проводилось с учетом того, чтобы усилитель красиво выглядел. Некоторая асимметричность расположения компенсирована надписями на панели. Название усилителю придумалось Prometheus, то есть Прометей, что в данном случае ничего не значит, а просто выглядит красиво Реализация Платы были заказаны на JLCPCB. Последний раз я заказывал там в прошлом году, и сейчас показалось, что качество у них стало лучше. Особенно заметно по маркировке. В процессе пайки и испытаний выяснилось, что в конструкции есть ошибки. К счастью, их исправление обошлось "малой кровью": Посадочное место под выходной TRS-разъем сделано с ошибочным расположением отверстий под направляющие пластиковые штифты и при монтаже нужно было их откусить. Перепутаны вход и выход стабилизатора на 12В для реле, т.к. у мелких корпусов цоколевка почему-то сделана зеркально по сравнению с TO-220. Пришлось на место SOT-89 впаять стабилизатор лежа в корпусе TO-92, благо рассеиваемой мощности корпуса хватает. Отключение реле защиты происходит слишком долго из-за того, что емкость фильтра продолжает держать напряжение некоторое время после выключения. Слышны переходные процессы в наушниках. Если на питание защиты поставить отдельный выпрямитель, то проблема уходит. Сетевые трансформаторы небольших габаритов всегда имеют повышенное напряжение холостого хода, которое под номинальной нагрузкой просаживается до заявленных значений, но в данной конструкции оно остается довольно высоким. Это дает и лишний нагрев стабилизаторов. Поэтому трансформаторы я заменил на BV EI 304 2046 (это 2х9В). По температуре все стало гораздо приятнее. Комплектные переднюю и заднюю панель отдавал на фрезеровку и гравировку. Результат собранного варианта на фото ниже: Измерения Спектр выходного сигнала (нагрузка 100 Ом, в качестве источника ЦАП "Mercury"): Тут я удивился - откуда такой лес сетевых гармоник? Отключил защиту (потому что на нее питание выпрямляется однополупериодным выпрямителем). Стало лучше: Но все равно много. Грешу на земляную петлю, которая могла возникнуть на полигоне. Какие ваши идеи? По температуре все очень приятно. При тестах без корпуса самые горячие - трансформаторы, ~55 °C, радиаторы стабилизаторов ~45 °C, радиаторы выходного каскада ~43 °C. Потребление по каждой ветке питания около 23 мА при мощности, близкой к максимальной. Планы на будущее В планах исправить выявленные недостатки, сделать некоторые изменения и собрать еще один экземпляр: Исправить текущие недоработки по стабилизатору защиты. Добавить нормальный выпрямитель на питание защиты. Разобраться с трассировкой земли. Заменить полевой транзистор в схеме защиты на маломощный в корпусе SOT-23. Не очень удобно подкладывать под стабилизаторы теплопроводящие прокладки. А так как обмотки трансформатора раздельные, можно сделать независимые стабилизаторы на LM317 в изолированных корпусах как на положительно, так и отрицательное плечи питания. Возможно стоит заменить сетевой разъем - нужно чтобы он впаивался в плату. Так он будет занимать меньше места и компоненты, связанные с сетью, можно будет еще дальше отодвинуть от входного разъема. Для возможности применения других переменников для РГ нужно предусмотреть установку переходных платок. А пока я слушаю и наслаждаюсь как звуком, так и внешним видом
  3. 1 point
    Добрый день. Понадобилась мне схема Контроля наличия пламени с помощью ионизации. Начал искать по сети схемы, их оказалось не так и много, но благо нашел несколько. Большая благодарность пользователю I.Cherry за предоставленную схему. Данную схему я с начало собрал навесным монтажом, чтобы убедиться в ее работоспособности. Схема маленькая и проблем не составила в сборке, даже ничего не пришлось подбирать. Схема сразу заработала с вела себя очень стабильно. Пламя определяет мгновенно, главное чтобы котел был заземлен, вернее горелка. У данной схеме есть один "недостаток" при замыкании электрода на корпус реле начинает трещать (щелкать), к сожалению избавиться от этого можно только не позволять замыкание электрода на корпус. Схема является фазазависомой и не имеет гальванической развязки с сетью, поэтому соблюдайте осторожность при эксплуатации. Прилагаю оригинальную схему и мою немного модифицированную. Печатную плату делал под "свою" схему, а навесным монтажом собирал оригинальную. Печатную плату сделал в DipTrace и Lay6, так-же прикрепил Gerber и Pdf файлы. Старался сделать максимально компактно и чтобы было удобно коммутировать. Реле вывел как с НЗ так НО, у каждого свои хотелки. Так-же сделал и 3D просмотр печатной платы. Планирую сделать еще 3 варианта печатной платы для данной схемы: одна еще на реле и две на оптопаре. Контроль наличия пламени на реле.lay6 Контроль наличия пламени на реле DipTrace.rar Контроль наличия пламени на реле Gerber.rar Контроль наличия пламени на реле.pdf
  4. 1 point
    Когда-то задался целью найти простой способ измерения индуктивности катушек. И тут вдруг вспомнил университетский курс ТОЭ (теоретические основы электротехники), а именно: резонанс в параллельном колебательном контуре, характерный всплеском напряжения. Взяв этот фактор за основу и вспомнив формулу Томсона - зависимость трех составляющих: индуктивности (L), емкости (C) и частоты (f), сваял простенькую схему. Суть метода состоит в подборе резонансной частоты для собранного колебательного контура с известной (проверенной) емкостью конденсатора. Резонансная частота засекается любым мультиметром по пику напряжения на контуре. А зная частоту и емкость можно вычислить индуктивность. В качестве генератора частоты использовал звуковую карточку (ЗК) ПК и скачанную с интернета одну из многочисленных программ – генераторов. Для примера проведу парочку наглядных измерений. Опыт №1. Беру известные конденсатор 1,5uF и дроссель ДМ-0,6-50 мкГн. Собираю контур, подключаю блок к ЗК и мультиметру, запускаю генератор и прогоняю частоту в обратном порядке – начиная с 20 кГц в сторону уменьшения. Напряжение сразу начало возрастать и застыло на максимуме в пределах 18,85-18,65 кГц, откуда выбрал среднее значение – 18,75 кГц. Далее можно проводить расчеты вручную, можно ввести формулу в Excell, можно написать программку, а можно и воспользоваться многочисленными онлайн калькуляторами, что я и сделал, используя первый попавшийся сайт: http://coil32.ru/calc/jslcc.html Ввожу емкость, частоту и без малого получаю указанную на дросселе индуктивность. Опыт №2. Беру неизвестный дроссель на ферритовом сердечнике типа "гантелька" и конденсатор 1uF. Собираю схему, прогоняю частоту, вычисляю по предыдущей методе ее среднее значение - 10,45 кГц и снова загоняю данные в калькулятор, который выдал значение 232 мкГн. Меряю индуктивность недавно приобретенным тестером LCR-T4 и получаю результат (с учетом разрядности) 240 мкГн. Как видите, метод немного неудобный, заставляет подстраивать контур под ограниченные пределы частоты, но имеет право на жизнь. Насколько точно он меряет – вопрос философский, поскольку все в этом мире относительно. Лично меня в схемотехнике он не подводил и долгое время устраивал простотой и минимальными требованиями к ресурсной базе и измерительной аппаратуре. Следует также отметить, что данным методом можно измерять и емкость конденсаторов, используя катушки известной индуктивности.
  5. 1 point
    В последней ревизии своего ЦАПа на PCM1794 я заложил возможность подачи внешнего сигнала мастерклока. А для переключения генераторов разных сеток частот на входной разъем I2S следует подать управляющий сигнал на 2 вывод. Лог. 0 соответствует сетке x48, лог. 1 - сетке x44. Далее после гальванической развязки он попадает на разъем CTRL. Поэтому был разработан модуль, который содержит пару генераторов на обе сетки частот мастерклока и управляющий микроконтроллер ATtiny24/44/84. Схема модуля имеет вид: Логика работы программы до безобразия проста. После инициализации контроллера производится инициализация ЦАПа (опционально), включается один из генераторов в зависимости от сигнала SEL_OSC (Select of Oscillator). Далее МК переключается в режим сна с отключением всех источников тактирования (режим Power-Down). При изменении уровня сигнала SEL_OSC МК пробуждается, приглушает выход ЦАПа путем записи соответствующего бита в его регистр по SPI (бит MUTE регистра 18 PCM1796), переключает генератор и возвращает нормальный режима работы ЦАПа. После этого МК снова уходит в сон до очередной смены уровня сигнала управления генераторами. Объем программы не занимает и 512 байт. Печатная плата: Скачать прошивку под микроконтроллер ATtiny44 (13/03/19) для SW управления. Конфигурационные биты (fuses) следует установить в следующие значения: SELFPRGEN = [ ] RSTDISBL = [ ] DWEN = [ ] SPIEN = [X] WDTON = [ ] EESAVE = [X] BODLEVEL = 4V3 CKDIV8 = [ ] CKOUT = [ ] SUT_CKSEL = INTRCOSC_8MHZ_6CK_14CK_0MS EXTENDED = 0xFF (valid) HIGH = 0xD4 (valid) LOW = 0xC2 (valid)
  6. 1 point
    Обратился ко мне за помощью коллега (стоматолог), перешедший на работу под оптическим увеличением бинокулярной налобной лупой. Для комфортной работы ему необходимо достаточно яркое освещение рабочего поля. К сожалению, вся медтехника (кстати, аналогично автотехнике), раз в 5, если не больше, дороже, чем точно такая же техника бытового назначения. Поэтому он начал приспосабливать более-менее бюджетные фонарики под свою задачу. При этом столкнулся с гроздью проблем, среди которых было отсутствие плавной регулировки яркости светодиода, очень быстрое исчерпание энергии повербанков на два параллельных аккумулятора по 2,2 А*ч, применяемых для питания осветителя с быстрым снижением яркости освещения (приходилось их подзаряжать до нескольких раз в течение одного рабочего дня) ну и, наконец, быстрый выход из строя светодиодов. Я проникся его проблемами и начал с ними разбираться. Начал с вышедших из строя светодиодов. Оказалось, что они фирмы Cree, типа таких: но из четырех нерабочих ТРИ кристалла банально отвалились с подложки!!! Перегрева не было, т.к. питались они от платки фонарика, откуда были взяты, так что, по-видимому, причина в бессвинцовой пайке. Подложка нагревалась на корпусе (нагревателе) паяльника и после расплавления припоя кристалл пинцетом помещался на свое место. Еще в одном оторвались площадки для подпайки проводников. Были подпаяны прямо к к зачищенным от краски дорожкам. В итоге были восстановлены ВСЕ ЧЕТЫРЕ светодиода. Рачал разбираться с повербанками. Выполнены они были на микросхемах HT4921 (два в одном), содержащих как драйвер заряда аккумуляторов так и импульсный повышающий преобразователь в 5 В. Если с первой задачей эти микросхемы справлялись, то узел повышающего преобразователя "приказал долго жить": При 3,9 В на аккумуляторе на выходе было только 3,5 В. Стало понятно, почему повербанки так быстро истощались. "Родные" платы были выкинуты и поставлены на драйверах TP4056. А теперь перейдем к главному вопросу, а именно, проклятой проблеме стабилизации тока мощного белого светодиода на 3 Вт, питаемого от ОДНОГО литиевого аккумулятора. Суть проблемы заключается в том, что падение напряжения на светодиоде (до 3,3...3,4 В) находится в диапазоне колебаний напряжения на аккумуляторе (4,2...2,75 В - https://ru.wikipedia.org/wiki/Литий-ионный_аккумулятор ). Обойти ее можно несколькими путями: 1) Применением импульсного преобразователя: а) SEPIC; б) Step Up/Down; в) Inverting 2) Применением линейного стабилизатора с недоиспользованием заряда аккумулятора. По размышлению было решено пойти по второму пути. Основным аргументом в его пользу явилось даже не то, что импульсные преобразователи сложнее по схеме, а то, что светодиод - источник света безинерционный и как ни фильтруй выходное напряжение, но пульсации все равно будут присутствовать. Для глаза, примерно половину рабочего времени подвергающегося воздействию пульсирующего света (пускай даже высокочастотного), это зерр шлехт. Глаза - тоже "рабочий инструмент" и беречь их надо не менее тщательно, чем руки. Для линейного стабилизатора необходимо было обеспечить минимально возможное падение напряжения на регулирующем транзисторе, чтобы "высосать" из аккумулятора максимум запасенной в нем энергии. Этого можно, в принципе, достичь использованием полевого регулирующего транзистора в "классической" схеме стабилизатора тока на ОУ. Ан нет! В действительности все не совсем так, как на самом деле . Даже с применением LogicLevel полевика напряжение на его затворе должно быть порядка 2,5...3 В, что потребовало бы применение неоправданно дорогих Rail-to-Rail ОУ. Выход был найден путем использования нового класса биполярных транзисторов, т.н. BISS. Пошарив по Интернету нашел подходящий: PBSS4540X с током коллектора 4 А, рассеиваемой мощностью более 1 Вт и эквивалентным сопротивлением коллектор-эмиттер порядка 40 мОм. В управление к нему выбрал одиночный низковольтный LMV321. Схема получается вот такая: Но пока заказанные "блошки" ехали с отдаленного склада, покопался у себя в загашниках и нашел близкие по параметрам (напряжение насыщения - порядка 0,35 В) транзисторы PBSS4540X в корпусе DPAK. К ним поставил ширпотребовскую LM358, "заглушив" ОУ, выходящий на ножки с меньшими номерами. Получилось вот что: Делитель R2R3R4 формирует на верхнем выводе переменного резистора R5 напряжение, которое может изменяться от 30 до 70 мВ подстроечным резистором R3, определяя максимальный выходной стабилизируемый ток. С его движка задается падение напряжения на эмиттерном резисторе R6, обеспечивая регулировку выходного тока от нуля до максимального. Яркость визуально не изменялась при снижении питающего напряжения до 3,55 В. Просто, как угол дома. Печатка: Выполнена под корпус (а не наоборот!!!). Изготовлено два таких стабилизатора. Один - под повербанки (оставшиеся от прежней конструкции, на фото виден на затылке): И второй - под одиночный аккумулятор (расположен с другой стороны наголовника относительно корпуса собственно стабилизатора тока): Большая белая кнопка включения подсветки расположена так, чтобы можно было включать/выключать ее либо тылом кисти, либо предплечьем. Хотя стерильность рук стоматолога и относительна, но лазить пальцами после рта или чисто вымытыми по кнопкам - не есть гут. Освещенность рабочего поля более, чем достаточна: Полной зарядки одного аккумулятора хватало, чтобы без снижения яркости отработать ДВЕ полных рабочих смены. Т.е., принятое "командирское" решение относительно применения именно линейного стабилизатора тока было верным. И начхать на неполное использование заряда аккумулятора. Всё равно литиевые аккумуляторы "эффекта памяти", как у никелевых, не имеют. Клиент остался доволен результатом, как слон после водопоя ...Я - тоже. 2SD1802.pdf P.S. На следующей странице я отписался о стабилизаторе тока для налобного фонарика на 10 обычных белых светодиодах, выполненном на компараторах LM393.
×
×
  • Create New...