Перейти к содержанию

Лидеры

Популярный контент

Показан контент с высокой репутацией 06.03.2017 в Записи блога

  1. Понадобился мне силовой коммутатор, позволяющий подавать на нагрузку импульсы тока порядка 10 А с изменяющейся частотой и скважностью. Причем, чтобы и частоту и скважность можно было регулировать независимо друг от друга. Дополнительной задачей на него возложено служить нагрузкой для проверки динамических свойств проектируемого ЛБП (реакция на быстропеременные изменения тока нагрузки). За основу взял статью П.Галашевского в "Радио" № 9 за 2012 год "Генератор c независимой регулировкой частоты и скважности", "корни" которой произрастали из этой темы: http://kazus.ru/foru...=94852 Поэтому подчеркиваю: основная часть схемы - не моя! Я только дополнил ее мощным ключевым каскадом с оптоизоляцией. Да и этот узел, в принципе, известен. Поэтому авторство осталось разве что за печаткой и конструктивом Открытый корпус выбран из-за того, что не исключена необходимость что-то менять в схеме в процессе проведения экспериментов. Прерыватель.lay6
    1 балл
  2. Выловил меня намедни мой старинный приятель - инженер студии звукозаписи с предложением сваять ему десяток активных микрофонных модулей на электретных микрофонах. Нужно это ему для озвучивания очередной церкви (меня всегда удивляла прижимистость батюшек, не желающих заплатить за промышленно выпускающееся оборудование, ну да Бог им судья). В качестве основных требований было: а) Два электретных микрофона параллельно; б) Дифференциальный (парафазный выход для работы на длинный кабель до пульта). в) Питание от фантомного напряжения +48 В, поступающего с микшерного пульта. Хозяин - барин. Хочет "белый верх, черный низ" - пожалуйста. Любой каприз за его деньги. На первый взгляд задача тривиальна, но она заинтересовала меня двумя моментами: 1) Микширование двух и более электретных микрофонов по входу предусилителя (законченной рабочей реализации такого нигде не встречал, хотя на форуме несколько раз появлялись темы по подключению двух электретных микрофонов); 2) Возможность реализации своей старой задумки, заключающейся в дифференциальном включении электретного микрофона. Приятель настаивал на "классической" схеме, в которой предусиление с микрофона осуществляется на одном ОУ, а второй ОУ инвертирует выходной сигнал первого для подачи в двухпроводную дифференциальную линию. Я решил сильно не спорить, а сваять две схемы - "классическую" и свою "дифференциальную". "Классическая" схема: отличается от известных разве что суммирующим включением двух микрофонов через цепочки C1R3 и C2R4 к инвертирующему входу ОУ DA1.2. В качестве ОУ предполагался TL062, как имеющий очень низкий собственный ток потребления (менее 0,5 мА), что существенно для питание от фантомного напряжения, которое не может выдать ток более 7 мА по каждому проводу. Однако, из-за того, что, модули нужны были, как всегда, "на вчера", поставил JRC4885 (3,5 мА типовых). Печатка: Параллельно была отсимулирована в Мультисиме схема дифференциального включения электретного микрофона, подтвердившая свою принципиальную работоспособность: Эквивалентная схема электретного микрофона - Q1V3. Теперь надо было решить задачу микширования сигналов с двух дифференциально включенных микрофонов. За основу был взят первый каскад инструментального усилителя (без третьего ОУ). Поскольку для адекватного микширования требуется минимальное входное усиление микширующего каскада (чтобы максимально развязать источники сигналов), сигналы были поданы на инвертирующие входы, тогда как на неинвертирующие - "искусственная средняя точка". Эпюры напряжений: относительно общего провода по переменному напряжению: Дифференциальный сигнал между выходами ОУ: Окончательная схема: Полярность включения C1C2 и C3C4 ПРАВИЛЬНАЯ! Резистор R12 нужен! При его номинале 10 кОм появлялись ВЧ шумы. При снижении до 2 кОм - НЧ шумы. Диоды VD1-VD4 на обеих схемах защищают выходы ОУ от бросков напряжения при подаче фантомного питания. Печатка: Фото собранного модуля: Второй модуль просто не фотографировал (есть же печатка - и достаточно). Обе собранные платы были оттарабанены на студию и подключены к пульту. Обе заработали сразу же. Поэтому режимы не измерял. К "классической" плате были подключены новые микрофоны, а к "дифференциальной" - Б/У от Панасоника. "Классика" при прослушивании на "уши" выдала "бубнение" по низам, а "дифференциальная" - отличны прозрачный звук. На положение крутилки Gain внимания не обратил, но фейдер в положении минус 12 дБ обеспечил полное зажигание линейки уровня сигнала. На расстоянии 1...1,5 м ото рта говорящего, при спокойном, не форсированном разговоре! Для чистоты эксперимента микрофоны поменяли местами. Теперь "забубнила" "дифференциалка", а "классика" показала отличный результат. Иными словами, существенной разницы между схемами на слух выявлено так и не было. "Грязь" выдавали сами микрофоны. С "классики" (с микрофонами от Панасоника) сняли частотку при воздействии шумового сигнала. Делалось это на компьютере с помощью какой-то дорогой приставки. Поскольку все делалось в темпе "давай-давай!" я нюансами не интересовался. При следующей встрече, если будут вопросы, уточню. Существенной разницы между формой кривой со звуковой карты и ответкой с микрофона выявлено не было (менее 0,5 дБ). Итак, схема дифференциального включения электретного микрофона продемонстрировала свою принципиальную работоспособность, однако существенных преимуществ перед "классической" схемой с инвертированием сигнала первого ОУ не показала.
    1 балл
  3. В наше время, когда, практически, все источники питания радиоэлектронной аппаратуры строятся по импульсным схемам, одним из наиболее востребованных приборов ремонтника есть измеритель ЭПС электролитических конденсаторов. Долгое время я проверял исправность таких конденсаторов цифровым измерителем ёмкости, заряжающим конденсаторы высокочастотной пилой. Но, так как этот прибор был изготовлен более 10 лет назад, на рассыпухе - мелкая логика и светодиодные индикаторы, - пользоваться таким устаревшим прибором, да ещё и без "настоящего" измерителя ЭПС, считаю сейчас даже просто морально некошерным. Поэтому, с момента освоения прошивки современных микропроцессоров, я всё время мечтал о схеме, отвечающей требованиям нашего времени - минимум деталей, современная элементная база и схемное решение, одновременное отображение значения C и Esr на LCD, никаких реле, рубильников и прочей лабуды, требующей лишних движений. И вот, наконец-то, после многих лет просмотра не одного десятка схем (и всё не то) описание такого прибора мне попалось. Журнал "Радио" №6 за 2010 год, страница 19 - в это схемотехническое и программное решение я влюбился с первого взгляда :-) Популярный МК Attiny2313, LCD индикатор в две строки по восемь символов, простая и понятная измерительная часть, хорошая программная поддержка. Всё, - делаю! Но, как всегда - редко бывает такая схема, которую я повторяю 1:1, - беру в руки красную пасту, и, а-ля школьный учитель, начинаю энергично вычёркивать со схемы лишние фрагменты. Автономное питание - убираем, так как прибор будет работать в помещении от сетевого адаптера, оставляю только разъём для его подключения. Автоматическое отключение источника питания от схемы и его квазисенсорное включение - вычёркиваем - это нерациональное пижонство. Подключение к компу через СОМ-порт - убираем - какой дурак будет включать целый компьютер ради замера ёмкости одного конденсатора, что и так отображается на ЖКИ прибора; подсветку индикатора делаю постоянно включенной. Итого - схема "похудела" процентов на 25 :-) Кроме того, после внимательного чтения описания и вникания в принцип работы измерителя была обнаружена и одна ошибка на схеме - источники тока двух поддиапазонов измерения оказались перепутаны между собой - исправляем... Вот так и будем собирать: Естественно, считаю очень экстравагантным решение автора использовать на одной плате современную импортную базу одновременно с устаревшей отечественной, да ещё и с не самыми лучшими параметрами (КС133 не выдерживают никакой критики). Поэтому сразу решаю, что вместо КТ3107 буду ставить 2SA733, а стабилитроны возьму BZX 3V3 (хотя поставил BZX 3V9 :-) ЖКИ также будет не указанный в схеме (такого найти не получилось), а более популярный WH0802А фирмы Winstar. Печатную плату развожу, руководствуясь размерами индикатора - по его ширине и высоте (высокие детали ложу горизонтально, электролиты применяю с уменьшенной высотой корпуса), регулятор контрастности в подобных устройствах я всегда распаиваю прямо на выводах самого индикатора. Таким образом, плата вышла размерами 6х6 см, монтаж по высоте равен высоте индикатора (около 1 см). Собранная плата с индикатором легко поместится в пачку от сигарет :-) Настройка. О, это отдельный разговор... Прочитав статью, создаётся мнение, что схему сможет настроить только инженер-программист в лаборатории с высокоточными приборами. Судите сами - автор предлагает настроить источники тока по миллиамперметру, гарантирующему точность в две цифры после запятой. Затем – делитель напряжения по вольтметру такой же точности (естественно подразумевается, что в этой точности нет ничего общего с "точностью" китайских показометров). Потом эти измеренные значения надо занести в текст неоткомпилированной программы, перегнать её в машинный код и зашить с этими поправками в МК. Нормально? Но, к счастью, автор очень подробно описал принцип работы своего устройства, почитав которое доходит, что сие чудо высокого полёта современной инженерной мысли может настроить и любой Ивашка с Дворца пионеров и даже вообще без всяких приборов. Всё, закрываем нафиг журнал :-) и настраиваем так, как получилось у меня. Включаем собранный прибор с прошитым и установленным на плату МК. Первым делом крутим регулятор контрастности до появления на экране ЖКИ чёткой надписи в две строки. Если её нет - проверяем монтаж в части сопряжения МК с ЖКИ и подачи питания на оба самых дорогих элемента этого устройства :-). А также правильность прошивки МК - не забываем про фузы – для PonyProg так: Нажимаем на плате возле МК кнопку "Калибровка" - в прошивку внесётся поправка на скорость срабатывания входной части измерителя. Следующий этап. Нам понадобится несколько новых электролитических конденсаторов высокого качества (не обязательно Low Esr) ёмкостью 220...470 мкФ разных партий, лучше всего - на разные напряжения (16в, 35в, 50в...). Подключаем любой из них к входным гнёздам прибора и начинаем подбирать резистор R2 в пределах 100...470 ом (у меня получилось 300 ом; можно применить временно цепочку постоянный+подстроечный) так, чтобы значение ёмкости на экране ЖКИ примерно было похоже на номинал конденсатора. К большой точности пока что стремиться не стОит - ещё будет корректироваться; затем проверить и с другими конденсаторами. Дальше настраиваем измеритель Esr. Эх, придётся снова раскрыть журнал "Радио" :-) - №7 за 2010 год стр.22 - там имеется табличка с типовыми значениями этого параметра для разных конденсаторов. Или же воспользоваться вот этой, найденной на бескрайних просторах Интернета :-) Кстати, такую табличку, при желании, можно будет приклеить в качестве шпаргалки на корпус будущего прибора под дисплеем. Как пользоваться такой табличкой, я думаю, понятно - скажем, получается, что типовое ЭПС конденсатора 100 мкФ на 35в находится где-то в районе 0,32 ом: В следующей табличке указаны максимальные значения ЭПС для электролитических конденсаторов. Если у измеряемого конденсатора оно будет заметно выше, то его уже нельзя использовать для работы в сглаживающем фильтре выпрямителя: Подключаем конденсатор 220 мкФ и, незначительным подбором сопротивления резисторов R6, R9, R10 (на схеме и на моём сборочном чертеже обозначены со звёздочками), добиваемся показаний Esr, близких к табличным. Проверяем на всех имеющихся заготовленных эталонных конденсаторах, в т.ч. уже можно использовать и конденсаторы от 1 до 100 мкФ (не обращая пока что внимания на показания измерителя ёмкости). Так как для измерения ёмкости конденсаторов от 150 мкФ и для измерителя ЭПС применяется один и тот же участок схемы, после подбора сопротивления этих резисторов несколько изменится точность показаний измерителя ёмкости. Теперь можно подстроить ещё сопротивление резистора R2, чтобы эти показания стали точнее. Другими словами, Ваша задача - подбирая сопротивление R2 - уточнить показания измерителя ёмкости, подстраивая резисторы в делителе компараторов - уточнить показания Esr-метра. Причём, приоритет надо отдавать измерителю Esr. О большИх же ёмкостях - я думаю, каждый понимает, что если в аппарате установлен конденсатор на 1000 мкФ, то он будет работать хоть при ёмкости 950 мкФ, хоть при ёмкости 1100 мкФ - поэтому уделять внимание особой точности измерению ёмкости таких конденсаторов вряд ли целесообразно. Тут может возникнуть вопрос - а нельзя ли вообще сразу и очень точно настроить измеритель Esr, подключая к его входу низкоомные высокоточные резисторы, калибруя прибор по ним? Нет, как раз это не тот случай - так можно настроить разного рода простые аналоговые измерители ЭПС, представляющие собой, грубо говоря, омметры "с наворотами". В этом же приборе используется способ измерения, основан на зарядке конденсатора током, - резистор же, понятное дело, заряжаться не может :-) Осталось настроить измеритель ёмкости конденсаторов диапазона 0,1...150 мкФ. Так как для этого в схеме предусмотрен отдельный источник тока, измерение ёмкости таких конденсаторов можно сделать очень точным. Подключаем конденсаторы малой ёмкости к входным гнёздам прибора и, подбором сопротивления R1 в пределах 3,3...6,8 кОм (у меня получилось 4,3к) добиваемся максимально точных показаний. Этого можно достичь, если в качестве эталонных применить не электролиты, а высокоточные конденсаторы К71-1 ёмкостью 0,15 мкФ с гарантированным отклонением 0,5 или 1%, подключая их как по одному, так и параллельными "батареями". На этом настройка прибора закончена, можно поместить его в корпус и использовать по назначению :-) В прикреплённом архиве - схема, печатная плата в формате SL 5, прошивка, сборочный чертёж и двухмерное фото собранной платы. Удачи!
    1 балл
×
×
  • Создать...