Jump to content

Recommended Posts

Именно так я и понял. Пора и переходить к сути. Много прелюдий.

Share this post


Link to post
Share on other sites

ТИШИНА В ЗАЛЕ!!!!! Дайте кино посмотреть! Без теории в практику нечего соваться.

Share this post


Link to post
Share on other sites

:thank_you2::heat:

Это кино становится похожим на сериал и к концу фильма мы забудем о чем шла речь в первых сериях.

Edited by sachma2009

Share this post


Link to post
Share on other sites

Литиевые ХИТы Fanso: устойчивость к высоким температурам

Литиевые ХИТы для широкого круга применений, в том числе в промышленности, соответствуют требованиям современного рынка и способны работать в самых жестких условиях. Основные требования – это длительность хранения и работы, высокая удельная емкость, а также защита от воздействия таких внешних факторов, как температура и влажность. ЛХИТ превосходят по плотности энергии и нормальному напряжению другие элементы автономного питания: 2,9…3,6 В против 1,2…1,5 В

Читать статью...

имхо, топик и создавался что б "родить" схему. и если автор считает нужным выложить теории всего то в 5 и сообщениях, то - не вижу "сериала". Еще как то CherepVM говорил "спешка хороша при ловле блох" ;-) солидарен с master-ruden - тишина в зале.

Share this post


Link to post
Share on other sites

Перебивать оратора, пытающегося донести до нас всю прелесть технической мысли - как минимум невежливо. Извините.

Share this post


Link to post
Share on other sites

Плавкие предохранители LittelFuse. Грамотный подбор

Выбор оптимального плавкого предохранителя требует учета многих параметров. Для упрощения выбора оптимального предохранителя и автоматизации расчетов Littelfuse предлагает онлайн-утилиту.

Подробнее...

Было бы правильнее сначала показать предмет обсуждения, а потом уже излагать:

Что, Как и Почему? Пока не понятно что или кого обсуждаем.

Еще как то CherepVM говорил "спешка хороша при ловле блох" ;-)

CherepVM сначала изложил суть задуманного, а потом искал варианты.

Здесь, пока, наоборот.

Если я не прав - извините.

Edited by sachma2009

Share this post


Link to post
Share on other sites

Здравствуйте все!

Но у топикстартера уже что-то есть за пазухой наверняка. Прелюдия тоже не будет лишней, даже в познавательных целях. Многое, с чего начал автор темы, уже представляет интерес. Давайте таки послушаем Автора. Будет схема, не будет схемы - вопрос второй.

Share this post


Link to post
Share on other sites

Пора и переходить к сути. Много прелюдий.

Это не много. Это только прелюдия к прелюдии, если серьезно настроиться на использование сигнала Ионного Датчика (ИД).

ДАД на порядок более простая вещь, серийно выпускаемая и сто лет в обед применяемая на машинах, а сколько дискуссий куда вставлять, как фильтровать и как привязать к остальному. ДПКВ чисто импульсная на первый взгляд система, казалось бы обрабатывай контроллером частоту, вытаскивай информацию об ускорении коленвала на определенном участке оборота для определения нивыгоднейшего угла ОЗ - почему-то тоже нет ясности и практических схем и алгоритмов.

ИД пока экзотика и эксклюзив, там поле непаханное, с шашкой наголо не возьмешь. Если искру хоть как-то можно сымитировать на столе, то похожий на правду сигнал ИД - нет.

Тут для начала нужно пройти хотя-бы эти уровни:

1 - сделать схему подачи зондирующего тока на свечу

2 - научиться снимать картинку выходного сигнала в течении 20* после ВМТ с нужным раэрешением и накоплением в массив

3 - провести серию тестовых заездов с "правильным" УОЗ и искусственно сбитым в + и - на 10-15* для определения отличия в картинках ионного тока

Share this post


Link to post
Share on other sites

2 - научиться снимать картинку выходного сигнала в течении 20* после ВМТ с нужным раэрешением и накоплением в массив

На схеме это выглядит грубо. В жизни гораздо симпатичнее:

post-100465-0-74428300-1363264823_thumb.jpg

Share this post


Link to post
Share on other sites

Шутки, смех, веселье? Отставить. Послушаем

Share this post


Link to post
Share on other sites

2 - научиться снимать картинку выходного сигнала в течении 20* после ВМТ с нужным раэрешением и накоплением в массив

На схеме это выглядит грубо. В жизни гораздо симпатичнее:

На порядки более мощный сигнал при искре, когда понадобилось отлавливать тонкие эффекты, приходилось снимать со свечи классическим резистивным делителем.

Share this post


Link to post
Share on other sites

Чем делитель лучше тр - ра? Вопрос в другом: научиться запускать осцил. сразу после искрения.

Разумеется:

1 - сделать схему подачи зондирующего тока на свечу

А это может быть подпитка 1000V (плазменное зажигание).

Edited by sachma2009

Share this post


Link to post
Share on other sites

Что то не так на фото?

Все... это абсолютно не применимо в данном случае

Только пожалуйста не спрашивайте почему

Share this post


Link to post
Share on other sites

Уважаемый, ваш метод мне уже известен... :)

Я же, в свою очередь, могу вам сказать что знание неких принципов легко заменяет незнание некоторых фактов. Поэтому с чистой совестью заявляю вам что то что на фото здесь не пригодится... :)

Share this post


Link to post
Share on other sites

Ясность чего? Мне все ясно, я ничего нового пока не вижу и предложил дослушать топикстартера. Запаситесь терпением, а то будет как с ДАДом, десятки страниц ниочем.

Share this post


Link to post
Share on other sites

2 - научиться снимать картинку выходного сигнала в течении 20* после ВМТ с нужным раэрешением и накоплением в массив

На схеме это выглядит грубо. В жизни гораздо симпатичнее:

post-100465-0-74428300-1363264823_thumb.jpg

Была идея использовать для регистрации высокочувствительный датчик Холла, помешенный в зазор тороидального сердечника, на который намотан высоковольтный провод, однако на практике приемлемых результатов получить не удалось, поскольку токи очень малы. Тоже самое относится к трансформаторам тока. Однако, мне кажется, что идея имеет право на жизнь, возможно опыт был поставлен некорректно. Такое решение позволит надежно гальванически развязать силовую высоковольтную часть СЗ и цифровые входы АЦП МК.

Лично я остановился на данный момент на схеме с применением доболнительного преобразователя. Ионный ток и так является весьма капризной субстанцией для интерпретации, что-бы допускать еще и влияние межцикловых разбросов параметров разряда (прии использовании для измерения части энергии накопленной в КЗ). Схема преобразователя может быть любой (двух-тактной, однотактной, прямоходы, обратноходы), главным критерием является наличие обратной связи по напряжению. Лично я использовал с одинаково успешным результатом обратноход на UC3845, и двух-тактник на TL494 с регуулируемым выходным напряжением 0-500В. Здесь простор для воображения, готовых схем преобразователей в сети пруд пруди, да и опыт построения у форумчан огромный!

Для согласования уровней напряжения измерительной схемы и входа АЦП использую схемку на основе токового зеркала. Сигнал передается по коаксиальному кабелю. Для непосредственного подключения ко входу АЦП МК схема должна быть дополнена защитой от напряжения выше допустипого (первый пик соответствующий пробою искрового промежутка), также желательно наличие в данной схеме разрядника на случай пробоя высоковольтных диодов.

На схеме R1=74кОм, R2=5,6кОм - образуют делитель напряжения. R3=170кОм - ограничивает ток в измерительной цепи, а также не дает выходному конденсатору преобразователя разрядиться через искровой шнур по время пробоя. Транзисторы VT1, VT2 - BF421 или аналоги. Напряжение на выходе измерительной схемы U=R2*I, где I - ионный ток. VD1 - высоковольтный диод. Я использовал самодельный диод, состоящий из 30 последовательно соединенных 1N5408, (остался после опытов с плазменными системами зажигания). Эти диоды при достижении обратного напряжения 1200В переходят в режим стабилизации, и не требуют дополнительной обвязки (по крайней мере в теории, на практике пробоя также не наблюдалось:-)

post-169427-0-93630300-1363275195_thumb.jpg

post-169427-0-09762000-1363276569.jpg

post-169427-0-28305100-1363276612.jpg

Share this post


Link to post
Share on other sites

собственно и я остановился на этом варианте, в качестве преобразователя использовал часть одного из имевшихся в наличии в большом количестве горелых автоинверторов 12/220, там у него как раз 310 вольт постоянки имеется, ещё и со стабилизацией

только транзисторы другие ставил, лень было 300 вольтовые транзисторы питать от 310 вольт, разумеется сдохнуть не должны но предохраниться не мешает, ставил что то 400 вольтовое что было под рукой, схожу в гараж гляну, да и в тырнете можно подобрать замену без проблем

ещё не подключал, погода не способствует, снег и сыро, лезть в высоковольтную часть пока не потеплеет не комильфо :)

DIY-Ion-Sensing.pdf

DIY-Ion-Sensing-2.pdf

сырцы для MPS430

ion_vv.rar

Share this post


Link to post
Share on other sites

что то насчёт использования ионных токов вместо лямбда зонда, сильно пока не вчитывался но возможно это будет бомба :)http://www.sumobrain.com/patents/ep/Apparatus-method-controlling-ratio-using/EP0966599B1.pdf

Share this post


Link to post
Share on other sites

Прикрепляю для ознакомления документы по: определению отношения воздух/топливо, управлению положением пика давления, оптимизации крутящего момента , определению выброса вредных веществ по сигналу ионного тока.

воздух-топливо.pdf

017-Ivashin.pdf

Нечеткое управление УОЗ положением пика.pdf

обратгая связь по выбросу вредных веществ.pdf

оптимизация крутящего момента по ионному току.pdf

2007.pdf

Управление УОЗ на основе интерпретации ионных токов_ru.pdf

Управление ППД.pdf

Оригинал-управление УОЗ на основе интерпретации ионных токов.pdf

Eriksson Spark Advance.pdf

Edited by Tem-Temich

Share this post


Link to post
Share on other sites

Очень хорошие статьи! Но из них я сделал пессимистический вывод, что на современных доступных микроконтроллерах сделать полноценную систему управления УОЗ для получения максимума момента не представляется возможным. Очень жаль.

Хотя, скоро сделаю CDI зажигание на свою машину и все-таки попробую сам посмотреть картинки ионных токов.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...

  • Similar Content

    • By Dkin
      Здравствуйте! Знающие люди подскажите пожалуйста схему управления насосом, желательно на таймере NE555 или на микросхеме типа К176. Суть в том, чтобы при первом касании воды двух электродов насос останавливался и мог повторно включиться только при переподаче питания на микросхему. Похожая схема у меня есть на К176ЛА7, там RS триггер по верхнему и нижним уровням управляют насосом через реле. Как сделать похожее устройство, только чтобы при любом попадании воды на датчики (2 контакта) насос останавливался и больше не включался до повторного перезапуска, даже если уровень воды понизится, спасибо.
    • By Dmitriy Khamuev
      В модулях для сабвуферов Newton-Lab старших моделей в качестве усилителя я взял за основу симметричный MOSFET AV400 Entony E. Holtona, компактный, недорогой, термостабильный, музыкальный и с хорошим выходным током. Ток покоя устанавливали 15..20 миллиампер на пару,  для снижения температуры покоя модуля ( ~7 ватт на холостом ходу, 3 пары немного тёплые). С задачами он справлялся на 4 (из 5). Мощные выходные транзисторы применял IRFP240/IRFP9240 и IRF640/IRF9640, сотни пар прошли проверку работой и не подводили. Причиной нескольких отказов были BC546 во входном каскодном дифкаскаде. В результате их отказа на выходе появлялось постоянное напряжение питания. Предохранители в цепях силового питания защищали от КЗ на выходе и практически всегда от постоянного напряжения на выходе "4 омные динамики". Но один раз предохранители не справились, что отправило в перемотку  "8 омный" Peerless XLS 830500, 3 центовый транзистор победил 300$ вуфер! Peerless, конечно, перемотали, в Омске есть отличные спецы, но осадочек остался .

         Вывод: дополнительную защиту от постоянного напряжения на выходе усилителя следует предусмотреть.

         Вариант с реле в цепи нагрузки не нравится по причинам:
      - через контакты идёт полный ток нагрузки
      - для реле нормируется минимальный ток контактов, на малых сигналах возможны искажения
      - сопротивление замкнутых контактов вне контура ОС снижает демпинг фактор

         Разработана триггерная защита динамика от постоянного напряжения на выходе усилителя, работает в составе схемы питания усилителя. Схему постарался сделать универсальной и с минимальным количеством элементов. Сигнал с выхода усилителя через интегрирующую цепь R41-C5 поступает на U1 оптрон 814 серии (два инверсно-параллельных инфракрасных светодиода).  При постоянном напряжении на выходе усилителя выше ~+-4 вольта транзистор оптопары отрывается  и переключает триггер Q19-Q19. Транзисторный ключ Q20 открывается и включает оптопару U2 817 серии, обмотка управления реле RL1 (RT424048 48V 5520oHm 8A/15A Df=10% 4s) подключённая в цепь +57V,R43, Q17ke, -57V  обесточивается. Элементы схемы R42-C17 формируют задержку включения ~200мс (на время выключения при срабатывании защиты практически не влияют), диод D7 компенсирует ток самоиндукции обмотки реле при выключении.  Схема питания имеет дополнительный вход STBYE для внешнего отключения, замыкание на "землю" (~2ma, 5V, открытый (сток) коллектор). Для защиты от перегрузок применены самовосстанавливающиеся предохранители FU1 FU2 RXE375 3,75A/7A, практичнее плавких, но заявленный ресурс срабатываний 100 раз, злоупотреблять не стоит.

         Преимущества предложенного мною решения:

      - выход усилителя непосредственно подключен к нагрузке
      - действующий ток через контакты реле вдвое меньше нагрузочного
      - силовое питание снимается при пропадании (падении) одного из плеч
      - имеем возможность внешнего управления силовым питанием
      - схема защиты работает при питании от Up=+-24V. Меняются только резисторы (R43=0, R1=1900oHm для Up=24V), для других напряжений значения рассчитывается по формуле R43=(2*Up-48V)/48V*5520oHm, R1=(Up-5.1V)/10ma. И не забываем выбрать мощность этих резисторов.
      Ссылка на полное описание экспериментального модуля.

      Имеется с десяток ПП оставшихся после экспериментов.
      Best regards,
      Dmitriy Khamuev.
      Russia, Omsk.
    • By Ремирович
      Данные, изложенные ниже, появились в результате многолетней работы над усилителем мощности с использованием высоковольтных MOSFET полевых транзисторов в нетипичном для них линейном режиме. Двухканальный усилитель должен был обеспечивать мощность 1000 Вт, при эффективном выходном напряжении 250 Вольт. Соответственно, при совместной работе двух каналов мощность должна была быть 2000 Вт, а напряжение 500 Вольт.
      Приведённые параметры, в наше время, особо никого не удивили бы, но усилитель должен был работать в полосе частот 10…200000 Гц. Это значить, что на выходе усилителя нельзя было ставить повышающий трансформатор, так как он никогда не сможет работать в такой полосе частот, да и нелинейные искажения с ним значительно больше. То есть необходимо было заставить работать высоковольтные полевые транзисторы, практически на пределе своих возможностей.
      Вот здесь и началось самое интересное. После поиска по всевозможным сайтам, были найдены наиболее подходящие по мощности, напряжению и току транзисторы, и был изготовлен опытный образец. Перед этим, маломощный прототип усилителя, подтвердил работоспособность схемных решений и возможность получения необходимого выходного напряжения.
      Первое включение показало, что усилитель находится в режиме самовозбуждения. Типичная ситуация, но только устранить её никак не получалось, а опыта в такой работе мне хватало. Даже после отключения всех предварительных каскадов, генерация не прекращалась.
      Ситуация была абсурдной, прототип нормально работал, а на более мощных транзисторах ничего не получалось. Пришлось включить один мощный транзистор в режиме тестирования. Для этого была собрана типовая схема с нагрузкой в виде мощного резистора около 2 кОм, установленном в стоке транзистора и напряжением 600 Вольт, между истоком и нагрузочным резистором.
      Используя дополнительный низковольтный регулируемый источник питания, подавалось напряжение на затвор транзистора, относительно его истока. Напряжение на стоке транзистора должно было плавно уменьшаться, при увеличении напряжения на затворе. Правда, разработчиками такой режим работы транзисторов никак не регламентирован, что очень удобно для них, чувствуется присутствие “наших людей” в силиконовой долине. Им гораздо удобнее назвать транзисторы импульсными, и не обращать внимания на то, что будет происходить с транзисторами между открытым и закрытым состоянием.
      Вот тут то и выяснилось, что в промежуточном состоянии, транзистор переходит в режим генерации, что наглядно продемонстрировала собранная схема тестирования. Проверив, находившейся под рукой, транзистор другой марки, получил тот же результат. Надо было устранять генерацию. Вспомнилось, что для устранения взаимного влияния полевых транзисторов, при параллельном включении в импульсных устройствах, предлагалось последовательно с затвором транзистора устанавливать резистор от 10 Ом и выше.
      Попробовал, и при 20 Ом генерация пропала. Получается, что автор рекомендации сам не понимал сути происходящего, не транзисторы влияют друг на друга, а они сами являются источником генерации, и чем больше их включено параллельно, тем больше склонность к генерации. Стало понятно, почему на маломощных транзисторах такого эффекта не наблюдалось.
      В дальнейшем, вместо резистора я использовал небольшой дроссель, порядка 10 мкГн, что было удобней в моей схеме управления транзисторами, и это также обеспечивало отсутствие генерации.
      Но на этом “интересное” не заканчивалось. После того как после доработок опытный образец заработал, выяснилось, что выше частоты 20 кГц, напряжение на выходе резко уменьшается, совсем не в линейной зависимости. А у маломощного прототипа легко получалось достичь 200 кГц. Казалось бы понятно, что у более мощных транзисторов гораздо больше ёмкость между истоком и затвором, и скорее всего она и даёт такой эффект, но измерение напряжения на затворе этого не подтвердили. На затворе напряжение с частотой выше 20 кГц очень плавно уменьшалось вплоть до 200 кГц.
      Пришлось опять возвращаться к режиму тестирования, только теперь на затвор вместе с постоянным напряжением подавался и синусоидальный сигнал от генератора. Результат был примерно тем же самым, выше 20 кГц происходил резкий завал уровня переменного напряжения на стоке.
      Казалось, что вывод очевиден, транзисторы не “тянут”. Надо искать более высокочастотные экземпляры, что и было сделано, только результата это не дало. Обидно считать себя идиотом, глядя в техническую документацию, где чётко написано, что транзистор должен работать вплоть до 500 кГц.
      После многочисленных попыток изменить ситуацию с помощью отрицательной обратной связи и других ухищрений, было решено сменить источник сигнала на генератор повышенной мощности и напряжения. Не сразу, но всё же удалось раскачать транзистор на частоте 200 кГц, выше генератор не давал. При этом переменное напряжение на затвор приходилось подавать чуть ли не максимально допустимого уровня в 30 Вольт.
      В голове сквозила мысль, что же это за современные “супер-пупер” транзисторы, которые имеют дикую нелинейность в частотной области. Опять стало понятно, зачем их называют импульсными, за нелинейность в частотной области отвечать не надо. Но от этого жить легче не стало, так как было не понятно, что же происходит, и как с этим бороться.
      Быстро текст набирается, да только дела это не касается. На деле всё происходит гораздо медленнее и с постоянными “затыками”, что совсем не нравится руководству, особенно если оно в этом вообще ничего не понимает. После того как стало казаться, что с такой нелинейностью сделать ничего не удастся, в голову приходит мысль посмотреть, что происходит на затворе работающего транзистора с поданным на него высоким напряжением, что совсем не просто без специального изолированного от земли осциллографа. Но если очень хочется, то можно просто обойтись высокочастотным трансформатором, обеспечивающим гальваническую развязку.
      Вот тут то “карта и пошла”. Всё встало на свои места и чувство ущербности улетучилось. При подаче высокого напряжения, уровень сигнала на затворе очень сильно падал и восстанавливался при отсутствии такового. На частоте 200 кГц от сигнала вообще ничего не оставалось. То есть транзистор каким-то образом гасил “сигнал”.
      Можно сказать, что мгновенно пришло понимание того, что происходит, если учесть всё время, потраченное до этого момента.
      В техническом описании на транзистор есть такой параметр, как ёмкость между стоком и затвором, она совсем маленькая и, казалось бы, не должна существенно влиять на работу транзистора. Но именно она и обеспечивает эти самые “интересные” эффекты. Это не что иное, как частотнозависимая отрицательная обратная связь в теле самого транзистора. Чем выше частота и напряжение на стоке транзистора, тем большее влияние оказывает эта паразитная ёмкость.
      Теперь, если учесть, что транзистор имеет довольно большой коэффициент усиления, несложно сообразить, что при определённых условиях, на высоких частотах, отрицательная обратная связь легко может превратиться в положительную. Для этого необходим небольшой сдвиг фазы до нужной величины и у нас появляется устойчиво работающий генератор высокой частоты, что и подтверждало тестирование отдельных транзисторов.
      Но это ещё не всё, ведь если удаётся заставить работать транзистор без генерации, обратная связь не исчезнет, она будет проявлять себя в работе транзистора на высоких частотах, очень сильно снижая усиление транзистора. В итоге имеем прибор с отвратительными, хорошо замаскированными разработчиками транзисторов, свойствами, которые проявляют себя в самый неподходящий момент. А претензий предъявлять некому, просто надо назвать транзисторы импульсными и можно жить богато и счастливо.
      Но что есть, то есть. Понятно, что разработчики старались сделать всё как можно лучше, а получилось …, очень знакомая для наших людей ситуация. Хотя сейчас существует огромный выбор транзисторов, но ведут они себя практически одинаково, так как имеют одинаковую технологию производства. Ясно, что улучшений в ближайшее время ждать не приходится, поэтому надо использовать имеющиеся транзисторы.
      Каким то образом необходимо снизить влияние этой паразитной отрицательной обратной связи, при этом, не меняя конструкцию транзистора. Это очень напоминает желание овладеть телекинезом, чтобы силой мысли двигать предметы.
      Придётся научиться делать это, не прибегая к телекинезу. Для этого устанавливаем низкоомный резистор между истоком и затвором, и управляющее напряжение подаём через дроссель с небольшой индуктивностью, мне хватало 10 мкГн. Получаем на затворе транзистора довольно приличный шунт, который быстро разряжает большую ёмкость затвора и тем сильнее уменьшает влияние паразитной ёмкости между стоком и затвором, чем меньше значение сопротивления этого шунта. Для достижения хороших результатов, транзистору с ёмкостью затвора порядка 10000 пФ, потребуется резистор не более 10 Ом.
      Тем самым полевой транзистор перестаёт быть полевым, так как для его управления потребуется не только напряжение, но и вполне приличный ток. Если включается несколько транзисторов параллельно, то к каждому подключается свой шунт и свой дроссель.
      Для управления таким прибором потребуется специальный подход, чтобы оптимизировать затраты на управление. Отсюда, чем меньше напряжение включения транзистора, тем лучше. Максимальное напряжение на затворе должно обеспечивать уверенное открывание транзистора, но не более того.
      Для ключевых схем оптимальным будет использование импульсных трансформаторов, которые и сейчас используют довольно часто, только мощность у них должна быть заметно больше. А вот для линейных схем, где требуется плавное включение и высокая линейность, пришлось изобретать нечто новое, на основе хорошо забытого старого.
      Не знаю как сейчас, а 50 лет назад очень популярными были приёмники прямого усиления, а в школе демонстрировали работу детекторного приёмника. В основе работы того и другого, лежат одни и те же принципы. Мне очень запомнилось высокое качество их звучания, благодаря минимальному количеству преобразований и, в результате, минимальным нелинейным искажениям.
      Если совместить удобство использования импульсного трансформатора и качество работы детекторного приёмника, то получим компактное и достаточно простое устройство управления полевыми, да и любыми другими, транзисторами.
      Для этого преобразуем управляющее напряжение в радио сигнал с амплитудной модуляцией. Несущая такого сигнала должна быть достаточно высокой частоты, например 3 мГц для моего случая. Она определяется максимально необходимой верхней частотой сигнала управления. По сути, получаем мини радиостанцию, выход которой подключаем к первичной обмотке высокочастотного трансформатора. Сигнал гальванически развязанной вторичной обмотки детектируется и используется для управления транзистором. Получаем почти детекторный приёмник, только с достаточно мощными импульсными диодами, позволяющими получить необходимую мощность сигнала управления.
      Разброс мощностей такого устройства может быть довольно большим, от 10 мВт до единиц и даже сотен Ватт. Мне хватило 3 Вт. Привожу схему, которая позволила это сделать, она довольно простая, так как собрана всего на двух транзисторах и четырёх диодах, не считая трансформатора и обвязки.

      Трансформатор намотан на двух ферритовых кольцах диаметром 10 мм, с магнитной проницаемостью 200. Каждая обмотка содержит 7 витков медного изолированного провода диаметром 0,18 мм.
      В заключение отмечу, что усилитель, в конце концов, заработал так, как от него требовалось, но полной программы испытаний провести не удалось, кончился запас выходных транзисторов. Их доставали 6 месяцев, за это время кончилось терпение у руководства, и автор попал под сокращение из-за возраста, а главное, отсутствия какого либо интереса к этой теме.
      В общем-то, на предложенный здесь способ управления транзисторами, вполне можно получить патент, знаю по собственному опыту. Но только сейчас это имеет смысл только в том случае, если точно знаешь, что это кому-то понадобится, и удастся как-то на этом заработать. В противном случае зарабатывать будет патентное ведомство, а изобретатель будет его кормить. Поэтому делать изобретения сейчас могут себе позволить только богатые люди.
      Такое устройство вполне можно было бы сделать 50 лет тому назад, и если бы это случилось, то схемотехника усилителей мощности была бы гораздо проще и не надо было бы придумывать комплементарные пары мощных транзисторов. Но может быть и сейчас кому-то это понравится, а в некоторых случаях выведет из тупика, или сделает решение проблемы гораздо эффективнее. Лично мне уже удалось получить удовлетворение от решения этой, довольно сложной, технической задачи, надеюсь, что я не останусь в одиночестве.
    • By Pavel Kostrov
      Добрый день, коллеги!
      Стоит передо мной задача непростая (для меня, по крайней мере), ибо я больше по механике, а электротехника - только в общих чертах.
      Есть у меня маломощный насос (24 VDC, 3.6 л/мин), специальный (может кипяток прокачивать) для моих нужд.
      Так вот его расход зависит от величины тока (см. рис). Мне необходимо управлять его расходом. Точнее даже, не управлять, а иметь возможность его работы в трех режимах: номинал (3.6 л/мин, ток 170 мА), средний расход (0,6 л/мин, ток 130 мА) и минимум (0,4 л/мин, ток 110 мА). 
      Управление будет посредством контроллера (есть стандартные все выходы управления: реле, 0-10В, 4-20 мА).
      Вопрос: возможно ли сконструировать что-нибудь, для решения моей задачи. Нужно тупо подавать в трех случаях три разных тока на насос. Ну и иметь возможность подстроить величину тока в каждом случае для корректировки.
      ps Можно, наверное, тупо сделать три блока питания с ограничением тока (хотя я и в этом не силен). Но это как то варварски, как мне кажется.
      pps Эту задачу я могу решить с помощью механики (поставить регулирующий кран с приводом, который будет ограничивать расход воды). Но приводы слишком медленные.
       
      Спасибо

    • By Haomi
      Добрый день! помогите разобраться! Есть схема управления нагрузкой через симистр. Случилось так, что начал бесконтрольно  греться прибор, нашел причину - пробитый симистор, заменил его на новый. Подключил - вроде заработало, но без подачи на управляющий электрод сигнала. Когда я в первый раз подал сигнал на управляющий электрод - сгорел ризистор (красная стрелочка на рисунки), и симистор тоже. Резистор просто превратился в черную массу. Потом я решил второй раз поменять и резистор и симистр. Но прежде чем включать я откинул нагрузку. В результате даже без подключенной нагрузки сгорел тот же резистор, но симистор остался целым. Вот у меня теперь и вопрос, что случилось? почему горит резистор? Подскажите кто знает, или сталкивался с подобным.

×
×
  • Create New...